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Abstract. In this paper, we present an approach to lift on-demand anal-
ysis to higher-order languages. Specifically, our approach bootstraps an
on-demand call graph construction by leveraging a pair of on-demand
data flow analyses. Static analysis is increasingly applied to find subtle
bugs or prove deep properties in large, industrial code bases. To effec-
tively do this at scale, analyzers need to both resolve function calls in a
precise manner (i.e., construct a precise call graph) and examine only the
relevant portion of the program (i.e., be on-demand). A strawman strat-
egy to this problem is to use fast, approximate, whole-program call graph
construction algorithms. However, this strategy is generally not adequate
for modern languages like JavaScript that rely heavily on higher-order
features, such as callbacks and closures, where scalable approximations
often introduce unacceptable imprecision. This strategy also limits in-
creasingly sophisticated on-demand analyses, which scale by analyzing
only parts of a program as needed: the scalability advantages of an on-
demand analysis may be thwarted by the need to construct a whole-
program call graph. The key insight of this paper is that existing on-
demand data flow analyses can themselves be applied in a black-box
manner to construct call graphs on demand. We propose a soundness
condition for the existing on-demand analyses with respect to partial
call graphs, formalize our algorithm as an abstract domain combinator,
and prove it sound in Isabelle/HOL. Furthermore, we evaluate a proto-
type implementation of the resulting on-demand call graph construction
algorithm for a subset of JavaScript (using the Synchronized Push-Down
Systems framework as the underlying data flow analysis) on benchmarks
making heavy use of higher-order functions.
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1 Introduction

We consider the problem of lifting on-demand static analyses to higher-order
languages—that is, transforming, in a sound manner, an on-demand static anal-
ysis relying on an upfront call graph into a fully on-demand analysis constructing
its own call graph, even in the presence of first-class functions.

Program analysis approaches are becoming more and more sophisticated, in-
creasingly able to find subtle bugs or prove deep program properties of interest
in large code bases [9, 26]. There are two key enablers for such advances, es-
pecially needed to scale to large industrial applications. One is the ability to
reason interprocedurally about the behavior across different functions and mod-
ules of a program in a precise manner (rather than, e.g., relying solely on local,
intraprocedural information or coarse-grained global information such as types).
The other is the capabilty to be on-demand (i.e., to examine only the relevant
portion of a program to derive a desired fact on demand).

Reasoning interprocedurally requires access to a call graph linking call sites
in the program to functions that they may invoke at run time. To apply a static
analysis interprocedurally, many tools assume that a call graph is provided up-
front, and is consulted by the analysis to determine which parts of the program
should be explored. This creates two limitations. First, for higher-order, imper-
ative languages such as JavaScript, the combination of first-class functions with
a dynamic heap and object-oriented features may require a deep interleaving be-
tween call graph construction and data flow analysis. This arises due to the need
to precisely track functions as they flow from the points where they are referenced
through higher-order functions, heap cells, inheritance hierarchies, and closure
bindings. Without this back-and-forth between call graph construction and data
flow analysis, precision might be limited or come at the price of soundness or
performance trade-offs. Second, this reliance on an upfront call graph limits the
benefit of on-demand techniques—a precise data flow analysis to compute a call
graph upfront may significantly negate the benefits of a subsequent on-demand
analysis. For example, Stein et al. [32] lift an arbitrary abstract interpretation
to be on-demand (and incremental) but still assume an upfront call graph.

The key insight of this work is that existing on-demand intraprocedural data
flow analyses can themselves be leveraged in a black-box manner to bootstrap an
on-demand construction of the call graph. The approach starts from an empty
call graph and proceeds by interleaving backward data flow queries, resolving
which values may flow to a given expression, and forward data flow queries,
resolving which expressions a given value may flow to. Appropriately interleaving
such queries allows us to bootstrap a sound overapproximation of a relevant part
of the call graph. This technique allows us to automatically lift the results of on-
demand analysis for first-order languages to higher-order ones, thereby further
reducing the need for whole-program analysis. As a result, we can parametrically
leverage progress on analysis of other challenging language features, allowing the
on-demand call graph construction to benefit from the large body of work that
already exists on analyzing various combinations of language features, including
mutability. Concretely, we make the following contributions:
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– We propose a language-agnostic construction for bootstrapping an on-de-
mand call graph, parameterized by a pair of underlying backward and for-
ward on-demand data flow analyses. The two analyses are treated as black
boxes, except for the assumption that they can resolve backward and for-
ward queries about data flows between values and expressions with respect
to a partial call graph (Section 2).

– We present a formalization of our approach as an abstract domain combi-
nator and determine sufficient assumptions on the input analysis and target
language to guarantee soundness and termination (Section 3). To express
soundness, we also introduce a notion of soundness up to a given call graph.
This demonstrates a broader approach to formulating and proving sound-
ness of on-demand analyses. Our theoretical results are mechanized in Is-
abelle/HOL [23]. The theory files are available online [27].

– We evaluate our technique on a prototype implementation that instantiates
the approach for a subset of JavaScript, leveraging the intermediate represen-
tation of the JavaScript program analyzer TAJS [17], and using Synchronized
Push-Down Systems (SPDS) [30] as the underlying data flow analyses. For
our evaluation, we use a benchmark set of programs generated via property-
based testing techniques, implemented using QuickCheck [5] (Section 4).
Our results provide some evidence that on-demand call graph construction
introduces time savings and explores a smaller portion of the program, when
compared with whole-program call graph construction.

2 Overview of Our Approach

In this section, we give an informal overview of our approach to on-demand call
graph construction, illustrating the main ideas on a small JavaScript example
program (Fig. 1). The presentation in this section is intentionally kept high-level:
we assume we are given a forward and a backward data flow analysis that can
resolve queries with the help of an existing call graph, but we gloss over the
details of how such queries are issued and the formal requirements to make our
construction sound. These details are formalized in Section 3.

JavaScript programs frequently use callbacks, e.g., to handle user events or
interactions between different components in UI frameworks, such as React [21].
Consider the JavaScript snippet in Fig. 1. The function process takes two call-
back arguments: it retrieves data by calling the callback getData and passes the
result to the callback handle. Unfortunately, callbacks complicate the control-
flow of programs, which makes them harder to reason about and increases the
risk of introducing unintended and undesired behavior. Returning to our exam-
ple program in Fig. 1, which logs sensitive user data. The leak is not immedi-
ately visible since it happens indirectly: process is invoked with the arguments
readUserData, a function returning sensitive data (line 6), and writeToLog, a
function writing its argument to a public sink (log on line 2). Thus, through a
sequence of callbacks, the program leaks sensitive user data into a log.

