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Abstract. Traditional separation logic-based shape analyses utilize in-
ductive summarizing predicates so as to capture general properties of the
layout of data-structures, to verify accurate manipulations of, e.g., various
forms of lists or trees. However, they also usually abstract away contents
properties, so that they may only verify memory safety and invariance of
data-structure shapes. In this paper, we introduce a novel abstract domain
to describe sequences of values of unbounded size, and track constraints
on their length and on extremal values contained in them. We define a
reduced product of such a sequence abstraction together with an existing
shape abstraction so as to infer both shape and contents properties of
data-structures. We report on the implementation of the sequence domain,
its integration into a static analyzer for C code, and we evaluate its ability to
verify partial functional correctness properties for list and tree algorithms.

1 Introduction

Dynamically allocated data-structures based on lists, trees or graphs are common
due to their flexibility as containers. However, programs using them are notoriously
difficult to get right, especially in presence of destructive updates. Indeed, the
correctness of such programs relies on a wide spectrum of properties that comprise
memory safety (the absence of illegal pointer operations such as the dereference
of a null pointer), the preservation of structural invariants like acyclicity, and
subtle functional properties and relationships between the structure layout and its
contents such as sortedness. For instance, let us consider a program that inserts
an element in a binary search tree. First, it should not cause any runtime error or
memory leak. Second, it should not create a cycle or break the tree structure. Third,
it should preserve the binary search tree property and be functionally correct,
namely ensure that the elements in the tree after insertion are the same as before
plus the new element, inserted at the correct position, with respect to the order.
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struct tree { struct tree *l, *r; int d; };

tree(α) :=
| emp ∧ α = 0x0
| ∃αl, αr, δ, α.l 7→ αl ∗ α.r 7→ αr ∗ α.d 7→ δ ∗ tree(αl) ∗ tree(αr) ∧ α ̸= 0x0

trees(α, S) :=
| emp ∧ α = 0x0
| ∃αl, αr, δ, Sl, Sr, α.l 7→ αl ∗ α.r 7→ αr ∗ α.d 7→ δ ∗ trees(αl, Sl) ∗ trees(αr, Sr)

∧ α ̸= 0x0 ∧ S = Sl.[δ].Sr

Fig. 1. A C tree data-type and associated inductive summarizing predicates

Abstract interpretation [17] provides a general framework to build a sound static
analysis from a basic semantics and an abstraction relation, and to verify semantic
properties. Notably, it has been applied to verify numerical properties [20,35], the
absence of runtime errors [7], string properties [25,4], array properties [28,29,30,19],
liveness properties [55], and security properties [5,26,24]. Several families of shape
analyses have also been designed to infer properties of programs manipulating
dynamic data-structures, including TVLA [51] and shape analyses based on sepa-
ration logic [50]. They can reason over structures like lists [12,13] or more general
families of structures with an inductive layout [14,31] such as binary trees.

However, few shape analyses reason not only about the layout of data-structures
but also about their contents, so as to verify, e.g., that a container consists of the
expected collection of elements with the expected multiplicity. While [39,21] handle
set predicates, they do not track properties related to element multiplicities or
order. Similarly, [41] handles sorting properties of specific families of composite
structures in arrays but does not consider general lists or trees. The analyses
presented in [10,9,11] precisely abstract singly-linked lists storing numerical data.
They compute numerical properties over these data such as "variable x is the sum
of all elements in list l", or relation between element values and indexes to express
sorting. However, it does not handle trees or doubly linked lists. Therefore, in
this paper, we seek for an abstraction of data-structure contents that can verify
complex invariants (e.g., involving elements orders or multiplicities) as well as some
functional properties (like sorting). To illustrate our approach, we consider the
classical tree type definition shown in Figure 1 and assume that we only consider
acyclic instances. The inductive predicate tree summarizes valid memory regions
storing exactly a complete and acyclic tree. More precisely, the predicate tree(α)
either describes an empty tree (then, α is the null pointer), or a memory region
where α points to a valid tree block, the l and r fields of which point to the
roots of disjoint (possibly empty) subtrees, as expressed by predicates tree(αl)
and tree(αr). Note that separating conjunction ∗ [50] combines disjoint memory
regions. A basic region is either an atomic cell described by a points-to predicate
such as α.d 7→ δ or an instance of some inductive predicate. While predicate tree
describes the layout of memory cells and pointers, it does not convey any information
about their contents. By contrast, trees extends tree with an additional symbolic
parameter S to expose the sequence of values stored in the tree, read from left to
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right. When the tree is empty, so is its sequence of elements. The sequence stored in
a non-empty tree is obtained by first considering the left subtree, then the contents
of the root node and finally the right tree. If we additionally require the elements
of S be sorted, then trees(α, S) describes binary search trees with root α.

An advantage of this approach is that it allows to split the abstraction into two
rather independent components, namely a separation logic based abstraction of
the data-structures and another abstraction for properties of sequences of values
stored in them. While [39] extends inductive predicates in a similar manner, it only
supports set constraints. Therefore, we introduce a new abstract domain devoted
to the representation of constraints over sequences. Existing sequence abstractions
typically rely on regular expressions or finite automata [45,3,47]. More recently,
[4] extends such an abstraction with sub-string, length, and element position
constraints. However, these abstractions lack predicates such as constraints over
extremal elements or sortedness. Our sequence abstract domain expresses not only
relational constraints (it can express that a symbolic sequence is a fragment of
another) but also constraints over length, extremal values, and specific predicates
like sortedness. Although we use this sequence abstract domain for shape analysis,
it could be used independently for other kinds of analyses.

To take advantage of this abstraction in shape analysis, we define a reduced
product with a separation logic-based shape abstract domain. This product ties
symbolic parameters of inductive predicates in separation logic together with
sequence constraints. Sequence constraints that are inferred during the analysis
(for instance when unfolding inductive predicates) are passed to the sequence
domain. The reduced product also ensures communication between both domains
for the computation of abstract operators such as union.

To summarize, we make the following contributions:
– After we overview our analysis in Section 2, we introduce a relational abstract

domain dedicated to reasoning over sequences in Section 3;
– We define a reduced product between the new sequence domain and a separation

logic-based abstract domain so as to extend a shape analysis with sequence
reasoning capability. We first introduce the basic elements of the reduced
product in Section 4 in the context of singly-linked lists. We discuss issues
related to general inductive predicates in Section 5.

– We report on the implementation of our analysis in the MemCAD static
analyzer [38] and on its evaluation in Section 6. We show that it can cope with
the verification of sorting programs and operations over binary search trees.

2 Overview

In this section, we give an overview of the main principles of our static analysis by
demonstrating it on the insertion program shown in Figure 2. When applied to
a binary search tree, this function inserts an element at the expected position to
preserve sortedness. We study the verification of functional correctness expressed as
partial correctness with respect to a pre-condition and a post-condition (Figure 2).
To formalize these, we let sort be a symbolic function over sequences of values that



4 J. Giet, F. Ridoux, X. Rival

1 void insert(struct tree* t, int i){
2 // assume trees(t, S) ∧ S = sort(S)
3 if(t == null){
4 // ...
5 }else{
6 struct tree* c = t;
7 while(c->d <= i && c->l != null ||
8 c->d > i && c->r != null)
9 c = (c->d <= i) ? c->l : c->r;

10 // ...
11 }
12 } // assert trees(t, sort(S.[i]))

Fig. 2. Function for insertion in a binary search tree

(
&t 7→ α0 ∗ &c 7→ α0 ∗ trees(α0, S)

)
∧ (S = sort(S) ∧ α0 ̸= 0x0)

(a) Abstract state at the end of line 6
&t 7→ α0 ∗ &c 7→ α1

∗ α0.l 7→ α1

∗ α0.d 7→ δ

∗ α0.r 7→ α2

∗ trees(α1, Sl)

∗ trees(α2, Sr)

 ∧


S = Sl.[δ].Sr ∧ S = sort(S)

∧ Sl = sort(Sl) ∧ Sr = sort(Sr)
∧ maxSl ≤ δ ≤ maxSr

∧ δ ≤ i ∧ α0, α1 ̸= 0x0


(b) Abstract state at the end of line 9, first case of the condition

 &t 7→ α0 ∗ &c 7→ α′

∗ treesegs(α0, α
′, S1 � S2)

∗ trees(α
′, S0)

 ∧


S = S1.S0.S2 ∧ S = sort(S)

∧ Si = sort(Si) i ∈ {0, 1, 2}
∧ maxS1 ≤ i ≤ maxS2 ∧ maxS1 ≤ maxS0

∧ minS0 ≤ maxS2 ∧ α0, α
′ ̸= 0x0


(c) Abstract state after the first widening

Fig. 3. Selected abstract states

maps any sequence to its sorted permutation. Then, the pre-condition assumption
assumes that t is a well-formed tree described with predicate trees(t, S) and such
that S = sort(S) (i.e., such that the elements S in t are sorted). Likewise, the
post-condition asserts that t is still a well-formed tree, the contents of which is
sorted and comprises exactly the elements in S plus the added value i.

We now discuss the abstraction used by our static analysis. We combine an
existing memory abstraction, inspired by separation logic-based shape analyses
such as [12,14], a relational numerical abstraction such as convex polyhedra [20],
and a novel abstract domain for sequences. Intuitively, the latter describes con-
junctions of constraints over both symbolic sequences of values (such as S) and
values manipulated by the program. These constraints consist of equalities of
pairs of symbolic sequence expressions such as S′ = sort(S.[i]). Moreover, the
inductive predicates used in the memory abstraction are instances of the trees
predicate of Figure 1. For instance, the abstract pre-condition simply consists of
the memory predicate trees(t, S) and the sequence predicate S = sort(S), for
some existentially quantified symbolic sequence variable S.
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The analysis proceeds by forward abstract interpretation [17]: it computes
over-approximate abstract post-conditions for basic statements, and uses widening
to enforce the convergence of abstract iterations for loops. Since the analysis uses
a reduced product [18], an abstract state consists of a pair of components, namely
the shape abstraction that describes the layout of data-structures and the contents’
abstraction made of constraints over values and sequences of values. For each
analysis step, information stored in either component may be used in order to
refine the other, which we discuss next.

