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Abstract. This paper presents a new approach for synthesizing missing
parts from imperative programs by using abstract interpretation and
logical abduction. Given a partial program with missing arbitrary ex-
pressions, our approach synthesizes concrete expressions that are strong
enough to prove the assertions in the given program. Furthermore, the
synthesized elements by our approach are the simplest and the weakest
among all possible that guarantee the validity of assertions. In particular,
we use a combination of forward and backward numerical analyses based
on abstract interpretation to generate constraints that are solved by using
the logical abduction technique.
We have implemented our approach in a prototype synthesis tool for C
programs, and we show that the proposed approach is able to successfully
synthesize arithmetic and boolean expressions for various C programs.

Keywords: Program Synthesis · Abstract interpretation · Logical
Abduction.

1 Introduction

Program synthesis [2] is a task of inferring a program that satisfies a given
specification. A sketch [32,33] is a partial program with missing arithmetic and
boolean expressions called holes, which need to be discovered by the synthesizer.
Previous approaches for program sketching [19,32,33] automatically synthesize
only integer “constants” for the holes so that the resulting complete program
satisfies given assertions for all possible inputs. However, it is more challenging
to define a synthesis algorithm that infers arbitrary arithmetic and boolean
expressions in program sketches. We refer to this as generalized sketching problem.

In this paper, we propose a new approach for solving the generalized sketching
problem by using abstract interpretation [5,29,34] and logical abduction [1,8,12].

https://aleksdimovski.github.io/
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Assume that we have a program sketch with an unknown expression indicated by
??. Our synthesis algorithm computes an expression E over program variables
such that, when ?? is replaced by E, all assertions within the resulting complete
program become valid. Our synthesis algorithm proceeds in two phases, consisting
of constraint generation and constraint solving. The constraint generation phase
is based on abstract interpretation, whereas the constraint solving phase is based
on logical abduction. In particular, we use forward and backward static analyses
based on abstract interpretation to simultaneously compute the invariant post-
condition before and sufficient precondition that ensures assertion validity after
the unknown hole. The forward analysis computes an invariant P representing
the facts known at the program location before the hole, whereas the backward
analysis provides a sufficient precondition C that guarantees that the code after
the hole satisfies all assertions. Then, we use abduction to find missing hypothesis
in a logical inference task. In more detail, assume we have a premise P and a
desired conclusion C for an inference, where P and C are constraints generated
using forward and backward analyses, respectively. The abduction infers the
simplest and most general explanation E such that P ∧E |= C and P ∧E ̸|= false.
The first condition states that the abduction solution E together with premise P
should imply conclusion C, while the second condition states that the abduction
solution E should not contradict premise P . Finally, we use explanation E to
synthesize a concrete expression for hole ??.

We have implemented our approach in a prototype program synthesizer. Our
tool uses the numerical abstract domains (e.g., intervals, octagons, polyhedra)
from the APRON library [25] for static analysis, as well as the EXPLAIN tool [8]
for logical abduction in the combination SMT theory of linear arithmetic and
propositional logic, and the MISTRAL tool [9] for SMT solving. We illustrate
this approach for automatic completion of various numerical C sketches from the
Sketch project [32,33], SV-COMP (https://sv-comp.sosy-lab.org/), and
the literature [28]. We compare performances of our approach against the most
popular sketching tool Sketch [32,33] and the FamilySketcher [19,15] that
are used for synthesizing program sketches with missing integer constants.

This work makes several contributions:

(1) We explore the idea of automatically synthesizing arbitrary expressions in
program sketches;

(2) We show how this generalized program sketching problem can be solved using
abstract interpretation and logical abduction;

(3) We build a synthesizer using tools for static analysis by abstract interpretation
and logical abduction, and present the synthesis results for the domain of
numerical (linear arithmetic) programs.

2 Motivating Examples

We now present an overview of our approach using motivating examples. Consider
the code intro.c shown in Fig. 1, where the unknown hole ?? is an arithmetic

https://sv-comp.sosy-lab.org/
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void main(int x){
1⃝ int z = x+1;
2⃝ int y = z;
3⃝ y = ??;
4⃝ z = z+[2, 3];
5⃝ assert (z>y); }

Fig. 1. intro.c.

void main(int n){
1⃝ int abs = n;
2⃝ if (??) t⃝ abs = -n;
3⃝ else e⃝ skip;
4⃝ assert (abs ≥ 0); }

Fig. 2. abs.c.

void main() {
1⃝ int x = 10, y = 0;
2⃝ while h⃝ (??) {
3⃝ x = x-1;
4⃝ y = y+1; }
5⃝ assert (y==10); }

Fig. 3. while.c.

expression in an assignment. The goal is to complete the unknown hole in loc. 3⃝
so that the assertion is always valid.