Many existing analyses (e.g., [30]) can detect such leaks, but they typically
require a call graph to track interprocedural flows. For example, in order to



4 Schoepe et al.

1 function writeToLog(arg) {
2 log(arg);
3 }
4 function readUserData () {
5 // placeholder for a private

source
6 return "private userData";
7 }
8 function process(getData , handler)

{
9 var data = getData ();

10 handler(data);
11 }
12 var handler = writeToLog;
13 process(readUserData , handler);

Fig. 1. A JavaScript program logging
user data through callbacks

1 : function writeToLog(arg)

4 : function readUserData()

8 : function process(...)

9 : getData();

10 : handler(...);

13 : process(...);

3

4

8

Fig. 2. The call graph constructed for
the example program

Step

Query 0 1 2 3 4 5

⟨2, arg,←⟩ ∅ ∅ ∅ ∅ ∅ ∅↰

⟨1, writeToLog,→⟩ ∅ ∅ ∅ {handler@10} {handler@10}↰

⟨13, process,←⟩ ∅ {process@8} {process@8} {process@8}↰

⟨9, getData,←⟩ ∅↰

⟨8, process,→⟩
Step

Query 6 7 8 9

⟨2, arg,←⟩ ∅ ∅ ∅ {private@6}↰

⟨1, writeToLog,→⟩ {handler@10} {handler@10} {handler@10} {handler@10}↰

⟨13, process,←⟩ {process@8} {process@8} {process@8} {process@8}↰

⟨9, getData,←⟩ ∅ ∅ {readUserData@4} {readUserData@4}↰

⟨8, process,→⟩ ∅ {process@13} {process@13} {process@13}

Fig. 3. Step-by-step on-demand call graph construction

determine whether arg on line 2 might contain sensitive information, an analysis
needs to identify all possible calls to writeToLog, including indirect ones, such as
the call to handler on line 10. Constructing a call graph for programs involving
callbacks is challenging, particularly for large code bases.

We now describe a construction that lazily computes only those parts of the
call graph that are required by a client analysis. This construction relies on two
components: (1) a backward data flow analysis that can track which values flow
to a given expression, and (2) a forward data flow analysis that determines to
which expressions a given value may flow to. Each data flow analysis is only
assumed to handle interprocedural flows soundly up to a given call graph. Start-
ing from an empty call graph, we can lazily compute call edges requested by
a client analysis by repeatedly issuing queries to the two data flow analyses.
We show how this technique applies to the example from Fig. 1; the resulting
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call graph is shown in Fig. 2. Note that the approach is not limited to tracking
information leaks but can be applied to any client analysis requiring call graph
information. Furthermore, two different analyses can be used for forward and
backward queries as they only communicate through the call graph.

The table in Fig. 3 details the individual steps (1–9) needed to construct the
call graph in Fig. 2: each edge in the call graph is labeled by the step number at
which it is introduced. The table also tracks the queries issued to the underlying
analysis during the process: backward queries of the form ⟨ℓ, c,←⟩ to determine
which functions can flow to expression c on line ℓ, and forward queries of the
form ⟨ℓ, f,→⟩ to determine which expressions a function f may flow to. An
empty cell in the table indicates that a query has not been issued yet, while ∅
indicates that a query has been issued but has not yet produced any results. For
each step, the table shows how the data flow analyses can make progress given
the call graph computed up to this point. This call graph is derived in each step
from the answers to queries found so far.

In addition, the table in Fig. 3 also shows the dependency between queries:
the “

↰

” symbol before a query indicates that its result is required to solve an
earlier query (i.e., one higher up in the dependency tree). For readability, the
table is split into two segments, and should be read following the Step number.

Starting from the call to log inside function writeToLog (on line 2), the client
annalysis wants to determine whether arg may contain sensitive data. Hence,
it issues a backward query ⟨2, arg,←⟩ to determine which values flow to arg
(step 0). Because arg is an argument to writeToLog, this in turn requires identi-
fying call sites of writeToLog, for which a forward query ⟨1, writeToLog,→⟩ to
identify call sites of writeToLog (step 1) is issued.

To answer forward queries about calls to a function f , the algorithm starts
by finding syntactic references to f in the code and following the flow of f
forwards from those points; such references can be found cheaply by analyzing
the scope of variables in the program. In this case, the only such reference occurs
in the top-level code, where writeToLog is assigned to handler, which is passed
to process. To proceed in identifying call sites of writeToLog, the analysis needs
to find out how the handler argument is used inside call targets. To do so, a
query ⟨13, process,←⟩ is issued to resolve call targets of the call to process on
line 13 (step 2). Since this is a direct call, the underlying backward data flow
analysis resolves the possible call targets to the function process defined on line 8
(step 3); this also adds a call edge to our call graph and allows ⟨1, writeToLog,→⟩
to make progress by analyzing the body of process to find invocations of its
handler argument. The data flow analysis then finds a call to handler in the
body of process intraprocedurally, so a call edge is added from that expression
to writeToLog (step 4). This in turn enables further progress on ⟨2, arg,←⟩ which
can proceed backwards from this call to resolve what values flow to variable data,
in this case discovering that the value of getData is assigned to data. Since getData
is invoked as a function, another query ⟨9, getData,←⟩ needs to be issued to

resolve callees of getData (step 5).
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1 function storeFunc(obj , f) {
2 obj[’func’] = f;
3 }
4 function retrieveFunc(obj) {
5 return obj[’func’];
6 }
7 function f() {
8 // ...
9 }

10 function g() {

11 // ...
12 }
13 var obj1 = {};
14 storeFunc(obj1 , f);
15 retrieveFunc(obj1)();
16 var obj2 = {};
17 storeFunc(obj2 , g);
18 retrieveFunc(obj2)();

Fig. 4. JavaScript program with heap use

Because getData is passed as a parameter to process, further interprocedural
analysis is needed to make progress and issue a forward query ⟨8, process,→⟩
to find call sites of process (step 6). The partial call graph already contains a
call edge for process, but since this is the first forward query for process, there
might be additional calls not yet discovered; in this case, however, process is
only referenced by that call and no additional edges are found (step 7).

This call edge allows the query ⟨9, getData,←⟩ to make progress by deter-
mining that getData points to readUserData resulting in a new call edge from
getData() to readUserData (step 8). This in turn triggers further progress of
⟨2, arg,←⟩ through the newly added call edge into the body of readUserData
allowing the data flow analysis to discover that arg may contain data from a
private source (shown as private@6 in step 9). This completes the analysis.

The above process is fully on-demand without requiring an analysis of the
entire program, aside from identifying syntactic references to functions (which
can be determined cheaply through scoping). Additionally, the underlying data
flow analyses are reused in a black-box fashion, as long as they allow resolv-
ing forward and backward queries up to a given call graph. Rerunning queries
when new call edges are added can be avoided when the data flow analyses are
incremental and can take newly discovered call edges into account without start-
ing from scratch. Also note that queries make progress independently based on
newly discovered call graph edges, rather than requiring to fully resolve each
subquery before continuing with a parent query.