We focus on the analysis of the loop that searches for the insertion point in the
else branch. First, the analysis of the condition test enriches the pre-condition with
the constraint t ̸= null as shown in the abstract state in Figure 3(a). Then, the
analysis continues with the loop. The condition is a disjunction thus the analysis
considers each case separately. For the first case, it refines the abstract state to
reflect that the condition c−>d <= i && c−>l != null evaluates to true. Since
both memory cells c−>d and c−>l are abstracted by the predicate trees(α0, S),
this predicate needs to be unfolded to enable the analysis of the condition. The
first disjunct of inductive predicate trees (Figure 1), which corresponds to the null
pointer, is ruled out by constraint t ̸= null. Therefore, only the second disjunct
(non-empty tree) needs be considered. This shows how one component of the
abstract state can refine the other. Thus, the analysis generates a new abstract
state that exposes the root of the tree and lets α1, α2, and δ denote the contents
of its l, r, and d fields. We remark that the inductive predicate unfolding also
splits the symbolic sequence into S = Sl.[δ].Sr. Then the sequence domain derives
that Sl and Sr are sorted since they are subsequences of a sorted sequence. It also
infers that all values in Sl are less than δ that is itself less than all values in Sr by
definition of sort, which writes down maxSl

≤ δ ≤ minSr
. Last, it also retains the

numerical constraint i ≤ δ. Figure 3(b) shows the resulting abstract state after
the assignment line 9. In the case of the other disjunct, the tree is also unfolded
but c points to α2 instead of α1 and the constraint over i and δ is δ < i.

The widening operator over-approximates abstract union of successive abstract
iterates at loop head. In this case, it generalizes abstract states such as the ones
shown in Figure 3(a) and Figure 3(b) by weakening them locally. Indeed, in all
three states, c points to a well-formed tree containing a sequence S0. Moreover,
the remaining of the memory region corresponds to a (possibly empty) partial tree:
if it was completed by a tree with root pointed by c, the whole region would form a
complete tree with root pointed by t. We call such a partial tree a tree segment
predicate (the name segments comes from the analogy with list segments) and
observe that it is can be automatically derived from trees and defined by induction
in Figure 4. When widening synthesizes an instance of treesegs in Figure 3(c), it
needs to infer its sequence argument. The sequence S of elements stored into the
whole tree can be split into three parts, S0, S1, and S2 where S0 is the sequence
of elements stored in the subtree pointed to by c and S1 (resp., S2) denote the
sequence of elements stored in the “left” (resp., “right”) part of the tree segment.
This implies that the sequence argument of treesegs is not a contiguous sequence.
Therefore, it is represented as S1 � S2 in the loop invariant Figure 3(c) where the



6 J. Giet, F. Ridoux, X. Rival

treesegs(α, α
′, S � S′) :=

| emp ∧ α = α′ ∧ S = S′ = []
| ∃αl, αr, v, Sl, S

′
l , Sr, α.l 7→ αl ∗ α.r 7→ αr ∗ α.d 7→ v ∗ treesegs(αl, α

′, Sl � S′
l)

∗ trees(αr, Sr) ∧ α ̸= 0x0 ∧ S = Sl ∧ S′ = S′
l .[v].Sr

| ∃αl, αr, v, Sl, Sr, S
′
r, α.l 7→ αl ∗ α.r 7→ αr ∗ α.d 7→ v ∗ trees(αl, Sl)

∗ treesegs(αr, α
′, Sr � S′

r) ∧ α ̸= 0x0 ∧ S = Sl.[v].Sr ∧ S = S′
r

Fig. 4. Inductive summarizing predicate describing tree segment

placeholder notation � stands for the sequence of elements in the “missing subtree”
of the segment. When composing treesegs and trees the analysis operations
resolve sequences using such � symbol. Based on this loop invariant, the analysis
of the final few assignments of the insertion function produces an abstract state
that implies the desired post-condition.

3 Abstract Domain for Sequences

In this section, we define the sequence abstract domain, including its elements and
the constraints they denote, its concretization, and its main abstract operators.

3.1 Sequences abstraction

An element of the abstract domain of sequences is a conjunction of constraints
over a finite set of symbolic variables that stand either for sequences of base values,
for base values, or for sets of values. Beside sequence equalities and predicates
like sortedness, we also consider numerical upper/lower bounds over the values in
sequences and multi-set constraints over the collections of values in sequences.

Concrete states. Let V denote a set of values. Although V usually denotes a set
of scalar values (including addresses), our only assumptions on V is that it has a
total ordering ⪯ with extremal values +∞,−∞. Since our domain constrains both
variables that range over V and variables that range over sequences of values in
V, we need several kinds of symbolic variables. In the following, we let symbols
α, α0, α

′
0, β, . . . ∈ Xn denote value symbolic variables, namely, variables that stand

for a value in V. To express constraints on the set V∗ of all the finite words on
alphabet V, we let a separate set Xs, represent sequence symbolic variables. We
note S, S1, S

′, P, . . . ∈ Xs such sequence variables. Finally, we writeM(V) for the
set of multisets of values in V and let Xm be the set of multi-set valued symbolic
variables. Moreover, if S ∈ Xs is a sequence variable, we attach to it three numerical
variables lenS , minS , maxS in Xn that respectively denote the length, minimum
and maximum value of S, and that there exists a multi-set variable multiS ∈ Xm

that denotes the multi-set of its elements.
A concrete state comprises three functions that map each kind of symbolic

variables to elements of the corresponding type. Due to the relationship between a
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E ::= [] | [α] | S | E.E | sort(E) C (∈ C) ::= S = E
(a) Syntax of expressions (E) and constraints (C)

[[]]s(σ) = ε
[S]s(σ) = σs(S)

[[α]]s(σ) = σn(α)
[E1.E2]s(σ) = [E1]s(σ).[E2]s(σ)

[sort(E)]s(σ) = aπ(1) . . . aπ(n) where


[E](σ) = a1 . . . an

∀i ∈ [1, n− 1], aπ(i) ⪯ aπ(i+1)

π is a permutation of [1, n]

(σn, σs) |=s S = E iff σs(S) = [E]s(σn, σs)
(b) Semantics

Fig. 5. Sequence expressions and constraints: syntax and semantics

sequence symbolic variable S and lenS , minS , maxS , and multiS , a concrete state
is valid if and only if it maps these five variables into consistent objects. Formally:

Definition 1. A concrete state is a tuple σ = (σn, σm, σs) where the functions
σn : Xn → V, σm : Xm →M(V), σs : Xs → V∗ are such that, for all S in Xs,

σs(S) = a1 . . . an ⇒
{

σn(minS) = mini ai ∧ σn(maxS) = maxi ai
∧ σn(lenS) = n ∧ σm(multiS) = {a1, . . . , an}

σs(S) = ε⇒
{

σn(minS) = +∞ ∧ σn(maxS) = −∞
∧ σn(lenS) = 0 ∧ σm(multiS) = ∅

For short, given a state σ, we note its components σn, σm, and σs. We write Σ for
the set of all such concrete states.

Abstract sequence constraints. The sequence abstract domain relies on expressions
and constraints over symbolic variables. Their syntax is shown in Figure 5(a). An
expression is either the empty sequence, or a sequence of length one that consists
of a value symbolic variable, or a sequence symbolic variable, or a concatenation
of expressions, or the sorting of a sequence expression returned by the function
sort : E → E, (introduced in Section 2). Given a state σ, a sequence expression
E evaluates into a sequence of values [E]s(σ), as shown in Figure 5(b). Sequence
constraints are definition constraints of the form S = E, as shown in Figure 5(a).
Allowing only symbolic sequence variables in the left-hand side of equalities
somewhat limits expressiveness but simplifies themachine representation of abstract
elements. The semantics of constraints is defined based on a satisfaction relation
|=s that is spelled out in Figure 5(b): we write (σn, σs) |=s C when constraint C
holds in concrete state (σn, σs). We note C for the set of sequence constraints.

Parameter abstract domains. In the following, we assume two abstract domains
are fixed, taken as parameters by the sequence abstraction. First, D♯

n represents nu-
merical constraints and provides a concretization function γn : D♯

n → P(Xn → V).
Possible choices for D♯

n include intervals [17], octagons [46], or convex polyhedra [20]
abstract domains. Second, D♯

m represents multi-set constraints and provides a
concretization function γm : D♯

m → P(Xm →M(V)). Our implementation uses a
variation of the set domain of [39] that describes multi-set constraints.
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Sequence abstraction. An abstract state consists either of a special element ⊥
that denotes the empty set of concrete states or of a finite conjunction of sequence
constraints together with numerical and multi-set constraints:

Definition 2 (Sequence abstraction). The abstract sequence domain Σ♯ is
defined as {⊥} ⊎ {(σ♯

n, σ
♯
m, C0 ∧ . . . ∧ Cn) | σ♯

n ∈ D♯
n, σ

♯
m ∈ D♯

m, C0, . . . , Cn ∈ C}.
Furthermore, its concretization γΣ : Σ♯ −→ P(Σ) is defined by γΣ(⊥) = ∅ and:

γΣ(σ
♯
n, σ

♯
m, C0 ∧ . . . ∧ Cn) ={

(σn, σm, σs)
∣∣σn ∈ γn(σ

♯
n) ∧ σm ∈ γm(σ♯

m) ∧ ∀i, σn, σs |=s Ci

}
For consistency, we use σ♯

s as a generic notation for a finite conjunction of constraints
C0 ∧ . . . ∧ Cn and σ♯ for a generic triple (σ♯

n, σ
♯
m, σ♯

s). We remark that the empty
conjunction of constraints concretizes into Σ thus we note it ⊤.

Machine representation. For the sake of algorithmic efficiency, we rely on an
optimized machine representation for sequence constraints in non-bottom abstract
states. First, we let equality constraints between variables be described by union-
find data-structures, which enables the incremental computation of equality classes
representatives. Emptiness constraints (S = []) and sortedness constraints (S =
sort(S)) are marked by tags over sequence variables. Finally, other equality
constraints are represented with a map data type, the keys of which are the left
hand side variables. For instance, S = [α] boils down to a map entry S 7→ [α].