Our approach starts by performing forward and backward static analyses
that compute numerical invariants and sufficient conditions. They are abstract
interpretation-based static analyses implemented using the Polyhedra abstract
domain [7] from the APRON library [25]. The (over-approximating) forward
analysis infers the invariant (z=x+1 ∧ y=x+1) at loc. 3⃝ before the hole. The
subsequent (under-approximating) backward analysis starts with the assertion
fact (z>y) at loc. 5⃝, and by propagating it backwards it infers the precondition
(z+2>y) at loc. 4⃝ after the hole. 1 We use these inferred facts to construct the
following abduction query:

(z=x+1 ∧ y’=x+1) ∧R(y,y’,x,z) =⇒ (z+2>y)

which is solved by calling the EXPLAIN tool [8]. The left-hand side of the
implication encodes the generated constraints up to the hole ??, where y’ denotes
the value of variable y before loc. 3⃝ and the unknown predicate R(y,y’,x,z)
encodes the constraint over all program variables in scope at loc. 3⃝. The right-
hand side of this implication encodes the postcondition ensuring that the assertion
must be valid. Hence, this abduction query is looking for a constraint over program
variables that guarantees the validity of this implication. Among the class of all
solutions, we prefer abductive solutions containing the variable y over others.
For this reason, we specify in the abduction query the lowest cost to variable
y, while y’, x and z have higher costs. The logically weakest and simplest 2

solution containing y is: R(y,y’,x,z) ≡ (y≤y’+1). This represents a weakest
specification for the hole, so we can use it to synthesize the unknown expression.
That is, we can fill the hole in loc. 3⃝ with: y = y+1 (other solutions are also
possible, e.g. y = y-1).

Consider abs.c shown in Fig. 2, where the unknown hole ?? is a boolean
expression in the if-guard. The forward analysis infers the invariant (abs=n)
at loc. 2⃝. The backward analysis starts with the assertion satisfaction, i.e. by
propagating the assertion fact (abs ≥ 0) backwards. After the if-guard, it
1 This condition guarantees that the assertion is valid for any non-deterministic choice

[2, 3]. If we have used an over-approximating backward analysis, it would infer the
necessary condition (z+3>y) that may lead to the assertion satisfaction for some
non-deterministic choices of [2, 3] (e.g., the execution where the non-deterministic
choice [2, 3] returns 3).

2 A solution is simplest if it contains the fewest number of variables.



4 A. S. Dimovski

infers that the precondition of then branch is (n ≤ 0) and the precondition
of else branch is (abs ≥ 0). Thus, we construct two abduction queries: (1)
(abs=n) ∧ Rtrue(n,abs) =⇒ (n ≤ 0), and (2) (abs=n) ∧ Rfalse(n,abs) =⇒
(abs ≥ 0), which are solved by EXPLAIN tool [8]. The reported weakest solutions
are: Rtrue(n,abs) ≡ (n≤0) and Rfalse(n,abs) ≡ (n≥0). Subsequently, we check
whether ¬Rtrue(n,abs) =⇒ Rfalse(n,abs) using the MISTRAL SMT solver [9].
Since ¬(n≤0) =⇒ (n≥0) is valid, we fill the hole at loc. 2⃝ with the boolean
guard (n≤0) as a sufficient condition for the assertion to hold.