2.1 Precision

Different data flow analyses choose different trade-offs in terms of precision
and scalability along various dimensions such as context-sensitivity [19], path-
sensitivity [8], and how aliasing is handled [10]. For example consider the program
in Fig. 4 making use of the JavaScript heap.

A client analysis may need to resolve the calls on lines 15 and 18. Fol-
lowing the algorithm outlined above, this would eventually result in trying
to resolve what parameter f points to on line 2. A simple data flow analysis
that does not track calling contexts may not distinguish between the objects
whose ’func’ property is being assigned to in the body of storeFunc and there-
fore report both function f() and function g() as potential allocation sites of
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retrieveFunc(objN), resulting in an over-approximate call graph. However, if a
calling-context-sensitive analysis is used to resolve call expressions to call tar-
gets, the query ⟨15, retrieveFunc(obj1),←⟩ returns function f() as the only
callee, and ⟨18, retrieveFunc(obj2),←⟩ is resolved to function g() only.

To see why this is the case, consider the subqueries created during analy-
sis: The initial query ⟨15, retrieveFunc(obj1),←⟩ starts with an empty calling
context, the body of retrieveFunc(obj1) needs to be analyzed, leading to query
⟨15, retrieveFunc,←⟩ to identify the callee, which immediately yields function
retrieveFunc(). Its analysis in turn yields the fact that the query result is the

functions that may flow to obj1[’func’]. In order to analyze how obj1 is modified
by storeFunc, another query to resolve the call target on line 14 is needed, re-
turning function storeFunc() immediately, adding a call edge to the call graph.
This allows the initial query ⟨15, retrieveFunc(obj1),←⟩ to proceed analyzing
the body of storeFunc. Since we assumed the backward data flow analysis anal-
ysis to be calling-context-sensitive, this analysis will use the call on line 14 as
the calling context, allowing it to determine that f was stored in obj1[’func’].
The calling context of the underlying analysis is preserved in the analysis of an
individual query in the same manner as when the underlying analysis is invoked
with a precomputed call graph instead.

The same argument applies regardless of the precision of the context sensi-
tivity or how exactly the analysis represents calling contexts and generalizes to
other forms of sensitivity, such as field sensitivity.

In more complex cases involving multiple queries, the constructed call graph
may contain spurious edges. For example, consider a version of Figure 1 where
the top-level code makes two calls: process(readUserData, dontWriteToLog) and
process(readPublicData, writeToLog), such that readPublicData returns pub-
lic information and dontWriteToLog does not log its argument. In this case,
the call on line 10 is (correctly) resolved to call targets dontWriteToLog and
writeToLog, and the call 9 is (correctly) resolved to call targets readPublicData
and readUserData. A standard data flow analysis, when given this call graph,
will report a warning when the flow is terminated in the body of readUserData.
This problem can be addressed by augmenting queries with a context param-
eter specific to the underlying data flow analyses. In this case, when resolving
backward query ⟨2, arg,←⟩, additional calling context could be passed to query
⟨9, getData,←⟩, eliminating the false positive, while making the analysis more
costly as queries now may have to be resolved multiple times with different
contexts. We leave such an extension as future work.

2.2 Termination and Soundness

Given that issuing a query may in return issue subqueries, cyclical query depen-
dencies may arise during analysis. The algorithm avoids non-termination due
to query cycles by not blocking on a subquery to complete before proceeding.
Instead, the algorithm allows each query to make progress whenever any other
query finds additional call edges relevant to another query. More precisely, if a
query q1 is processed, which triggers another query q2 to be issued, and if q2 in
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turn again issues q1, the algorithm discovers that q1 has already been issued and
proceeds with other analysis paths of q2 that do not depend on q1 (if there are
any). Whenever q2 finds a call edge, this may allow q1 to make further progress,
in turn possibly allowing further progress of q2. This process is guaranteed to
terminate since, at each step, either the number of query results or the size of
the call graph increases, yet both are ultimately bounded by the size of the pro-
gram. The process is reminiscent of a Datalog-based analysis such as Doop [29]
where new tuples being discovered for one relation, may trigger additional rules
to apply for another relation, possibly in a mutually recursive fashion. More
generally, it is an instance of a fixpoint computation on a finite domain.

Soundness is less straightforward to establish, as it requires issuing all neces-
sary subqueries to eventually discover all the ways in which a given function may
be invoked or to find all values flowing to a given expression. To show sound-
ness, we make the assumption that the program under analysis is closed, that
is, it neither uses reflection nor has entry points that take function arguments.
Informally, to see why the on-demand call graph construction algorithm is sound
in the absence of reflection, consider how a given function f might be invoked
during execution of a closed program. In order for f to be invoked, at least one
of the following must hold: (i) f is an entry point to the program, or (ii) a ref-
erence to f flows from f ’s definition to a call site. In other words, references to
a function cannot be “guessed” and can be obtained either through a syntactic
occurrence of the function’s name or through the use of reflection. By starting
from such syntactic references, the analysis can track where this function may
flow. Similarly, by starting backwards from a call site and using forward analysis
to find calls to the surrounding function, the analysis can discover all function
definitions flowing to the call site.

Soundness in the presence of reflection requires a way to soundly identify
locations where references to a given function may be obtained, for example using
an existing reflection analysis [18,20,28]. In practice this may result in significant
overapproximation, since analyzing many reflection facilities, for example in Java
or JavaScript, requires reasoning about e.g., string computations. We discuss this
topic in more detail in Section 3.6.

Further, handling programs that are incomplete, that is, programs with miss-
ing code such as libraries, is orthogonal to this work. Analyzing incomplete pro-
grams with this technique would require incorporating an existing approach for
handling to missing code, such as models of missing library functions.

3 On-Demand Call Graph Soundness

In this section, we formally prove the soundness of our approach. We start by
introducing a formal, semantic model of programs, call graphs and queries. We
define the desired property, on-demand call graph soundness, that the call graphs
produced by our analysis should satisfy with respect to the given program se-
mantics. We then introduce our algorithm, in the form of a transition system
defined by a set of inference rules. Finally, we state our soundness result—that



Lifting On-Demand Analysis to Higher-Order Languages 9

call graphs generated by our rules for a given input program and set of input
queries are on-demand sound—and sketch a proof. The full proof has been for-
malized using Isabelle/HOL and is available online [27].