3.2 Abstract operations

We now discuss abstract operations on sequence abstract states. In this subsection,
we discuss two operations: guardΣ refines an abstract sequence element into its
conjunction with an additional constraint and verifyΣ attempts to discharge a
sequence constraint (so as to, e.g., verify an assertion). We assume that the
underlying domains also implement similar operators. For instance, we require the
numerical domain to provide an operator guardn that inputs a numerical constraint
and a σ♯

n ∈ D♯
n and refines the latter with that constraint.

Abstract sequence condition. First, we consider the abstract sequence condition
operator guardΣ : C× Σ♯ → Σ♯ which refines an abstract state with an additional
sequence constraint. While a naive implementation of guardΣ(C, σ

♯) would simply
add the constraint C to the conjunction σ♯

s component, this would be imprecise in
general. Indeed, the conjunction C ∧ σ♯

s may be equivalent to ⊥. Moreover, C ∧ σ♯
s

may entail constraints that are strictly more precise than those in σ♯
s.

At a high level, guardΣ performs three kinds of operations:
1. Compaction simplifies constraints by rewriting the right hand side of definition

constraints into the left hand side, wherever possible. For example, S =
S′.[α].S′′ ∧ S1 = S′.[α] simplifies into S = S1.S

′′ ∧ S1 = S′.[α].
2. Saturation synthesizes additional numerical and multi-set constraints that can

be derived from a newly added constraint. For instance, S = S′.[α] entails
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that lenS = 1 + lenS′ . Likewise, some constraints may entail that a sequence
is empty. Another special kind of saturation occurs when the whole state can
be reduced to ⊥ as incompatible constraints are detected. As saturation is the
most complex part of guardΣ, we detail it below.

3. Detection of cyclic constraints prevents compaction and saturation from adding
too many, redundant constraints, and it ensures the termination of algorithms
iterating on definitions. We discuss this in Example 2.

We now discuss constraint saturation more in detail:
– The length constraints saturation derives numerical constraints from the equal-

ity of the length of both sides of a new definition constraint S = E. Indeed, such
a constraint implies lenS = τlen(E), which can be added to the σ♯

n component
using guardn, where τlen is defined by:

τlen([]) = 0 τlen(E.E′) = τlen(E) + τlen(E
′) τlen(S) = lenS

τlen([α]) = 1 τlen(sort(E)) = τlen(E)

– The multi-set contents constraints saturation operates similarly, and derives
multi-set equalities from definition constraints. Surely, S = E entails multiS =
τmul(E), which can refine the σ♯

m part using guardm where τmul is defined by:

τmul([]) = ∅ τmul(E.E′) = τmul(E) ⊎ τmul(E
′) τmul(S) = multiS

τmul([α]) = {α} τmul(sort(E)) = τmul(E)

– The detection of empty sequence variables derives new definition constraints of
the form S = [] when either sequence constraints or numerical constraints
entail the emptiness of S. For instance:
• when σ♯

s contains constraints S = [] and S′ = [], the constraint S = S′.S′′

simplifies into S = [];
• when σ♯

n contains the constraint lenS = 0, then it follows that S = [].
– The detection of sorted sequence variables do the same for constraints of the

form S = sort(S) thanks to definitions of S and to numerical inequalities:

S = S1. . . . .Sn ∀i, Si = sort(Si) ∀i < j, maxSi ≤ maxSj

S = sort(S)

Such rule is very costly as it checks a quadratic amount of numerical inequalities.
Nevertheless, relaxing the rule by only considering the case j = i+ 1 is not
sound, since sequence variables may be empty. Therefore, two consecutive
elements in σs(S) can come from non-consecutive sequence variables.

– The extremal values inequalities saturation derives numerical inequalities from
a definition constraint S = E by case analysis over the right hand side E, and
can be summarized by a set of derivation rules. The rules below describe such
reasoning steps:

S = E α ∈ fv(E)
minS ≤ α ≤ maxS

S = E S′ ∈ fv(E)
minS ≤ minS′ maxS′ ≤ maxS

S = [] α ∈ Xn
maxS < α < minS

S′ = sort(S′) S′ = . . . .[α].S. . . .
α ≤ minS
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As an example, the first rule states that numerical constraints can be derived
from the knowledge that S is a concatenation of several components including
a numerical variable α; in this case novel numeric constraints expressing that
α is bounded by the extremal values of S can be added to σ♯

n using operator
guardn. Similarly, the second rule states that the extremal values of a sequence
are bounded by the extremal values of any sequence containing it. The third
rule states that an empty sequence supports arbitrary bounds. Finally, the
fourth rule allows to reason over bounds when a sequence is known to be sorted.

– The decomposition of equality constraints synthesizes additional equality con-
straints that can be derived when two definition constraints S = E0 and S = E1

over the same name can be found in σ♯
s. Indeed, when both E0 and E1 can be

decomposed simultaneously, new equalities can be immediately derived:

[α0].E0 = [α1].E1

α0 = α1 E0 = E1

S.E0 = E1 S = []
E0 = E1

In less obvious decomposition cases, further constraints can still be derived
with the help of the numerical constraints. Indeed:

S0.E0 = S1.E1 lenS0
= lenS1

S0 = S1 E0 = E1

Obviously, this inference may take place only when lenS0
= lenS1

can be
proved in the numerical domain.

A special case of saturation occurs when incompatible constraints are detected.
Then, the whole abstract state is reduced to ⊥, following the principles of reduced
product [18]. As an example, when the abstract state contains the constraints
S = [α] and lenS = 0, such a reduction is performed.

To summarize, the computation of guardΣ(C, σ
♯) involves the addition to σ♯

of a set of constraints that are derived from C. It is conservative in general. The
termination of this computation follows from the fact that the added constraints
only involve syntactic subcomponents of the elements of C and σ♯

s.

Example 1. We consider the abstract state of Figure 3(b) and the constraint
S1 = Sl.[δ] where S1 is a new symbolic sequence variable. First, the constraint
is added to the abstract state. Second, compaction replaces the pattern Sl.[δ]
with S1 in all other constraints. Third, the numerical inequality α ≥ maxS1 and
the sortedness of S1 entails that S1 is sorted. Then, S1 = sort(S1) implies that
δ is the maximum value of S1. Moreover, the fact that Sl is a subsequence of S1

entails that minS1
≤ minSl

and maxSl
≤ maxS1

. Finally, since δ ≤ i, guardΣ also
derives maxS1

≤ i. Finally, guardΣ produces:

S = S1.Sr ∧ S1 = Sl.[δ] ∧ S = sort(S) ∧ Si = sort(Si), i ∈ {l, r, 1}
∧ maxSl

≤ maxS1
= δ ≤ maxSr

∧ minS1
≤ maxSl

∧ δ ≤ i ∧ α0, α1 ̸= 0x0

Example 2. In this example, we show the detection of mutually cyclic constraints.
We consider the abstract state S1 = S2.S

′ ∧ S2 = S′′.S3, and the addition of
S3 = S1.S

′′′. Inlining definition constraints for S2 and S3 would produce the cyclic
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constraint S1 = S′′.S1.S
′′′.S′. Thus, this also implies that S′, S′′, S′′′ are empty

and that S1, S2 and S3 are equal. After removal of the cycle, guardΣ produces:

S′ = S′′ = S′′′ = [] ∧ S1 = S2 = S3 ∧ S1 = S2.S
′ ∧ S2 = S′′.S3

Theorem 1 (Soundness of guardΣ). For all abstract state σ♯ and constraint C,
we have {σ ∈ γΣ(σ

♯) | σ |=s C} ⊆ γΣ(guardΣ(C, σ
♯)).

Verification of a sequence constraint. Second, we define the constraint verification
operator verifyΣ : Σ♯ × C → {false, true} which inputs a constraint C and an
abstract state σ♯ and returns true when it can prove that σ♯ entails C. It is
conservative in the sense that it may return false even when the constraint is
satisfied. The computation of verifyΣ(C, (σ

♯
n, σ

♯
m, σ♯

s)) proceeds as follows:
1. If σ♯

s is ⊥, it returns true.
2. For definition constraints S = E, verifyΣ inlines the definitions of variables,

and returns true when both sides rewrite into syntactically equal expressions.
The absence of cyclic constraints ensures this exploration terminates.

3. Otherwise, it returns false.
For constraints of the form S = sort(E), the operator uses a specific rule

(shown below) since variables inside the sort function may be arbitrarily reordered.
Instead, we take advantage of the multi-set abstract domain to establish that S
and E have the same contents.

S = sort(S) multiS = τmul(E)

S = sort(E)

Theorem 2 (Soundness of verifyΣ). For all abstract state σ♯ and constraint C,
if verifyΣ(σ

♯, C) = true then, we have γΣ(σ
♯) ⊆ {σ ∈ Σ | σ |=s C}.

3.3 Lattice operations

We now discuss join, widening and inclusion checking operations for loop analysis.
We assume that D♯

n provides a conservative inclusion test operator is_len (it inputs
two elements of σ♯

n and returns true only when it succeeds proving the first is
included in the second), an over-approximate join operator joinn and a widening
widenn, and that D♯

m provides similar operators is_lem, joinm, and widenm, and
we build similar operators for Σ♯.

Inclusion checking. The inclusion test operator inputs two abstract states and
returns a boolean. When it returns true, the concretization of the first abstract
state is included into that of the second one. The inclusion checking algorithm
is based on the constraint representation of abstract states and boils down to a
repeated application of verifyΣ.

Definition 3 (Inclusion checking operator). The operator is_leΣ : Σ♯×Σ♯ →
{true, false} is defined by:

is_leΣ((σ
♯
n,0, σ

♯
m,0, σ

♯
s,0), (σ

♯
n,1, σ

♯
m,1,∧iCi))

:= is_len(σ
♯
n,0, σ

♯
n,1) ∧ is_lem(σ♯

m,0, σ
♯
m,1) ∧ (∧iverifyΣ(Ci, σ

♯
s,0))
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Theorem 3. The operator is_leΣ is sound in the sense that, for all σ♯
0, σ

♯
1 ∈ Σ♯,

if is_leΣ(σ
♯
0, σ

♯
1) = true, then γΣ(σ

♯
0) ⊆ γΣ(σ

♯
1).