Consider the code while.c given in Fig. 3, where the unknown hole ??
is a boolean expression in the while-guard. The forward analysis infers the
invariant (x ≤ 10) ∧ (x+y=10) at loc. h⃝. We construct the abduction query (x ≤
10) ∧ (x+y=10) ∧Rfalse(x,y) =⇒ (y=10). The reported solution by EXPLAIN
is Rfalse(x,y) ≡ (x=0). We compute Rtrue(x,y) ≡ ¬Rfalse(x,y) ≡ (x<0)∨ (x>0).
Hence, we perform two backward analysis of while.c in which the while-guard
is (x<0∧??1) and (x>0∧??2), respectively. They start with the fact (x=0∧y=10)
at loc. 5⃝. The first backward analysis for (x<0 ∧ ??1) infers the bottom (⊥)
condition after the guard at loc. 3⃝, whereas the second backward analysis for
(x>0∧??2) infers (1 ≤ x ≤ 11)∧(x+y=10) after the guard at loc. 3⃝. We construct
two abduction queries: (1) (x ≤ 10 ∧ x+y=10) ∧ R1

true(x,y) =⇒ false, and (2)
(x ≤ 10 ∧ x+y=10) ∧ R2

true(x,y) =⇒ (1 ≤ x ≤ 11) ∧ (x+y=10). The obtained
solutions are R1

true(x,y) ≡ false and R2
true(x,y) ≡ true. Hence, we fill the hole

with (x>0).
Assume that the assertion at loc. 5⃝ of while.c is assert (y ≤ 10). In this

case, the solution of the first abduction query is Rfalse(x,y) ≡ (x ≥ 0). We find
one interpretation (x=n), where n ≥ 0, of the formula (x ≥ 0) using MISTRAL
SMT solver. So, we obtain Rtrue(x,y) ≡ ¬Rfalse(x,y) ≡ (x<n) ∨ (x>n). Then,
we proceed analogously to above (basically replacing (x=0) by (x=n)).

3 Language and Semantics
This section introduces the target language of our approach as well as its concrete
and abstract semantics. They will be employed for designing the invariance (reach-
ability) and sufficient condition static analyses using the abstract interpretation
theory [5,29,34]. Moreover, we formally define the logical abduction problem.

3.1 Syntax
We use a simple C-like imperative language for writing general-purpose programs.
The program variables Var are statically allocated and the only data type is the
set Z of mathematical integers. To encode unknown holes, we use the construct ??.
The hole constructs ??i are placeholders that the synthesizer must replace with
suitable (arithmetic and boolean) expressions, such that the resulting program
will avoid any assertion failures. The syntax is given below.

s (s ∈ Stm) ::= skip | x=ae | s; s | if (be) s else s | while (be) do s |assert(be),
ae (ae ∈ AExp) ::= ??i | ae′, ae′ ::= n | [n, n′] | x ∈ Var | ae′⊕ae′,
be (be ∈ BExp) ::= ??i | be′, be′ ::= ae▷◁ae | ¬be′ | be′ ∧ be′ | be′ ∨ be′
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−−−−→
[[skip]]S = S
−−−−−→
[[x = ae]]S = {σ[x 7→ n] | σ∈S, n∈ [[ae]]σ}
−−−−−−→
[[s1 ; s2]]S =

−−→
[[s2]](

−−→
[[s1]]S)

−−−−−−−−−−−−−−→
[[if be s1 else s2]]S =

−−→
[[s1]]{σ∈S | true∈ [[be]]σ} ∪

−−→
[[s2]]{σ∈S | false∈ [[be]]σ}

−−−−−−−−−−−→
[[while be do s]]S = {σ∈lfp

−→
ϕ | false∈ [[be]]σ}

−→
ϕ (X) = S ∪

−→
[[s]]{σ ∈ X | true ∈ [[be]]σ}

Fig. 4. Definitions of
−→
[[s]] : P(Σ)→ P(Σ).

where n ranges over integers Z, [n, n′] over integer intervals, x over program
variables Var, and ⊕ ∈ {+,−, ∗, /}, ▷◁∈ {<,≤, =, ̸=}. Integer intervals [n, n′]
denote a random choice of an integer in the interval. We assume that statements
and holes are tagged with unique syntactic labels l⃝ ∈ L. Without loss of
generality, we assume that a program p is a sequence of statements followed by a
single assertion “ i⃝ s; f⃝ assert (bef )”.

The unknown holes ??i occur either as tests (boolean expressions) in if and
while statements or as right-hand sides (arithmetic expressions) in assignments.
Let H be a set of uniquely labelled holes ??i in program p. A control function
ϕ is a mapping from the set of holes H to concrete (arithmetic and boolean)
expressions. We say that ϕ is complete if dom(ϕ) = H, i.e. ϕ is defined for each
hole in the program. Otherwise, if dom(ϕ) ⊂ H, i.e. ϕ is ⊥ (undefined) for some
holes, we say that ϕ is a partial control function. We write p[ϕ] to denote the
program obtained by substituting each ??i with ϕ(??i), if ϕ(??i) is defined.