We choose to depart from the usual abstract interpretation or data flow style
presentation in two important ways. First, rather than starting from a concrete
program syntax and semantics, we choose to model programs directly as the
collection of (concrete) call-traces they may produce. We do so because our ap-
proach is fundamentally language-agnostic. The call-trace semantics serves as
a generic starting point that abstracts over language-specific details while still
fitting the abstract interpretation framework. Second, we do not introduce an
abstract representation of sets of program traces as it would be used by a realis-
tic analyzer. Instead, we model analyses directly in terms of the (semi-concrete)
call-trace semantics. In practice, one does need an abstract domain, and the
underlying analysis would typically provide one (e.g., we use SPDS in our proto-
type implementation). For the purpose of our soundness proof, however, we are
primarily interested in the concretization of abstract states back into the con-
crete call-trace semantics. In our formalization, we therefore skip the indirection
through an abstract domain and directly express the analyses as producing sets
of concrete traces, while implementations—such as our prototype—use abstract
representations that can be queried for various properties that we extract from
traces directly in the formal model.

3.1 Program Semantics

call sites c ∈ CallSite
functions f ∈ Func

reference points r ∈ RefPoint
events e ∈ Event

::= call(c, f , r)
| enter(c, f )
| exit(c, f )
| return(c, f )
| ref(f , r)

traces τ ∈ Event∗ = Trace

Fig. 5. Syntax of traces and events

Fig. 5 defines the language of events
in terms of a given set of expres-
sions and functions. In addition, we
assume a set of unique syntactic refer-
ence points where an initial reference
to a function is obtained in the pro-
gram.

Events. Let CallSite be the finite set
of call sites and Func the finite set
of function definitions appearing in
some program. Let RefPoint be a fi-
nite set of reference points containing unique identifiers r used to link function
calls to locations where functions are referenced in the source code. To make
our approach applicable to a wide range of languages, regardless of their mem-
ory model and other features, we model only the language semantics relevant to
defining a call graph. To do so, we fix a set Event of events, where each event
e ∈ Event is one of the following:

– call(c, f , r): A call to function f from call site c, where the reference to f
was obtained by the reference point r .

– enter(c, f ): Entering the body of callee f , whose call originated from call site c.
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1 function f() { // enter(x(), f)
2 return; // exit(x(), f)
3 }
4 var x = f; // ref(f, r)
5 x(); // call(x(), f, r), return(x(), f)

Fig. 6. An example program annotated with the events it creates.

– exit(c, f ): Exiting the body of callee f , whose call originated from call site c.
– return(c, f ): Returning to a call site of function f , whose call originated

from call site c.
– ref(f , r): Obtaining a reference to function f with reference point r . This

can be either a syntactic reference to f or a use of reflection evaluating to f .

When a function is called, a call event is first emitted on the caller side, then
an enter event is emitted on the callee side. Similarly, when the called function
returns, an exit event is first created on the callee side, and then a return event
is created on the caller side. Observe that both the ref event and the call event
contain the reference point r . As we will see in Section 3.4, this allows linking
the call to a specific reference to the callee that triggered the call. An example
program and the created events can be seen in Fig. 6.

Traces and Programs. A (call) trace τ ∈ Trace is a finite sequence of events. We
denote by |τ | ∈ N the length of τ and by τi its i-th element, where 0 < i ≤ |τ |.
Given a pair of traces τ, τ ′, we denote their concatenation by τ · τ ′. We denote
by e1 · · · en the trace consisting of the events e1, . . . , en.

In the following, we fix a program and model its semantics as the (potentially
infinite) set of call traces its executions may result in, written S ∈ P(Trace).
We impose a few restrictions on S to exclude ill-formed traces that could not
be generated by a real program: we assume that events on the caller side are
followed by corresponding events on the callee side and vice versa, and that each
call to a function f is preceded by obtaining a reference to f . Formally:

– S is prefix-closed, that is, for every trace τ · τ ′ ∈ S, the prefix τ is also in S.
– For each trace τ ∈ S:
• If τi = enter(c, f ), then i > 1 and τi−1 = call(c, f , r) for r ∈ RefPoint.
• If τi = call(c, f , r) and i+ 1 ≤ |τ |, then τi+1 = enter(c, f ).
• If τ = τ ′ · call(c, f , r), then τ · enter(c, f ) ∈ S.
• If τi = exit(c, f ), then ∃ j ∈ N, with 0 < j < i where τj = enter(c, f )
• If τi = return(c, f ), then i > 1 and τi−1 = exit(c, f ).
• If τi = exit(c, f ) and i+ 1 ≤ |τ |, then τi+1 = return(c, f ).
• If τi = call(c, f , r), then ∃ j ∈ N, with 0 < j < i, such that τj = ref(f , r).

3.2 Queries

A client analysis is an analysis that uses a call graph in order to reason about
interprocedural control flow in a program. We distinguish two kinds of call graph
queries that a client analysis can issue:
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1. callee query, i.e., a call site c ∈ CallSite, whose purpose is to find all func-
tions f ∈ Func that may have be called at c.

2. caller query, i.e., a function f ∈ Func, whose purpose is to find all call sites
c ∈ CallSite from which the function f may be called.

Intuitively, callee queries are backward data flow queries: given a call site c,
we want to find all the reference points in the program before c from which
function values can flow to c. Conversely, caller queries are forward data flow
queries: given a function f , we want to find all the reference points in the program
from which f can flow to call sites later on in the program.

In each case, the query implicitly defines a subset of program subtraces con-
taining the reference points of interest. Intuitively, these are the parts of program
runs relevant to answering a query. Formally, we first define complete backward
subtraces with both start and end points and then close the resulting set of sub-
traces under suffix: complete-bwd -traces(c) = {τ | ∃τ0.τ0 · τ ∈ S ∧ τ = ref(f , r) ·
_ ·call(c, f , r)} and bwd -traces(c) = {τ2 | ∃τ1.τ1 · τ2 ∈ complete-bwd -traces(c)}.
Note that the reference point r is only used to delimit the backward traces rel-
evant to a given call site c. Similarly, we define the set of forward subtraces
fwd -traces(f ) for a forward query f , as the subtraces starting with a reference
to f , that is, fwd -traces(f ) = {τ | ∃τ0.τ0 · τ ∈ S ∧ τ = ref(f ,_) ·_}.

3.3 Call Graphs

To define an on-demand call graph, we first need the notions of a call graph and
a whole-program call graph.

A call graph G ⊆ CallSite×Func is a directed graph whose vertices are call
sites and functions and whose edges connect a call site c ∈ CallSite to a function
f ∈ Func. We write CG = CallSite×Func for the set of all call graphs. We
define the whole-program call graph of a program, written whole-cg , as the set of
all pairs (c, f ) that occur on a call event in some trace of the program semantics.
Formally, whole-cg = {(c, f ) | ∃τ ∈ S, 0 < i ≤ |τ | . τi = call(c, f ,_)}.