Upper bounds. As usual, we define two over-approximate upper-bound operators,
namely, a classical join operator joinΣ : Σ♯ × Σ♯ → Σ♯ and a widening widenΣ :
Σ♯ × Σ♯ → Σ♯ that ensures termination.

Essentially, the joinΣ operator proceeds component-wise (like is_leΣ as defined
in Definition 3) and essentially preserves sequence constraints that appear in both
arguments. In the case of definition constraint, it first saturates the conjunctions
of constraints, so as to maximize the possible sets of common constraints. The
algorithm of widenΣ is similar, except that it does not saturate its left argument
for the sake of termination. This implies that widenΣ always returns a conjunction
of constraints that forms a subset of the constraints of its left argument.

Both operators are sound and furthermore, widenΣ guarantees termination.

Theorem 4 (Soundness of joinΣ and widenΣ, termination of widenΣ). For
all abstract states σ♯

0, σ♯
1, we have: γΣ(σ

♯
0) ∪ γΣ(σ

♯
1) ⊆ γΣ(joinΣ(σ

♯
0, σ

♯
1)) and

γΣ(σ
♯
0) ∪ γΣ(σ

♯
1) ⊆ γΣ(widenΣ(σ

♯
0, σ

♯
1)). Moreover, the operator widenΣ ensures

termination: for all sequence (σ♯
n)n∈N of abstract states the sequence ((σ♯)′n)n∈N

defined by (σ♯)′0 = σ♯
0 and (σ♯)′n+1 = widenΣ((σ

♯)′n, σ
♯
n+1) is ultimately stationary.

Example 3 (Join). In this example, we consider the computation of the join of two
abstract states taken from the analysis of the program of Figure 2. The analysis of
the loop at line 7 involves the computation of the join of the three abstract states
below. For concision, we omit inequality constraints involving extremal values of
empty sequences.

σ♯
0 ::=

{
S = S0 ∧ S1 = S2 = []
∧ S = sort(S) ∧ Si = sort(Si), i ∈ {0, 1, 2}

σ♯
1 ::=

{
S = S0.S2 ∧ S1 = [] ∧ maxS0

≤ minS2
∧ i ≤ minS2

∧ S = sort(S) ∧ Si = sort(Si), i ∈ {0, 1, 2}

σ♯
2 ::=

{
S = S1.S0 ∧ S2 = [] ∧ maxS1 ≤ minS0 ∧ maxS1 ≤ i
∧ S = sort(S) ∧ Si = sort(Si), i ∈ {0, 1, 2}

The most notable step is the saturation of the first argument, that injects constraint
S = S1.S0.S2, as a consequence of S = S0 and S1 = S2 = [] in σ♯

0, S = S0.S2 and
S1 = [] in σ♯

1 and S = S1.S0 and S2 = [] in σ♯
2. After this, constraints that hold

in only either argument are dropped, as, e.g., constraint S1 = [] in σ♯
1. The result

of the union corresponds to the abstract state in Figure 3(c).

4 Combination of sequence abstraction and shape analysis

In this section, we define a shape analysis with inductive predicates that infers
invariants about both the layout of data-structures and the sequences of values
they store. For the sake of simplicity, we consider only a singly-linked list predicate
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struct list { struct list* n; int d; };

lsegs(α0, α1, S � ) :=
| emp ∧ α0 = α1 ∧ S = []
| ∃α′, δ, S′, α0.n 7→ α′ ∗ α0.d 7→ δ ∗ lsegs(α

′, α1, S
′ � ) ∧ α0 ̸= 0x0 ∧ S = [δ].S′

Fig. 6. A C list data-type and the inductive summarizing predicate describing list segments

(Figure 6) throughout this section, although our analysis and its implementation
are parameterized by user-defined inductive predicates [14,15]. The generalization
to other structures will be discussed in Section 5.

4.1 Language and semantics

Although our implementation is based on the MemCAD analyzer [38] and targets
the C language, our formalization only considers a restricted fragment. We let X
denote a finite set of program variables. We consider a basic imperative language,
where commands are assignments, conditional statements, loops, and sequences of
commands. Expressions are either l-values that evaluate to addresses, or r-values,
that evaluate to scalars. An l-value l is either a program variable v ∈ X, the access
to an l-value field l.f (for concision, we let f denote both the field name and the
corresponding memory offset), or the dereference ∗e of an expression e. An r-value
e is either a constant n ∈ V, or the reading of the memory cell defined by an
l-value l, or the address &l or an l-value l, or the application e0 ⊕ e1 of a binary
operator to two sub-expressions. For simplicity, we assume here that operators are
deterministic and cause no errors. The grammar is shown below:

l ::= v | l.f | ∗ e e ::= n | l | &l | e⊕ e c ::= l = e | if(e){c} | while(e){c} | c; c

We note A for the set of addresses, which is a subset of the set of values V. A
memory state m is a partial function from addresses to values. We note M for the
set of memory states and let ∅ denote the empty memory. Furthermore, we assume
that each program variable x has a fixed address denoted by x ∈ A. Based on
these definitions, we set up the program semantics as follows. First, we define the
semantics of expressions by induction over their syntax. The semantics of an l-value
l is a function [l]l : M→ A that maps a memory state m to the address l evaluates
to in m. Similarly, the semantics [e]e : M→ V of an expression e maps a memory
state to a value. Finally, the semantics [c] : P(M)→ P(M) of a command c maps
any set of input memory states M to the set of all possible output memory states
when starting from any m ∈M . The definition of all three semantics is classical
and shown in Figure 7, where f⊕ : V2 → V denotes the semantics of operator ⊕.

4.2 Combined memory and sequence abstraction

Sequence aware shape abstraction. We start with the definition of abstract memory
predicates, following an approach similar to that of separation logic based shape
analyses with inductive definitions [12,14], extended with sequence information.
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[x]l(m) := x
[l.f]l(m) := [l]l(m) + f

[ ∗ e]l(m) := [e]e(m)

[n]e(m) := n
[l]e(m) := m([l]l(m))

[&l]e(m) := [l]l(m)
[e0 ⊕ e1]e(m) := f⊕([e0]e(m), [e1]e(m))

[l = e](M) := {m[[l]l(m) 7→ [e]e(m)] | m ∈ M}
[if(e){c0}](M) := [c0]

(
{m ∈ M | [e]e(m) ̸= 0}

)
∪ {m ∈ M | [e]e(m) = 0}

[while(e){c}](M) := {m ∈ lfpF | [e]e(m) = 0}
where F (M ′) = M ∪ [c](m ∈ M ′ | [e]e(m) ̸= 0})

[c0; c1](M) := [c1] ◦ [c0](M)

Fig. 7. Semantics of programs

As explained early in the section, our formalization considers a single inductive
predicate describing list segments, and parameterized with a symbolic sequence
variable that stands for the sequence of the values contained in them (Figure 6).
Considering only list segments has two advantages. First, complete lists can be
expressed as list segments the last element of which has a “next” field equal to 0x0.
Second, it simplifies reasoning over sequences as it avoids branching structures
(considered in Section 5). Abstract states rely on scalar symbolic variables in Xn to
denote values and addresses and consist of separating conjunctions [50] of points-to
predicates and of list segment predicates:

Definition 4 (Abstract memory states). The set of abstract memory states
M♯ is described by the grammar below, where α0, α1 ∈ Xn and S ∈ Xs:

m♯ ::= emp |m♯ ∗ m♯ |α0.f 7→ α1 | lsegs(α0, α1, S � )

We note M♯ for the set of abstract memory states.

As usual, emp denotes the empty memory region and m♯
0 ∗ m♯

1 denotes the disjoint
union of memory regions described by m♯

0 (resp., m♯
1). The abstract predicate

α0.f 7→ α1 denotes a single memory cell, the address of which is described byα0 plus
the offset of f and the contents of which is described by α1. Finally, lsegs(α0, α1, S)
stands for a (possibly empty) list segment that starts at an address described by α0,
ending with a pointer to address α1, where each list element consists of two fields,
namely, a pointer to the next element and a data field, and such that the sequence
of the values of the data fields is described by sequence variable S. In logical terms,
the predicate lsegs(α0, α1, S) is defined inductively as shown in Figure 6.

As the definition of lsegs in Figure 6 shows, the concretization of abstract
memory states indirectly involves sequence variables (and also multi-set variables).
Indeed, given an abstract memory state m♯ and a sequence variable S that appears
in m♯, the concretization of m♯ also constrains S, lenS , and multiS . To reflect
this, we let the concretization of an abstract memory m♯ return a set of tuples that
comprise not only a memory state m, but also a valuation that maps each symbolic
variable in m♯ to a value of the corresponding type (scalar, multi-set, or sequence).
Such a valuation boils down to a triple (σn, σm, σs) (Definition 2). The definition
of the concretization is based on a set of inductive derivation rules that follow the
syntax of abstract memories and unfold the list segment predicates (Figure 8).



4. COMBINATIONOFSEQUENCEABSTRACTIONANDSHAPEANALYSIS 15

∅, σ |=M emp
m = [σn(α0) + f 7→ σn(α1)]

m, (σn, σm, σs) |=M α0.f 7→ α1

∀i, mi, σ |=M m♯
i

m0 ⊎m1, σ |=M m♯
0 ∗ m♯

1

σn(α0) = σn(α1) σn, σs |=s S = []
∅, (σn, σm, σs) |=M lsegs(α0, α1, S)

m, (σn, σm, σs) |=M α0.n 7→ α2 ∗ α0.d 7→ α3 ∗ lsegs(α2, α1, S1 � )
σn(α0) ̸= 0 σn, σs |=s S = [α3].S1 S1 fresh

m, (σn, σm, σs) |=M lsegs(α0, α1, S � )

Fig. 8. Concretization of abstract memory states

Definition 5 (Concretization of abstract memory states). The concretiza-
tion of abstract memory states γM maps an abstract memory m♯ to a set of pairs
(m,σ) ∈ M× Σ and is defined by:

γM(m
♯) = {(m,σ) | (m,σ) |=M m♯}

As examples of abstract memory states, we refer the reader to the left conjuncts of
the three abstract states shown in Figure 3.