Definition 1. A complete control function ϕ is a solution to the generalized
sketching problem defined by program p if p[ϕ] is a complete program that satisfies
all its assertions under all possible inputs.

3.2 Concrete Semantics and Analyses

We now define the concrete semantics of our language, and use it to construct
invariance (forward) and sufficient condition (backward) concrete analyses. Such
analyses are obviously uncomputable, since our language is Turing complete. In
the next subsection, we present their sound decidable abstractions, which can
statically determine dynamic properties of programs.

A memory store, denoted σ ∈ Σ, is a function mapping each variable to
a value: Σ = Var → Z. The concrete domain is the powerset complete lattice
⟨P(Σ),⊆,∪,∩, ∅, Σ⟩. The semantics of arithmetic expressions [[ae]] : Σ → P(Z)
and boolean expressions [[be]] : Σ → P({true, false}) are the sets of possible
(numerical and boolean) values for expressions ae and be in a given store σ. For
example, [[??i]]σ = Z and [[[n, n′]]]σ = {n, . . . , n′} for arithmetic expressions ??i

and [n, n′]. We consider two semantics of statements (programs): an invariance
(forward) semantics

−→
[[s]] : P(Σ) → P(Σ) that infers a set of reachable stores

(invariants) from a given set of initial stores; and a sufficient condition (backward)
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←−−−−
[[skip]]S = S
←−−−−−
[[x = ae]]S = {σ | ∀n∈ [[ae]]σ, σ[x 7→ n]∈S}
←−−−−−−
[[s1 ; s2]]S =

←−−
[[s1]](

←−−
[[s2]]S)

←−−−−−−−−−−−−−−
[[if be s1 else s2]]S =

(←−−
[[s1]]S ∪ {σ | [[be]]σ = {false}}

)
∩(←−−

[[s2]]S ∪ {σ | [[¬be]]σ = {false}}
)

←−−−−−−−−−−−
[[while be do s]]S = gfp

←−
ϕ

←−
ϕ (X)=

(
S ∪ {σ | [[¬be]]σ = {false}}

)
∩

(←−
[[s]]X ∪ {σ | [[be]]σ = {false}}

Fig. 5. Definitions of
←−
[[s]] : P(Σ)→ P(Σ).

semantics
←−
[[s]] : P(Σ)→ P(Σ) that infers a set of stores (sufficient condition) from

which only stores satisfying a given postcondition are reached. The definitions of−→
[[s]] and

←−
[[s]] are given in Fig. 4 and Fig. 5, respectively. The invariance semantics

[5] is built forward, so each function
−→
[[s]] takes as input a set of stores S before

statement s and returns a set of possible stores reached after executing s from
S. The sufficient condition semantics [29] is built backward, so each function

←−
[[s]]

takes as input a set of stores S after statement s and returns a set of possible
stores before s from which only stores from S are reached after executing s. The
semantics of a while statement is given in a standard fixed-point formulation
[5,29] using the least and greatest fix-point operators lfp and gfp, where the
fixed-point functionals

−→
ϕ ,
←−
ϕ : P(Σ) → P(Σ) accumulate possible stores after

another while iteration from a set of stores X going in a forward and backward
direction, respectively.

Assume that a program “ i⃝ s; f⃝ assert (bef )” is given. We can use the
invariance semantics

−→
[[s]] to collect the possible stores in all program locations

reachable from a set of initial stores I ⊆ P(Σ), denoted InvI . We can also use
the sufficient condition semantics

←−
[[s]] to infer sufficient conditions in the form

of a set of possible stores in all program locations that guarantee the stores
after executing the program belong to some user-supplied property F ⊆ P(Σ),
denoted CondF . We assume that at the initial label i⃝ the set of possible stores
is I = P(Σ), whereas at the final (assertion) label f⃝ the possible stores are F =
{σ ∈ InvI( f⃝) | [[bef ]]σ = {true}}. That is, InvI( i⃝) = I and CondF ( f⃝) = F .
For each statement “ l⃝ s l’⃝ ”, we define:

InvI( l’⃝) =
−→
[[s]] InvI( l⃝), CondF ( l⃝) =

←−
[[s]] CondF ( l’⃝)