Let C ⊆ CallSite and F ⊆ Func be the sets of callee and caller queries,
respectively, that a client analysis issues while analyzing the program. Observe
that the whole-program call graph whole-cg may be large and include many call
edges (c, f ) that are never used to answer a call graph query, i.e., such that
c /∈ C or f /∈ F . The goal of our on-demand approach is to compute a subgraph
G of whole-cg containing all the edges needed to answer the queries in C and F .

To characterize such on-demand call graphs G , we introduce the notion of
(C ,F )-soundness. Intuitively, a (C ,F )-sound on-demand approximation of a
whole-program call graph contains at least the call graph edges necessary to
answer all client queries. Formally:

Definition 1 (On-demand call graph soundness). Let C ⊆ CallSite and
F ⊆ Func be finite sets of callee and caller queries, respectively. A call graph
G ⊆ CallSite×Func is on-demand call graph sound w.r.t. C and F (or simply
(C ,F )-sound) iff every edge (c, f ) ∈ whole-cg is in G if either c ∈ C or f ∈ F .
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3.4 Answering Call Graph Queries

To construct an on-demand call graph, our algorithm starts from an empty call
graph, and gradually adds edges based on answers to the callee queries C and
caller queries F issued by the client analysis. To find the answers of these queries,
our approach is parameterized by two data flow analyses, defined as follows:

– a forward analysis F : CG×Func → P(Trace), used to detect the call
sites where a caller query f ∈ F may have been called; and

– a backward analysis B : CG×CallSite → P(Trace), used to detect the
functions that a callee query c ∈ C may call.

For example, to detect the functions that the callee query x() on line 5
in Fig. 6 may call, our algorithm uses a backward data flow analysis to issue a
backward query, whose answer contains the function f , defined on line 1. Once f
is obtained as an answer, an edge (x(), f) is added to the on-demand call graph.

To guarantee on-demand soundness of the call graph obtained by applying
our algorithm, we assume the following about the underlying data flow analy-
ses F and B. Both data flow analyses are on-demand analyses, that is, intuitively
they need only discover interprocedural data flows between a call site c and func-
tion f if the given partial call graph contains the edge (c, f ). Their answers are
an overapproximation of the set of subtraces relevant to a given call graph query.
Note that F and B are modeled as functions returning sets of traces in order
to reason about the soundness of the approach. In practice they would return
abstract representations that concretize to sets of traces, which would provide
interfaces to determine when data flows to function boundaries.

Next, we define the notions of backward and forward compatibility of a given
trace with a partial call graph. These notions are used to restrict the traces that
need to be overapproximated by the on-demand analyses F and B, since they
are allowed to only reason about parts of traces relevant to the given query. A
trace τ is forward-compatible with a call graph G , written compat→(G , τ), if for
any event enter(c, f ) or return(c, f ) in τ , it holds that (c, f ) ∈ G . Similarly,
a trace is backward-compatible with a call graph G , written compat←(G , τ), if
for any event call(c, f , r) or exit(c, f ) in τ , it holds that (c, f ) ∈ G . Note that
the compatibility definitions are slightly different depending on the direction of
the analysis. In the forward case, encountering a call site is easy to identify, but
determining the callee-side enter event requires resolving which function flows
to the call site. In the backward case, reaching the entry point of a function is
easy to identify, but not where this function was called. Also, when proceeding
backwards, a call site is indicated first by a caller-side return event, but its callee
needs to be found through additional analysis to identify the corresponding exit
event. The precise definitions of compat→(G , τ) and compat←(G , τ) can be found
in the Isabelle/HOL formalization [27].

Finally, we define the soundness requirements on F and B. Given a relevant
subtrace that is compatible with a given partial call graph, F should discover
next possible event relevant to a query, whereas B should discover previous
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possible events. Intuitively, this captures that analyses can make progress on the
part of the program that a partial call graph provides enough information about.

Formally, F is forward-sound iff {τ ∈ fwd -traces(f ) | compat→(G , τ)} ⊆
F (G , f ) and if τ · enter(c, f ) ∈ fwd -traces(f ) and compat→(G , τ), then τ ·
enter(c, f ) ∈ F (G , f ). Note that this definition entails that F (G , f ) overap-
proximates all references ref(f , r) to f as singleton traces ref(f , r) are com-
patible with any call graph. Similarly, B is backward-sound iff for any τ ∈
bwd -traces(c) such that τ = τ ′ · call(c, f , r) and compat←(G , τ ′), then τ ∈
B(G , c) and if call(c, f , r) ∈ bwd -traces(c), then call(c, f , r) ∈ B(G , c).

If all the assumptions on F and B outlined in this section are satisfied, our
call graph construction is sound. We make this precise next.

3.5 On-Demand Call Graph Construction as a Transition System

Our on-demand call graph construction algorithm maintains a state consisting
of a triple (G ,C ,F ), where G is the currently known call graph, C contains the
set of relevant backward queries for callees of call sites c ∈ C and F contains a
set of relevant forward queries for callers of functions f ∈ F .

Fig. 7 describes how call graph construction, starting from some call graph
construction state can make progress. If the underlying data flow analyses dis-
cover a call for a query, either in the forward or backward direction, then we can
add the corresponding call edge to the call graph (rules AddFwdCallEdge
and AddBwdCallEdge). Note that discovering a call in the forward direction
is indicated by an enter(·, ·) event, whereas in the backward direction, this is
indicated by a call(·, ·, ·) event instead. This difference results from the fact that
when proceeding forwards through a function, the caller-side call event is always
compatible with any partial call graph, whereas discovering the corresponding
callee-side enter event must have been resolved by the forward analysis. Simi-
larly, in the backward direction, the enter event is backward-compatible with
any call graph, while the corresponding call event is not. The remaining rules
describe which additional queries to issue: When reaching a call in either forward
or backward direction, the call target needs to be resolved through an additional
query (rules ReachedCallBwds and ReachedCallFwds); these rules again
exhibit the same difference regarding enter and call events as for adding call
edges to the call graph. Lastly, when reaching the beginning of a function going
backwards or the end of a function going forwards, call sites of the containing
function need to be resolved through another query to make progress.

The transition system is intentionally non-deterministic: At each point, mul-
tiple rules may be applicable to make progress. The rules can be applied in any
order to reach an overapproximation of the relevant parts of the real call graph.
We prove soundness of the approach by stating that once the algorithm reaches
a fixed point, the call graph is on-demand sound w.r.t. the answered queries.