Combined abstract domain. The analysis needs to reason accurately over sequence
variables not only when they are bound in an inductive predicate, but also when
these predicates are unfolded. Thus, it requires a product abstract domain based
on the memory abstract domain fixed in Definition 4 and Definition 5 and on
the sequence abstract domain introduced in Section 3. Moreover, like most shape
analyses, it sometimes needs to make case splits due to the disjunctive nature of
the inductive predicate lsegs. Thus, the combined abstraction is defined as follows:

Definition 6 (Combined abstraction). The elements of the combined state
abstract domain S♯ are finite disjunctions of pairs of the form (m♯, σ♯) ∈ M♯ × Σ♯.
Furthermore, the concretization γS maps an element s♯ of S♯ into a set of memories
m and is defined by:

γS((m
♯, σ♯)) := {m | ∃σ ∈ γΣ(σ

♯), (m,σ) ∈ γM(m
♯)} γS(

∨
i s

♯
i) :=

⋃
i γS(s

♯
i)

Concatenating segments. Before we move to the analysis algorithms, we discuss a
principle for logical reasoning over segments that many analysis operations rely on.
Intuitively, a pair of consecutive segments may be merged into a single segment,
that stores a sequence of elements that is the concatenation of the elements in
the two initial segments. Reciprocally, it is possible to split a segment based on a
partition of the sequence of its elements. The lemma below formalizes this.

Lemma 1 (Concatenation (list predicates)). We assume α0, α1, α2 distinct
symbolic variables and let m♯

0 := lsegs(α0, α1, S1 � ) ∗ lsegs(α1, α2, S2 � ),
m♯

1 := lsegs(α0, α2, S � ), and σ♯ := S = S1.S2. Then, we have (i) γS(m
♯
0, σ

♯) ⊆
γS(m

♯
1, σ

♯), and (ii) if (m,σ1) ∈ γS(m
♯
1, σ

♯), then there exists σ0 such that (m,σ0) ∈
γS(m

♯
0, σ

♯) and, for all β ∈ V such that β ̸= α1, σ0(β) = σ1(β).
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4.3 Computation of abstract post-conditions

Abstract post-conditions are computed by a pair of families of functions:
– given l-value l and expression e, assignS,l=e : S♯ → S♯ computes an over-

approximation for the assignment command l = e;
– given expression e, guardS,e : S♯ → S♯ computes an over-approximation for

the effect of the condition expression e.
In the following paragraphs, we give the main steps of the algorithms to compute
them. They both ensure the soundness conditions that state that, for all l-
value l, expression e, and abstract state s♯ ∈ S♯, we have [l = e](γS(s

♯)) ⊆
γS(assignS,l=e(s

♯)) and {m ∈ γS(s
♯) | [e]e(m) ̸= 0} ⊆ γS(guardS,e(s

♯)).

Simple cases. The computation of post-conditions for assignments and tests that
involve only fully exposed cells is straightforward and follows classical shape analysis
techniques [15]. For instance:

assignS,x.f=y(x.f 7→ α0 ∗ y 7→ α1 ∗ m♯, (σn, σm, σs))

= (x.f 7→ α1 ∗ y 7→ α1 ∗ m♯, (σn, σm, σs))

guardS,x.f̸=0x0(x.f 7→ α0 ∗ m♯, (σn, σm, σs))
= (x.f 7→ α0 ∗ m♯, (guardn(α0 ̸= 0, σn), σm, σs))

where guardn denotes a sound condition test for the numerical domain [20].

Unfolding inductive predicates. The more difficult cases in post-conditions arise
when some of the memory cells that are affected by the statement are summarized as
part of an inductive predicate as, e.g., in assignS,x=x.n(x 7→ α0 ∗ lsegs(α0, α1, S�)).
In such cases, some inductive predicates need to be unfolded, before falling back to
the simpler situation shown in the two aforementioned cases.

The unfolding operation is based on rewriting rules that follow directly from
the inductive nature of lsegs. We note⇝ the unfolding relation that rewrites an
abstract state into another. Basic cases of⇝ proceed as follows:

(lsegs(α0, α1, S � ) ∗ m♯, (σ♯
n, σ

♯
m, σ♯

s))

⇝

 (m♯, guardΣ(S = [], guardn(α0 = α1, σ
♯
n), σ

♯
m, σ♯

s))

∨
(
α0.n 7→ α2 ∗ α0.d 7→ α3 ∗ lsegs(α2, α1, S1 � ) ∗ m♯,

guardΣ(S = [α3].S1, guardn(α0 ̸= 0, σ♯
n), σ

♯
m, σ♯

s)

)
where α2, α3, S1 are fresh. Unfolding is proved sound by the rules of Figure 8 in
the sense that, for all s♯0, s

♯
1 ∈ S♯, if s♯0 ⇝ s♯1, then γS(s

♯
0) ⊆ γS(s

♯
1).

The soundness of assignS,. and guardS,. follows from that of the unfolding
relation, from that of the assignment and condition test of the underlying abstract
domains, and from the (straightforward) handling of the unfolded cases.

We remark that the main difference compared to baseline shape analyses is
that unfolding produces additional predicates about the sequence variables, which
are added into the sequence domain. In turn, the addition of these constraints may
yield increased precision due to internal reduction.
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4.4 Computation of lattice operations

The lattice operations required for the analysis of loops comprise the conservative
inclusion test and the over-approximation of concrete upper bounds. Moreover, the
former is used in the definition of the latter. Again, the algorithms to compute them
are based on those of classical shape analyses. Thus, we emphasize the extensions
that are required to infer sequence information and refer the reader to [15] for a
full description of shape abstraction inclusion and widening algorithms.

Inclusion checking. The inclusion test function performs a proof search to try to
establish inclusion. Although the rule system actually used is more complex, the
inclusion proof system can be summarized down to three basic principles. First,
when two abstract states have the same abstract memory component, proving
inclusion boils down to checking the inclusion in Σ♯. Second, when the left-hand
side contains several inductive predicate instances that can be summarized into
one in the right-hand side, the analysis tries to concatenate them using Lemma 1.
Third, when the right-hand side can be unfolded and the left-hand side is included
into one of the unfolded disjuncts, then the inclusion holds for the initial pair. The
rules below formalize these three principles.

is_leΣ(σ
♯
l , σ

♯
r) = true

(m♯, σ♯
l ) ⊑ (m♯, σ♯

r)

verifyΣ(σ
♯
l , S = S1.S2) = true

(lsegs(α, β, S1 � ) ∗ lsegs(β, δ, S2 � ) ∗ m♯
l , σ

♯
l ) ⊑ (lsegs(α, δ, S � ), σ♯

r)

s♯r ⇝∨i

s♯i︷ ︸︸ ︷
(m♯

i , guardΣ(σ
♯
i , Ci)) ∃j, verifyΣ(Cj , σ

♯
l ) = true ∧ (m♯

l , σ
♯
l ) ⊑ s♯j

(m♯
l , σ

♯
l ) ⊑ s♯r

The is_leS function takes two abstract states and attempts to construct a proof
tree that establishes inclusion based on these principles. The main specificities of
the product with a sequence abstract domain are the requirement for is_leS to
track sequence concatenation constraints and the use of the inclusion checking
function of the sequence abstract domain. The soundness of is_leS follows from
the soundness of the shape inclusion algorithm and of the underlying domains
operations:

Theorem 5 (Soundness of is_leS). For all s♯0, s
♯
1 ∈ S♯, if is_leS(s

♯
0, s

♯
1) = true

then γS(s
♯
0) ⊆ γS(s

♯
1).

Join and Widening. The cases of join and widening are more subtle, since these
operators may need to introduce lsegs predicates together with fresh symbolic
sequence variables, and to infer accurate relations over these new variables. Indeed,
these algorithms are based on the following two principles:
– when the memory components of the two arguments are equal, we use it for

the shape specific part of the result;
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Jl = eK♯(s♯) := assignS,l=e(s
♯) Jc0; c1K♯(s♯) := Jc1K♯ ◦ Jc0K♯(s♯)

Jif(e){c0}K♯(s♯) := joinS

(
Jc0K♯(guardS,e ̸=0(s

♯)), guardS,e=0(s
♯)
)

Jwhile(e){c}K♯(s♯) := guardS,e=0(limn s♯n)

where s♯0 := s♯ and s♯n+1 := widenS(s
♯
n, JcK

♯(guardS,e ̸=0(s
♯
n)))

Fig. 9. Abstract interpretation of a command

– when the memory components of the two arguments differ, they need to be
weakened by replacing memory fragments with novel instances of lsegs, with
fresh symbolic sequence variables, and by checking inclusion holds using is_leS.

To illustrate the second case, we consider the over-approximation of the two
abstract states defined by s♯0 := (α0.n 7→ α1 ∗ α0.d 7→ α3 ∗ lsegs(α1, α2, S� ), σ♯

0)

and s♯1 := (lsegs(α0, α1, S � ) ∗ α1.n 7→ α2 ∗ α1.d 7→ α3, σ
♯
1). Clearly, the

memory part of both states may be weakened to the same abstract memory
lsegs(α0, α2, S

′′ � ) where S′′ is fresh. This gives the shape specific part of the
result. However, in the case of s♯0, this weakening holds under the constraint
S′′ = [α3].S, whereas it holds under the constraint S′′ = S′.[α3] in the case of s♯1.
Therefore, the sequence abstract states should be updated according to these two
constraints before calling the corresponding operator in the sequence domain, which
produces joinΣ(guardΣ(S

′′ = [α3].S, σ
♯
0), guardΣ(S

′′ = S′.[α3], σ
♯
1)). Note that

this weakening also generates numerical and multi-set constraints. This constraint
synthesis issue is carried out by an extension of the inclusion checking algorithm
that keeps track of the fresh variables introduced by the widening and accumulates
constraints over these.