Theorem 1 (On-Demand Soundness). For any call graph construction state
(G ,C ,F ), if (G ,C ,F )⇝∗ (G ′,C ′,F ′) ̸⇝, then G ′ is (C ′,F ′)-sound.
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AddFwdCallEdge
f ∈ F τ · enter(c, f ) ∈ F (G, f ) (c, f ) ̸∈ G

(G,C ,F )⇝ ({(c, f )} ∪G,C ,F )

AddBwdCallEdge
c ∈ C ref(f , r) · τ · call(c, f , r) ∈ B(G, c) (c, f ) ̸∈ G

(G,C ,F )⇝ ({(c, f )} ∪G,C ,F )

ReachedCallFwds
f ∈ Fτ · call(c′, f ′, r ′) ∈ F (G, f ) c′ /∈ C

(G,C ,F )⇝ (G,C ∪ {c′},F )

ReachedCallBwds
c ∈ C return(c′, f ′) · τ ∈ B(G, c) c′ ̸∈ C

(G,C ,F )⇝ (G,C ∪ {c′},F )

ReachedEnterBwds
c ∈ C enter(c′, f ′) · τ ′ ∈ B(G, c) f ′ /∈ F

(G,C ,F )⇝ (G,C ,F ∪ {f ′})

ReachedExitFwds
f ∈ F τ · exit(c, f ′) ∈ F (G, f ) f ′ /∈ F

(G,C ,F )⇝ (G,C ,F ∪ {f ′})

Fig. 7. On-Demand Call Graph Construction as a transition system

The analysis starts with an empty call graph and non-empty query sets,
relying on the special case of the theorem where G = ∅. As ⇝ is monotone
(discussed below), any queries issued as part of C or F are still present in C ′

or F ′. Based on the intuitions presented in Section 2.2, we present a proof sketch
summarizing the key techniques. Some definitions and lemma statements are
simplified. The full details can be found in the Isabelle/HOL formalization [27].

Proof (sketch). The proof proceeds in four main steps:

1. We first define an intermediate collecting semantics ↣ that adds subtraces
and new queries in the same order as⇝ adds call edges and queries. The in-
termediate collecting semantics maintains the state of forward queries (resp.
backward queries) as partial maps F (resp. B) from functions f ∈ Func
(resp. c ∈ CallSite) to subsets of fwd -traces(f ) (resp. bwd -traces(c)). Each
step (F ,B)↣ (F ′,B′) either adds an event to the end (resp. beginning) of
a set in the co-domain of either map. If the event requires no other queries
(such as an ref(f , r) event), then it is added directly. If the new event re-
quires resolving another query (such as function call events), then it is only
added if the query it depends on has made enough progress. Alternatively, a
step may issue an additional query under similar conditions as⇝. Note that
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this intermediate semantics is more precise as only real events are added to
traces. This also renders it not computable.

2. We proceed by proving that ⇝ overapproximates ↣. Concretely, we show
that if (F ,B)↣ (F ′,B′), and γ((G ,C ,F )) = (F ,B), then there exists a new
call graph construction state (G ′,C ′,F ′) such that (G ,C ,F )⇝ (G ′,C ′,F ′)
and (F ′,B′) ⊑ γ((G ′,C ′,F ′)), where we write γ for the concretization of a
call graph construction state (G ,C ,F ) into subsets of traces for each forward
and backward query (F ,B) and ⊑ for a lifting of subset inclusion of traces
for each forward and backward query. This is proven using a straightforward
induction on (F ,B)↣ (F ′,B′).

3. Next, we show that a fixed point of ↣ approximates all subtraces for the
queries that were generated. For this, we need an intermediate definition of
well-formedness on the events in the subtraces being discovered. Formally, if
(F ,B) ̸↣, and (F ,B) is well-formed, then for each f such that F(f ) = Tf ,
we have fwd -traces(f ) ⊆ Tf . Similarly, if B(c) = Tb, then it holds that
bwd -traces(c) ⊆ Tb. Well-formedness for forward queries requires that all
singleton traces [ref(f , ·)] are included in Tf and that Tf is prefix-closed.
Similarly, well-formed backward sets Tb need to include the singleton suffixes
of bwd -traces(c) in addition to being suffix-closed. To show that a fixed point
of↣ approximates all subtraces, we proceed by contradiction. Suppose that
after reaching a fixed point (F ,B) there is a missing event for a query;
hence there must be an earlier missing event. This means there must either
be another possible transition ↣ or an earlier missing event, yielding a
contradiction in either case.

4. Combining 2 and 3, we obtain that a fixed point of ⇝ overapproximates the
relevant subset of the whole-program call graph of a given program.

Note that termination follows from the assumption that a fixed program has
a finite number of functions and call sites, combined with the monotonicity of⇝:

Lemma 1 (Monotonicity). If (G ,C ,F ) ⇝ (G ′,C ′,F ′), then (G ,C ,F ) ⊏
(G ′,C ′,F ′), where ⊏ denotes lexicographic tuple ordering.

3.6 Discussion

Reflection. The above algorithm relies on correctly identifying all references to
a function f for which call sites need to be determined. In languages without
reflection, this can be done easily by identifying where f is referenced syntac-
tically, taking into account scoping rules. However, many languages including
Java and JavaScript allow obtaining a reference to a function through the use of
reflection. The above definitions assume that an F correctly overapproximates
where a function might be referenced, which entails a reflection analysis in order
to soundly analyze programs in the presence of reflection.

Implementation considerations. We model F and B as returning sets of traces
that on-demand call graph constructions inspects for certain events. In a real-
world implementation, data flow analyses would provide an interface signaling
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discovered data flows between reference points and call sites as well to a function
boundary. Our prototype, described in Section 4, interfaces with the automata-
based abstraction of SPDS to detect when to issue additional queries or add call
graph edges through the listener functionality provided by SPDS.

Non-termination. In the formal model, non-terminating programs are repre-
sented as infinite sets of finite traces. In order for an underlying data flow anal-
ysis to be considered sound, such infinite sets need to be over-approximated to
satisfy the conditions of forward or backward soundness. In practice, this re-
quires a suitable finite representation of an infinite set of traces. For example,
consider the program |while(true) f(); |, producing an infinite sequence of call
events call(f(), f, r) for some reference point r along with associated enter,
exit, and return events. Assume further that the call target of f() produces no
additional events. Its denotation is the infinite set {S, S · S, S · S · S, . . . } where
S = call(f, f, r) · enter(f(), f) · exit(f(), f) · return(f(), f).

To satisfy the conditions of backward soundness, a backward data flow anal-
ysis B has to include any trace Sn in the set B(G , f()). As discussed, a practical
implementation will therefore have to finitely represent an infinite set. For exam-
ple, a backward analysis may map program locations to potential call targets—in
this case mapping f() to the function f . In SPDS, this example can be repre-
sented using a loop in the call push-down system, adding an edge from f() to
itself. Similar considerations apply to sound forward data flow analyses.

4 Evaluation

The main research question we explore with our experimental evaluation con-
cerns scalability: A key promise of on-demand call graph construction is the
application of more expensive analyses to only relevant parts of a code base,
rather than the entire program. This unlocks the possibility to apply analyses
that are too expensive to use with a whole-program approach.

In addition to a set of initial queries, issued for the call sites of interest
in a given program, our on-demand call graph construction issues queries on
which the initial queries depend. As a result, how much of a program is explored
during analysis depends on the structure of the program and cannot be bounded
upfront—in the worst case, the algorithm may still produce the whole-program
call graph. Our experiments evaluate how many queries are resolved in total,
for initial sets of various sizes, and report on the potential time savings from
on-demand analysis on a set of synthetic benchmarks. The prototype can be
found online [27].

Implementation. We implemented the on-demand call graph construction algo-
rithm in a prototype, called Merlin, for a limited subset of JavaScript. The
implementation uses the TAJS [17] intermediate representation and Synchro-
nized Push-Down Systems (SPDS) [30] as the underlying data flow analysis
for both forward and backward queries. To support (a subset of) JavaScript in
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SPDS, the implementation adds backward and forward flow functions on top
of an existing language-agnostic SPDS implementation [6]. The implementation
supports basic JavaScript features, such as assignments, object allocation and
function calls, including closures and accounting for mutability of captured vari-
ables. Instantiating SPDS to a sufficiently large subset of JavaScript to analyze
real-world code is out of scope for this paper.

To compute a fixed point, Merlin maintains a set of queries, in addition to
the current call graph. A query in this context is represented as a synchronized
pushdown system starting from a reference to a function or an call site, depend-
ing on the query. Individual queries subscribe to updates about (i) callees of a
particular call site, or (ii) call sites of a particular function discovered by other
queries. An update may result in adding further transitions in a query’s SPDS
in the current call graph. Objects are also tracked using SPDS.

When a function entry point is reached by a backward query, or a return
statement of a function is reached by a forward query, a new forward query is
issued to find call sites of that function. Similarly, when a function call is reached
by either a forward or a backward query, a new backward query is issued to
resolve possible callees. Based on the results of these new queries, the analysis
continues at the function’s call sites or a call site’s callees.

The asynchronous saturation process described in Section 2 is implemented
using a reactive programming [12] approach implemented using the Java Vir-
tual Machine’s ForkJoinPool to resolve queries concurrently. This also enables
parallel execution of multiple queries on multi-core machines.

Synthetic Benchmarks. We evaluate Merlin against a set of synthetic bench-
marks generated using the property-based testing library QuickCheck [5]. To
capture non-trivial dependencies between the call graph queries, the generated
programs heavily use higher-order functions, and treat functions as first class
values, reflecting the dynamic nature of JavaScript programs. That is, functions
are passed along a chain of functions, both as arguments and return values,
before they are eventually called.

Each generated program has between 6000 and 10000 lines of code, including
whitespace and braces. Fig. 8 shows a (simplified) excerpt from an example in the
benchmark set, where function chainTarget106 is returned from a function via
returnAFunc100, the return value of which is invoked in fun57. The benchmarks
contain between 600 and 900 functions, with higher-order call chains of up to
length 4. We leave an investigation of typical usage patterns of higher-order
functions in JavaScript for future work.

Results. We ran the experiments on an AWS EC2 instance of type c5.4xlarge
with Intel Xeon Platinum 8124M CPU with 16 cores and 32 GiB memory. We
use Correto version 17.0.6.10.1 with a stack size limit of 512 MiB and heap size
limit of 16 GiB. For each program, Merlin’s analysis is run multiple times, with
increasing the number of initial call graph queries in each iteration. The set of
initial call graph queries is constructed by randomly selecting call sites occurring
in the benchmark programs. This simulates a client analysis that issues queries
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1 function fun57(arg57) {
2 (( chainTarget106)((fun57)(( retAFunc100)(someIdentifier))))(someIdentifier

);
3 }
4 function retAFunc100(arg615) {
5 return chainTarget106;
6 }
7 function chainTarget106(arg614) {}

Fig. 8. Example output by QuickCheck-based benchmark generator

for a subset of all call sites in the program. In the limit, issuing a query for
every function call approximates a whole-program analysis. Our experiments
also simulate a whole-program analysis by querying all call sites in the program.

The results of running Merlin on the synthetic benchmarks are shown in
Fig. 9. Overall, the wall clock time (Fig. 9a) grows super-linearly with the number
of resolved queries. The number of queries that need to be resolved (Fig. 9d)
increases with the number of initial queries, matching the intuitive expectation
that on-demand call graph construction explores only a part of the program on
our benchmark set. Similarly, the wall clock time increases with the number of
resolved queries, albeit to a lesser extent due to the use of parallelism. Memory
consumption (Fig. 9b) remains relatively constant, indicating a significant fixed
memory cost in our implementation.

As shown in Fig. 9a, whole-program analysis results (indicated by black
boxes) often require less wall clock time to resolve than smaller initial sets of
queries. This effect is due to the use of parallelism in the prototype: As demon-
strated by Fig. 9c, whole-program analysis runs require as much or more CPU
time to be resolved. However, but due to starting the analysis for all queries
in parallel, they make better use of available CPU cores in the same span of
wall clock time. This effect is somewhat in line with intuitive expectations: If a
smaller set of queries is requested, there are less unrelated data flows to analyze,
lowering the opportunities for parallelism. On the contrary, a whole-program
analysis benefits from parallelism because many paths through a program can be
analyzed independently. We double-check this explanation by reporting single-
threaded results on the same benchmark set in Appendix A. This observation
allows client analyses to fine-tune the strategy for call graph construction de-
pending on the scenario. On an end-user machine, using all available CPU cores
may degrade the overall system performance too much to be viable, making
on-demand analysis preferable. Electricity usage, environmental concerns, and
battery life are other factors that make reducing CPU time relevant.

While the reduction in wall clock time based on the number queries to be
resolved is often not significant compared to a whole-program analysis with the
same technique, this data provides evidence that only a part of the program
needs to be explored in order to answer a limited set of call graph queries. This
effect may become more relevant in very large code bases or when using highly
precise, expensive data flow analyses.
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Fig. 9. Running Merlin on synthetic benchmarks. The x-axis shows the size of each
initial query set. The data points depict executions on different benchmark files. For
each initial query set size, the same file is randomly sampled multiple times. Each initial
query set is run independently without keeping intermediate results between runs.

Threats to Validity. The memory usage reported in Fig. 9 is subject to mea-
surement inaccuracies. CPU time and memory usage were measured using JVM
internals with varying levels of guarantees. For example, memory usage is mea-
sured by first asking the JVM to perform garbage collection via System.gc(),
but this is not guaranteed to garbage-collect all unreachable objects in the JVM
heap. As a result, memory usage may include state produced by previous analysis
batches. Additionally, while all the internal state of all SPDS solvers is retained
when measuring the memory consumption, there may be temporary data that
is garbage-collected before the memory measurement is taken.