Theorem 6 (Soundness of joinS,widenS and its termination). The upper
bound operator joinS,widenS : S♯ × S♯ → S♯ are sound in the sense that, for all
s♯0, s

♯
1 ∈ S♯, then γS(s

♯
0) ∪ γS(s

♯
1) ⊆ γS(joinS(s

♯
0, s

♯
1)) and γS(s

♯
0) ∪ γS(s

♯
1) ⊆

γS(widenS(s
♯
0, s

♯
1)). Moreover, widenS also ensures the termination property [17].

4.5 Static analysis of a simple language

The analysis of a command c is a function JcK♯ : S♯ → S♯ that over-approximates
[c]. It is defined by induction over the syntax in Figure 9. Note that the convergence
of the sequence of abstract iterates follows from the termination property of widenS,
and the analysis uses is_leS to detect stabilization. For conditional statements, we
analyze the two branches separately after assuming the corresponding constraint,
and we merge the two resulting states using joinS. It is sound (the proof of soundness
is classical [15] and proceeds by induction over the syntax):

Theorem 7 (Soundness). For all command c, [c] ◦ γS

.
⊆ γS ◦ JcK♯.

5 Shape and sequence predicates for non-linear structures

This section discusses the general inductive predicates used by our analysis. While
Section 4 only considered basic list predicates so as to introduce the analysis in
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α0 = α1

S1

α0

α1

S S1

α0

α1

SS1

α0

α1

Sl SrS1

Fig. 10. Concatenation cases for tree segments and full tree predicates

a simpler setup, we now show our analysis handles m-ary trees (thus including
lists when m = 1), possibly with parent pointers. We require that the sequence
arguments of inductive definitions denote (sub-)sets of elements stored in structure
(we comment on this restriction in Remark 1). The following paragraphs show
the specificities of sequence predicates for such data-structures, the derivation of
segment predicates and how it affects analysis operations.

Segment predicates and sequence information. Segment predicates such as lseg
play a very important role in the analysis, e.g., to analyze data-structure traversals,
as in Section 2. Basic analysis operations split or merge inductive predicates that
describe full structures and segments. As we remarked in Section 4, sequence
information needs to be maintained when such steps are performed and Lemma 1
provides the method to do so for lseg. As observed in Section 2, the method derived
from Lemma 1 will not work for non linear structures.

Indeed, let us consider the tree segment predicate treesegs shown in Figure 4,
which describes all the possible ways to decompose memory states that store a full
tree at node α0 and where α1 is the address of one of its subtrees. Equivalently, the
memory can be decomposed into a tree segment between α0 and α1 and a full tree
at root α1. We note S0 (resp., S1) the sequence of elements in the whole structure
(resp., the subtree). Figure 10 depicts all possible configurations. In the first case,
the subtree and the tree are equal, so the segment is empty and S0 = S1. In the
second case, the subtree at α1 is a leftmost subtree and S0 = S1.Sr for some Sr. The
third case is symmetric. The fourth case is the most general and S0 = Sl.S1.Sr for
some Sl, Sr. Therefore, the most general definition of the sequence(s) of elements
in the segment (when the subtree in shown blue is excluded) is S0 = Sl �Sr, where
� is a placeholder that abstracts the sequence of the elements in the “missing”
subtree, and where Sl, Sr may denote the empty sequence.

Following this discussion,we now study concatenation of tree segment predicates.
Let us assume two disjoint regions respectively abstracted by treesegs(α, α

′, S′
l �

S′
r) and by treesegs(α

′, α′′, S′′
l � S′′

r ). Then, the union of these two regions may
be abstracted by treesegs(α, α

′′, Sl � Sr) where Sl = S′
l .S

′′
l and Sr = S′′

r .S
′
r.

Note that the sequence expression attached to the latter segment is calculated as
Sl.S

′
l � S′

r.Sr = (Sl � Sr)[�← S′
l � S′

r]. Similar reasoning may be carried out to
concatenate a segment and a full tree predicate. Based on these observations, we
propose a concatenation lemma for treesegs:
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Lemma 2 (Concatenation (tree case)). We assume symbolic variablesα, α′, α′′

and sequence variables S, S′, Sl, Sr, S
′
l , S

′
r, S

′′
l , S

′′
r .

– Let m♯
0 := treesegs(α, α

′, S′
l � S′

r) ∗ trees(α′, S′), m♯
1 := trees(α, S) σ

♯ :=

S = S′
l .S

′.S′
r. Then, γS(m

♯
0, σ

♯) ⊆ γS(m
♯
1, σ

♯).
– Let m♯

0 := treesegs(α, α
′, S′

l � S′
r) ∗ treesegs(α

′, α′′, S′′
l � S′′

r ), m♯
1 :=

treesegs(α, α
′′, Sl �Sr) σ

♯ := Sl = S′
l .S

′′
l ∧ Sr = S′′

r .S
′
r. Then, γS(m

♯
0, σ

♯) ⊆
γS(m

♯
1, σ

♯).

Derivation of segment predicates from full predicates. While inductive predicates
(e.g., the definition of lists or trees) are user-supplied, our analysis automatically
derives the corresponding segment predicates. Indeed, given a full predicate (like
trees) for an m-ary form of tree (including lists), the segment predicate is obtained
by the sequence of steps below:
– each sequence argument Si is replaced by a marked sequence Si � S′

i,
– a rule describes empty segments; it abstracts an empty memory region, con-

strains its extremal points to be equal and its sequence contents to be empty;
– for each inductive rule that contains recursive calls to the inductive predicate,

and for each such call c, the segment predicate should include a rule replacing
c with a segment instance; moreover, in each such segment rule, the linearity
of the sequence concatenations should be reflected by sequence constraints.

As an example, we illustrate this in the case of trees:
Example 4 (Tree segments). The definition of trees is shown in Figure 1. As it
has one sequence parameter, the corresponding segment predicate has two, that
we note S0 and S1 and writes down treesegs(α, α

′, S0 � S1). We now detail the
derivation of the treesegs predicate shown in Figure 4. As stated above, treesegs

includes a rule for empty segments (the first one in Figure 4), which corresponds
to an empty region, two equal pointers and two empty sequences. The first rule of
trees corresponds to the empty tree; it has no recursive call and cannot appear in
segments. The second rule of trees has two recursive calls (for the left and right
subtrees), thus, it gives rise to two rules in treesegs, that stand for cases where
the segment is in the left (resp., right) subtree. Finally, we consider the constraints
over sequences in the last rule (right subtree). Given the notation in Figure 4, the
sequence of values in the whole tree is the argument S � S′ of treesegs which
is equal to Sl.[v].Sr � S′

r in the last rule. This equality entails the constraints
S = Sl.[v].Sr and S′ = S′

r which thus appear in the last rule of treesegs.

Remark 1 (Limitation of sequence arguments). We observe that the inference of
the sequence constraints by linearity as shown in Example 4 can only be achieved
since the sequence constraints in trees specify that its segment argument collects
a set of elements found at some fields in the structure. As an example, the analysis
would not support an alternative definition of trees where the inductive rule
would have the sequence constraint S = sort(Sl.[v].Sr), as it does not allow the
derivation of precise constraints over sub-sequences for segments. We note that this
limitation does not prevent capturing precisely binary search trees in the product
abstract domain of Definition 5 with element trees(α, S) ∧ S = sort(S); instead,
it only requires the shape predicate be written in a certain way.
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Analysis. The analysis requires users to supply inductive predicates for full struc-
tures as well as target pre- and post-conditions. Segment predicates are inferred
automatically as shown in the previous paragraph, as well as the appropriate
concatenation lemma. Finally, the analysis operators are similar to those shown
in Section 4, except that they use the concatenation property inferred from the
definition of the full structure inductive predicate. For instance, when using the
tree inductive predicate of Figure 1, the analysis infers the segment of Figure 4
and the concatenation lemma 2. The analysis satisfies the soundness property of
Theorem 7. To conclude the section, we discuss a couple of steps of the computation
of widening in the analysis of the program in Figure 2.

Example 5 (Inclusion checking). We consider the following abstract states:
– s♯0 = (α.l 7→ α0 ∗ α.d 7→ α1 ∗ α.r 7→ α2 ∗ trees(α2, Sr), σ

♯
0);

– s♯1 = (treesegs(α, α0, S � S′), σ♯
1).

Both s♯0 and s♯1 appear during the widening at the first iteration. We study the
evaluation of the inclusion test is_leS(s

♯
0, s

♯
1). We first remark the following unfold-

ings (where α3, α4, α5, Sl, and S′
l are fresh) yield a similar abstract memory, up to

existentially quantified symbolic variable names:

s♯1 ⇝ (α.l 7→ α3 ∗ α.d 7→ α4 ∗ α.r 7→ α5 ∗ treesegs(α3, α0, Sl � S′
l)

∗ trees(α5, Sr), σ
♯
0) ∧ S = Sl ∧ S′ = S′

l .[α4].Sr

⇝ (α.l 7→ α3 ∗ α.d 7→ α4 ∗ α.r 7→ α5 ∗ emp ∗ trees(α5, Sr),

σ♯
0) ∧ S = Sl ∧ S′ = S′

l .[α4].Sr ∧ Sl = [] ∧ S′
l = [] ∧ α0 = α3

By the definition of is_leS in Section 4.4, is_leS(s
♯
0, s

♯
1) returns true if and only if

is_leΣ(σ
♯
0, σ

♯
1), verifyΣ(σ

♯
0, S = []) and verifyΣ(σ

♯
0, S

′ = [α1].Sr) all return true.