Limitations. As supporting the whole JavaScript langauge in SPDS is out of
scope for this paper, Merlin currently does not support all JavaScript lan-
guage features, motivating evaluation on synthetic benchmarks that may not
be representative of real-world JavaScript code. Instead, Merlin presents an
initial evaluation of whether this approach can be implemented using a realistic
state-of-the-art data flow analysis. As a result, the above experiments do not
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show how much time is saved on real-world code, given the fact that many com-
mon JavaScript features are deliberately not used in the synthetic benchmark
code, and the generated programs may use patterns that may not translate to
patterns found in real-world code. Nevertheless, the subset of JavaScript that
Merlin supports and the set of synthetic benchmarks is sufficient to show the
usefulness of on-demand call graph construction. We list the current limitations
of Merlin below, and consider addressing them as part of future work.

In the current implementation, Merlin does not support dynamic property
access, prototype inheritance, reflection, and JavaScript builtins. This may pro-
duce unsound results in practice. Moreover, context sharing between different
queries is limited, even though this is in principle supported by the SPDS ap-
proach; this results in lower precision of our results than necessary. Since Merlin
reuses the TAJS [17] intermediate interpretation, it can only directly analyze Ec-
maScript 5 [11] programs, which in practice can be mitigated by transpiling code
written in newer EcmaScript dialects using tools such as Babel [1].

Finally, Merlin produces a large number of conceptually unnecessary queries,
SPDS represents possible call stacks abstractly using a push-down system, where
the system’s stack contains program locations. To avoid querying for call sites
when reaching a function boundary, the pushdown system could be consulted to
approximate the possible elements at the top of the stack at this location. While
SPDS constructs another automaton encoding the reachable configurations of
the pushdown system using an existing approach [3, 13], it is unclear whether
this automaton allows extracting the required information. We leave leveraging
call stack abstraction of SPDS to support this as future work.

5 Related Work

Demand Control-Flow Analysis [15] (Demand-CFA) tackles the problem of per-
forming the functional equivalent of on-demand call graph construction for a
purely functional lambda calculus, and similarly divides its approach into inter-
dependent forward and backward queries. The key distinguishing feature of our
work is providing a parameterized construction leveraging data flow analyses to
support impure languages with non-functional features. In contrast, Demand-
CFA fixes the specific analyses used for resolving expressions and finding call
sites. This approach is sufficient in the context of a purely functional language,
but translation to a language with imperative features introduces a large design
space of how to trade-off precision and scalability. By providing a parameterized
approach, we sidestep such trade-offs and provide a modular building block.

Another line of work aims to make whole-program call graph construction
scalable enough to apply to large code bases. A prominent example is Class-
Hierarchy Analysis [7] (CHA) and subsequent work [2] in the context of object-
oriented languages. CHA achieves scalability by making use of nominal typing to
resolve higher-order behavior resulting from dynamic dispatch. Since all subtyp-
ing relationships are explicit in the syntax (for example, in the form of extends
and implements clauses in Java), this is straightforward to compute efficiently.
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However, this approach is harder to apply to languages that use functions as
first-class values without potentially introducing a large amount of imprecision.
For example, given a higher-order function accepting a function of type int ->
int as input, considering each function with this type (out of potentially many)
as a potential callee in the body of the higher-order function might lead to many
spurious call edges in practice. Using functions as first-class values is common
practice in JavaScript, and is becoming common in more languages, for exam-
ple through Java’s introduction of lambda expressions [25] and streams [24].
Similarly, fast and scalable approaches exist for whole-program JavaScript call
graph construction. Feldthaus et al. [14] present an underapproximate call graph
construction algorithm for JavaScript that scales to usage inside an integrated
development environment (IDE), which places strict requirements on how fast
the analysis can be performed. However, in order to achieve this level of per-
formance, the approach is intentionally unsound and misses call edges. Nielsen
et. al [22] also present a highly scalable approach to call graph construction
sacrificing soundness in some cases. While our implementation is also unsound
in the presence of the same features that cause unsoundness in their work, our
theoretical approach provides strong soundness guarantees.

Another well-known approach is variable-type analysis (VTA) [33], which
produces reasonably scalable whole-program call graphs in the presence of higher-
order functions and heap objects without requiring deep interleavings between
the call graph construction and the data flow analysis. However, VTA’s perfor-
mance may render it too slow in certain contexts, e.g. for in-IDE use on large
applications. To achieve this level of scalability, VTA’s precision is constrained
by its heap abstraction, while our approach allows for the use of more precise
heap abstractions while hopefully remaining scalable for large code bases.

A key motivation for our work is the common theme of other analysis ap-
proaches assuming a precomputed call graph. Such examples include practical
bug detection tools such as Infer [4], as well as theoretical results on Demanded
Abstract Interpretation [32] that allow turning whole-program analyses into
demand-driven analyses transparently. The latter example in particular may
allow turning a whole-program data flow analysis into a fully demand-driven
analysis by (i) obtaining an on-demand, but still call-graph-dependent, data
flow analysis by applying Demanded Abstract Interpretation, and (ii) lifting the
call graph requirement using the approach presented in this paper.

Our work relies on the existence of sufficiently precise on-demand data flow
analyses, an area that has seen improvements recently. Notably, Synchronized
Push-Down Systems [30] reconcile the conflict between precise tracking of field
accesses and calling contexts. Boomerang [31] provides another on-demand data
flow analysis supporting exactly the same forward and backward queries required
to instantiate our approach.

Our approach of issuing additional queries that allow each other to make
progress in a mutually recursive fashion is inspired by Datalog-based analyses
such as Doop [29] and CodeQL [16]. Datalog analyses, however, directly build a
call graph together with a specific points-to analysis and do not typically allow
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plugging in another points-to analysis instead. Further, we are not aware of on-
demand analyses implemented in Datalog. The formalization of our approach
may also provide a starting point to reason about soundness of Datalog-based
analyses, which has not been extensively studied formally.

6 Conclusions

We present an approach for bootstrapping an on-demand call graph, leveraging
underlying forward and backward data flow analyses. Our approach is para-
metric in the underlying analyses assuming only a notion of soundness up to a
partial call graph. Based on this notion of soundness, we formalize our call graph
construction and prove it sound (mechanized in Isabelle/HOL). Our prototype
Merlin implements this approach for a subset of JavaScript using Synchronized
Push-Down Systems [30] for both forward and backward data flow analysis. We
evaluate Merlin on a synthetic benchmark set. The results indicate that on-
demand call graph construction indeed has the potential to improve scalability
by only exploring the relevant part of programs in the benchmark.
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A Single-Threaded Performance Results

Fig. 10 shows the benchmark results when run on a single core, demonstrating
that the faster whole-program results are caused by better CPU utilization.
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Fig. 10. Single-threaded performance results
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