Example 6 (Widening). We now study the computation of the first widening in
the analysis of the program shown in Section 2. For brevity, we only consider the
second disjunct after the condition. The arguments of widening of abstract memory
states and the result are shown in Figure 11. As mentioned in Section 4.4, the
widening operator seeks for regions that can be described in a similar manner in the
both of its arguments, possibly after weakening them. Matching colors in Figure 11
highlight pairings of similar regions. Recall that all symbolic variables (α, α0, . . .)
are existentially quantified within a same state. We observe the terms in blue, green
and purple are pairwise equal and require no weakening. The areas in red though are
not equal. For clarity, we add an emp term in m♯

0. As observed in Example 5, the
matching terms in m♯

1 can be weakened into treesegs(α0, α1, S1 � S2), provided
S1 = [] and S2 = [δ].Sr. The same holds for emp in m♯

0. The table in the bottom
of Figure 11 summarizes the correspondence between existentially quantified
symbolic variables that realizes the association of regions.

The above paragraph describes the computation of the abstract memory state
shown in Figure 3(c). The computation of the sequence abstract state of Figure 3(c)
proceeds by application of widenΣ.
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
&t 7→ α0

∗ &c 7→ α0

∗ emp

∗ trees(α0, S)


︸ ︷︷ ︸

m
♯
0


&t 7→ α0 ∗ &c 7→ α1

∗ α0.l 7→ α1

∗ α0.d 7→ α2

∗ α0.r 7→ α3

∗ trees(α1, Sl)

∗ trees(α3, Sr)


︸ ︷︷ ︸

m
♯
1


&t 7→ α

∗ &c 7→ α′

∗ treesegs(α, α
′, S1 � S2)

∗ trees(α
′, S0)


︸ ︷︷ ︸

m
♯
f

m♯
f α α′ S0 S1 S2

m♯
0 α0 α0 S [] []

m♯
1 α0 α1 Sl [] [α2].Sr

Fig. 11. Shape union between states from Figures 3(a) and 3(b) (Greek letters denote
existentially quantified symbolic variables; identical colors denote similar regions).

6 Implementation and evaluation

In this section, we report on the implementation and evaluation of the product
shape and sequence analysis. We consider the following research questions:
– (RQ1) Is the combined analysis of Section 4 and Section 5 precise enough to

prove functional properties on programs implementing classical algorithms
over dynamic data-structures (like lists, sorted lists, and binary search trees),
and does it help a baseline analysis verify structural invariants are preserved?

– (RQ2) Can this analysis successfully verify real-world C libraries?
– (RQ3) How significant is the overhead of the combined analysis compared to

the baseline?

Implementation. We have implemented the sequence abstract domain and the
product with the shape abstraction of the MemCAD static analyzer [38,1]. The
analysis inputs C programs and user-supplied inductive predicates describing data-
structures together with pre- and post-conditions and attempts to verify them, as
well as absence of runtime errors. We set convex polyhedra [20] implemented in the
Apron library [35] as numerical abstraction and an extension of [39] as multi-set
abstraction.

Experiments. We consider two sets of experiments. The first one (Table 1) consists
of custom implementations of classical algorithms over lists, sorted lists, and binary
search trees and includes sorting, insertion and deletion algorithms. The second
(Table 2) collects list data-structure implementations taken from the Linux [54]
and FreeRTOS [33] operating systems as well as the Generic data-structure library
(GDSL) [23], which all involve specificities like back pointers or sentinel nodes.
For each data-structure, we provide an inductive definition written in the DSL
of MemCAD. This amounts to a single definition a few lines long for each series
of tests. For each test, we also specify the pre- and post-condition of procedures.
When a procedure may behave differently depending on the shape of their input,
we provide two pre-/post-condition pairs. This occurs for the “Pop” function, which
does nothing when applied to the empty list. Two target properties are studied:
– PrSafe: absence of memory errors and structural preservation (with respect

to list or tree invariants but without checking anything about their contents);
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Example
without seq with seq parameters

time #iter PrSafe time #iter PrSafe
all verified all num seq shape + Fc verified

Singly linked list
Push 4.0 ✓ 4.8 0.5 0.5 0.9 ✓
Pop 5.1 ✓ 5.4 0.9 1.4 0.8 ✓
Pop (empty) 4.9 ✓ 4.7 0.8 0.5 1.4 ✓
concat 6.5 2 ✓ 15.7 3.4 3.3 2.7 2 ✓
deep copy 12.1 2 ✓ 20.4 3.7 2.9 5.5 2 ✓
length 9.5 3 ✓ 45.0 22.5 5.0 8.1 3 ✓
insert at position 19.0 3 ✓ 101.9 61.3 7.9 12.2 3 ✓
remove at position 17.2 3 ✓ 92.5 55.5 6.5 12.5 3 ✓
inserting in a sorted list 13.5 3 ✓ 82.5 39.0 10.0 9.2 3 ✓
minimum 11.8 3 ✓ 92.3 42.4 11.1 16.8 3 ✓
maximum 11.8 3 ✓ 93.2 42.9 11.2 17.0 3 ✓
insertion sort 24.6 2, 2 ✓ 714.6 328.6 90.0 126.3 4, 3 ✓
bubble sort 40.6 2;2,3 ✓(†) 776.3 399.5 89.2 141.5 3;3,3 ✓(†)
merge 36.8 4 ✓ 352.2 180.9 41.0 54.9 4 ✓

Binary trees
Delete leftmost 11.2 3 ✓ 80.5 38.2 9.4 12.0 3 ✓
Delete rightmost 11.5 2 ✓ 58.1 27.5 6.8 7.6 2 ✓

Binary search trees
Insertion 25.2 2 ✓ 150.4 58.0 17.2 15.5 2 ✓
Delete max 22.9 2 ✗ 141.2 68.6 15.2 17.2 2 ✓
Delete min 22.0 3 ✗ 177.9 87.9 19.2 22.8 3 ✓
Search (present) 26.6 2 ✓ 107.2 48.6 15.7 14.4 2 ✓
Search (absent) 24.0 3 ✓ 76.7 29.4 11.4 11.7 3 ✓
BST to list (heap sort) 23.8 3 ✓ 76.5 29.2 11.4 11.7 3 ✓
list to BST (heap sort) 34.2 2,2 ✓ 408.0 188.0 56.5 68.4 3,2 ✓

Table 1. Experimental results on custom examples (Time in milliseconds averaged over 100 runs. For
loop iterations, disjoint loops are separated by a semicolon, nested loops by a comma, and the first
number corresponds to the outer loop. For inner loops, we take the maximum number of iterations
needed to stabilize it.)

– Fc: partial functional correctness (including sortedness and the preservation
of the elements stored in data-structures).

We ran the experiments on a machine with an i7-8700 processor with 32 Gb of RAM
running Ubuntu 18.04. For each test case, we run the analysis without and then
with sequence abstraction to compare runtimes and check if the analyses prove the
expected property. When using the analysis without sequence abstraction, only
PrSafe is considered (this abstraction cannot express Fc), whereas the analysis of
sequences attempts to discharge both PrSafe and Fc. Table 1 displays raw results
for the first series of tests. Table 2 shows the results of the main tests in the second
series of tests.

Verification of complex properties. As shown in Table 1, the analysis with sequences
fully verifies both memory safety and functional correctness (PrSafe and Fc) for
all target codes including three different list sorting programs, operations on binary
search trees as well as heap sort (elements of a list are all inserted in an empty
binary search tree and collected in a left to right order back into a list). These
examples all require the inference of fairly involved invariants. The analysis without
sequences can only verify PrSafe, yet it fails to do so in several examples, where
the use of sequences actually also lets the analysis verify PrSafe (in addition to Fc).
This result is somewhat surprising, as we would not expect sequence information
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Example
without seq with seq parameters

time #iter PrSafe time #iter PrSafe
all verified all num seq shape + Fc verified

Linux lists
Init 1.1 ✓ 2.6 0.2 0.3 1.1 ✓
Input 13.6 ✓ 21.4 2.7 2.4 8.2 ✓
Output 22.7 ✓ 31.5 4.8 4.8 10.5 ✓
Output (empty) 33.8 ✓ 9.3 1.4 1.0 2.5 ✓

FreeRTOS lists
vListInit 4.3 ✓ 6.1 1.3 0.4 0.6 ✓
vListInsertEnd 23.8 ✓ 40.3 10.8 1.8 5.3 ✓
vListInsert 87.4 4 ✓ 370.5 202.4 27.2 37.9 4 ✓
vListRemove 47.5 ✓ 163.4 82.6 9.2 20.0 ✓

GDSL (lists)
Flush 24.3 2 ✓ 59.4 18.4 5.4 16.1 2 ✓
Free 35.3 2 ✓(†) 79.9 25.1 7.4 24.0 2 ✓(†)
Remove head (empty) 34.1 ✓ 111.9 50.9 6.5 25.4 ✓
Remove head (non-empty) 34.0 ✓ 16.3 5.7 1.1 3.7 ✓
Remove tail (empty) 49.5 ✓ 284.8 165.0 13.6 39.3 ✓
Remove tail (non-empty) 49.5 ✓ 16.2 5.7 1.1 3.6 ✓
Search max 69.7 5 ✓ 708.4 429.7 43.1 145.7 5 PrSafe Fc
Search min 69.4 5 ✓ 634.0 380.3 35.4 131.2 5 PrSafe Fc
Search by position 104.5 3;2 ✗(†) 1182.8 796.3 40.7 108.2 3;3 ✓(†)

Table 2. Experimental results on libraries programs (Time in milliseconds averaged over 100 runs.
For loop iterations, disjoint loops are separated by a semicolon, nested loops by a comma, and the first
number corresponds to the outer loop. For inner loops, we take the maximum number of iterations
needed to stabilize it.)

be required to establish basic safety. One caveat is that one example (bubble sort)
required the manual insertion of a directive to MemCAD to delay folding. We
conjecture the shape folding operator could be improved to avoid this. All other
analyses are fully automatic. We conclude the product with sequences not only
allows to prove Fc even in challenging cases, but may also help with PrSafe.

Verification of real-world libraries. We now consider Table 2. These examples
involve lists with invariants that are considerably more sophisticated than lsegs, as
they are all doubly-linked lists with headers. While GDSL lists contain a pointer to
stored value blocks, both Linux and FreeRTOS lists are intrusive lists in the sense
of the Linux kernel terminology: the C struct containing the n and prev fields is a
substructure of the list node, which implies structure accesses require more complex
pointer operations. FreeRTOS lists explicitly store a pointer from substructures to
owners, whereas Linux lists rely on pointer arithmetic to access containing blocks.
Finally, both FreeRTOS and GDSL lists have a header that stores the number
of elements in the lists. FreeRTOS list nodes store a pointer to this header. The
analysis with sequences proves both PrSafe and Fc for all Linux and FreeRTOS
primitives. It was also able to fully verify almost all the GDSL list library, although
two cases required a manual directive to prevent aggressive folding both with and
without sequences (as for bubblesort in Table 1) (they are marked with (†) in the
tables). Only two functions for the extraction of minimal/maximal values could
not be fully verified with respect to Fc (note that PrSafe still gets proved): in
these codes, the memory widening is too aggressive and folds the node storing
the function results, which prevents proving that the returned value is indeed the
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extremal value in the sequence. All other examples not included in Table 2 are
verified. We conclude the analysis handles real-world programs.

Overhead. We now compare performance between the analyses with/without
sequences in Tables 1 and 2. While the overhead is modest for the smaller programs,
it becomes higher for the more challenging cases, up to roughly 10x-20x. While
significant, this cost should be considered in comparison to the much stronger
properties proved (i.e., not only PrSafe but also partial correctness Fc in addition
to PrSafe). We found two reasons for this increase. First, as shown in the tables,
most of the increase is accounted for by the numerical abstract domain partly due
to the larger number of symbolic variables that stand for sequence bounds. We
believe this overhead could be much reduced with a finer-grained numerical domain
packing [7,52]. By contrast, the time spent in memory and sequence domains
remains reasonable. Second, the analysis with sequences requires greater numbers
of abstract iterates to stabilize loop iterates, as shown in the tables, which explains
an important slowdown. This is to be expected due to the more complex value
constraints (including polyhedra) used in the analysis with sequences.

7 Related works

In this section, we discuss previous works on the abstractions of sequences stored
in data-structures.

Linear and contiguous structures (arrays and strings). Several previous works
have tried to tie properties of container data-structures with properties of their
contents. In particular, [28,29] have extended array abstractions with basic contents
properties. More recently [30] introduced array segmentations and [19] made the
computation of the array segmentations dynamic during the analysis. The latter
two can express that an array is sorted and verify that a function produces sorted
arrays. However, they do so with specific predicates rather than an abstraction
for sequences. Thus, they cannot express that the set of elements in an array is
preserved, which is required to prove a sorting function correct. By contrast, our
sequence abstraction handles both sortedness and contents preservation.

Strings and buffers also motivated many research works, as operations on them
may incur a security risk. In particular, improper handling of zero terminated
strings make opens the door to buffer overrun attacks. Therefore, works such as
CSSV [25] abstract the presence or absence of zeroes in strings and their positions
in order to verify buffer operations. Besides zeroes, these works do not keep any
contents’ information.

As noted earlier, several recent works applied concepts such as regular expres-
sions and automata in order to build string abstract domains, that convey precise
contents information [45,3,47]. These works are typically aimed at inferring precise
information on strings that denote pieces of programs meant to be computed and
evaluated at runtime as in the case of JavaScript’s eval construction. Automata
and regular expressions are most adequate for such target properties. More recently,



26 J. Giet, F. Ridoux, X. Rival

[4] extended these works with length and element position constraints. These
abstractions are not aimed at numerical sequences, and fail to express sortedness.
By contrast, our sequence abstraction relies on length, extremal elements and
sortedness constraints and fails to express regular expressions-based properties as
these would not be useful for our intended application. An interesting area of future
work would be to build a reduced product of sequence abstractions to combine the
expressiveness of these works and of ours.

Shape analyses for dynamic data-structures. Many abstractions for dynamic data-
structures have been proposed. Sagiv et al. introduced a shape analysis based
on three value logic in [51], that was later extended to handle more complex
data-structures such as tree [42]. The seminal work by Reynolds [50], introduced
separation logic, that many analyses including ours rely upon. Separation logic
has been used in order to reason over not only sequential programs [12] but
also concurrent programs [48,57] and to prove properties like linearizability of
concurrent data structures [56]. It serves as a basis for structure abstraction in
several static analyzers like Smallfoot [12], Facebook Infer [13] (which also performs
bi-abduction to synthesize pre- and post-condition pairs), Forester [31] (which
uses automata to represent abstract states), and MemCAD [38] (which features a
modularized abstract domain). Bi-abduction methods have also been extended
to infer inductive predicates on a per-function basis [37] or to infer pre- and post-
conditions for programs manipulating lists and using bit-level memory accesses
and pointer arithmetic [32]. All the shape abstractions mentioned so far can only
keep track of very limited contents properties.

Indeed, inferring precise information about the contents of dynamic data-
structures is notoriously difficult, since the memory abstraction layout changes
depending on the program point which makes abstraction complex. A first approach
to this issue consists in splitting the analysis in two phases, where the first analysis
infers only structural invariants and translates the initial program into a purely
numerical program, that is taken as input by the second analysis, that discovers
numerical invariants. This technique has been applied by [43,27] in order to infer
complexity bounds and verify termination of programs based on information
on the size of the data-structures. A second approach [14] consists of a reduced
product between a memory abstract domain and a numerical abstract domain.
While harder to implement, it ensures information can be communicated in both
directions between the memory and the value abstract domains, whereas the
staged analysis approach only lets the value abstract domain benefit from memory
layout information. More recently, [39] combines shape and set abstractions with a
reduced product which allows verifying programs on graphs. As it only considers
set constraints, it does not capture any order information.

The tools CINV [8] and CELIA [9] (extended with interprocedural analysis
support in [11]) are the most closely related to our approach. These static analyzers
handle list manipulating programs and are parameterized by an abstract domain
called a data-word domain to reason on the structure and contents of lists by
attaching size or set constraints to them, or constraints quantified over the position
of elements, which allows expressing sortedness. Although the heap abstraction



7. RELATED WORKS 27

does not make explicit use of separation logic the list abstraction follows a similar
structure. A first important difference with our work is that CINV and CELIA only
handle singly-linked lists, whereas our analysis supports a large range of inductive
definitions included doubly linked-lists, trees, binary search trees with and without
parent pointers. Indeed, our approach integrates sequence reasoning into a shape
analysis that can be parameterized by a wide variety of inductive predicates. This
more general scope requires extensions to the analysis algorithms, such as the
automatical inference of concatenation lemmas (Lemma 1 and 2) and the use of
abstract operators based on them. A second difference comes from the sequence
domain and the interaction with it. The data-word domain to handle sortedness
relies on a decidable fragment of first order array theory based on constraints of
the form ∀y, P (y)⇒ U(y, Q1, . . . ), where the guard constraint P (y) belongs to a
predefined, user-provided set of guard-patterns constraining the index variables
yj , and U is a conjunction of linear constraints on yj and Qi[yj ]. This domain
does not manipulate symbolic sequence expressions but rather follows a structural
approach. For example, the concatenation constraint S = S1.S2 is expressed as
∀y1, y2, y1 < lenS1

∧ y2 < lenS2
⇒ S1[y1] = S[y1] ∧ S2[y2] = S[y2 + lenS2

].
Therefore, it requires the user to specify prior to the analysis the appropriate guard
pattern. Our sequence abstraction requires no such parameterization.

Provers for memory and contents properties. Separation logic has also been used as
foundation for verification tools based on entailment checking procedures, some of
which also consider contents properties. Songbird [53] uses a sequent-based approach
to attempt deciding implication in a fragment of separation logic enriched with
pure predicates. The procedure presented in [34] relies on tree automata to decide
implications that involve inductive predicates. SLAD [10] decides entailment on a
logic for singly-linked lists and the data stored in them. It handles order constraints
on linear structures like lists and arrays. More recently, [22] used bi-abduction
to reason about ordered data by explicitly storing bounds on elements in the
inductive predicate. This work only considers full structure predicates and does
not handle segment predicates. All these tools can be used to discharge implication
proof obligations and can be used in verification tools where invariants are either
manually written or inferred by some other means.

Additionally, separation logic is also heavily used in approaches based on proof
assistants [16]. In that case, contents properties are naturally expressed in the
proof assistant language.

Solvers for sequence properties. Finally, we remark that our language of sequence
constraints based on concatenation of atoms has some similarity with the string
logic that can be found in some decision procedures. Though the logic of word
equations with at least two atoms is known to be undecidable [49], its quantifier
free fragment has a PSPACE complete decision procedure [44]. Following the work
of [2] that classifies the field of string constraints solving in three main branches,
the automata based approach, using finite state automata to represent the set
of constraints [40], the word based approach, that decomposes constraints using
algebraic results such as Levi’s lemma [6], and the unfolding based approach,
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which expresses each string variable as a bounded sequence of variables such as
bit vectors [36], our abstraction can be categorized as mostly word-based. To
the best of our knowledge, no SMT solver is able to reason on the sortedness of
word expressions. We refer the reader to [2] for a comprehensive survey on string
constraint solving. By comparison with these works, we provide an abstract domain
interface on top of the sequence operation, which allows its use in a static analysis
tool, following an instance of reduced product [18].

8 Conclusion and future works

In this paper, we presented a novel sequence abstract domain that relies on existing
numerical and set abstractions, and extended a shape analysis with sequence
reasoning. We demonstrated that the resulting analysis can be used in order to
verify not only memory safety or structural preservation but also far more advanced
correctness properties on a wide variety of inductive structures including various
kinds of lists and trees. In particular, it could prove the functional correctness of
several list sorting programs and of operations over binary search trees.

A combination of our analysis with a termination analysis [55,27] could verify not
only partial correctness but also full correctness, which would be a first interesting
direction for future works. Defining a reduced product over abstract domains for
sequences would be also a useful research direction, as it would allow to strengthen
the expressiveness of the analysis. Last, the evaluation also shows that performance
of the combined analysis could be improved with the use of a more efficient dynamic
packing [52] for relational constraints.
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