3.3 Abstract Semantics and Analyses

We now define computable abstract analyses that are approximations of the con-
crete semantics and analyses. We replace the computation in the concrete domain
P(Σ) with a computation in some numerical abstract domain D that reasons
on the numerical properties of variables, such that there exists a concretization-
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based abstraction ⟨P(Σ),⊆⟩ γD←−⟨D,⊑D⟩. 3 The abstract domain D is a set of
computer-representable properties, called abstract elements, together with effec-
tive algorithms to implement sound abstract operators for forward and backward
analyses. In particular, they have abstract operators for ordering ⊑D, least upper
bound (join) ⊔D, greatest lower bound (meet) ⊓D, bottom ⊥D, top ⊤D, widening
▽D, and narrowing △D. There are forward transfer functions for assignments
ASSIGND : Stm × D → D and tests FILTERD : BExp × D → D, which are sound
over-approximations of the corresponding concrete functions. We let lfp# denote
an abstract fix-point operator, derived using widening ▽D and narrowing △D, that
over-approximates the concrete lfp. There are also backward transfer functions
for assignments B-ASSIGNu

D : Stm × D → D, tests B-FILTERu
D : BExp × D → D,

and a lower widening ▽D [29], which are sound under-approximations of the cor-
responding concrete functions. We let gfp# denote an abstract fixpoint operator,
derived using lower widening ▽D, that under-approximates the concrete gfp.

The operators of the abstract domain D can be used to define abstract invari-
ance (resp., sufficient condition) analysis that is over- (resp., under-) approxima-
tion of the corresponding concrete analysis. For each statement s, we define its
abstract invariance semantics

−→
[[s]]♯ in Fig. 6 and its abstract sufficient condition

semantics
←−
[[s]]♯ in Fig. 7. For a while loop, lfp♯

−→
ϕ♯ and gfp♯

←−
ϕ♯ are the limits

of the following increasing and decreasing chains: y0 = d, yn+1 = yn▽D
−→
ϕ♯(yn)

for forward analysis; and y0 = B-FILTERu
D(¬be, d), yn+1 = yn▽D

←−
ϕ♯(yn) for back-

ward analysis. Since FILTERD(be, d) ⊑D d and B-FILTERu
D(be, d) ⊒D d, we use

FILTERD(??i, d) = d and B-FILTERu
D(??i, d) = d to handle holes ??i as boolean

expressions. We also use ASSIGND(x = ??i, d) = ASSIGND(x = [−∞, +∞], d) and
B-ASSIGNu

D(x = ??i, d) = B-ASSIGNu
D(x = [−∞, +∞], d) to handle holes ??i as

arithmetic expressions.
Given a program “ i⃝ s; f⃝ assert (bef )”, we assume that at the initial label

i⃝ the set of possible stores is described by abstract element dI , whereas at
the final label f⃝ the user-supplied property is described by abstract element
dF . That is, Inv♯

dI
( i⃝) = dI and Cond♯

dF
( f⃝) = dF . Note that dI = ⊤D and

dF = FILTERD(bef , Inv♯
dI

( f⃝)). For each statement “ l⃝s l’⃝”, we define:

Inv♯
dI

( l’⃝) =
−→
[[s]]♯ Inv♯

dI
( l⃝), Cond♯

dF
( l⃝) =

←−
[[s]]♯ Cond♯

dF
( l’⃝)

By using the soundness of the operators of abstract domain D [5,29], we prove
the soundness of abstract semantics with respect to concrete semantics. That is,
Inv♯

dI
is an over-approximation and contains some spurious stores that are not

reachable in the concrete InvI , whereas Cond♯
dF

is an under-approximation and
does not contain some stores that are present in the concrete CondF .

Proposition 1 ([5,29]). Let F = γD(dF ) and I = γD(dI). For all l ∈ L, we
have: InvI(l) ⊆ Inv♯

dI
(l), CondF (l) ⊇ Cond♯

dF
(l).

3 Concretization-based abstraction is a relaxation of the known Galois connection,
which uses only a concretization function γD (e.g. Polyhedra domain).
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−−−−→
[[skip]]♯d = d
−−−−−→
[[x = ae]]♯d = ASSIGND(x = ae, d)
−−−−−−→
[[s1 ; s2]]♯d =

−−→
[[s2]]♯(

−−→
[[s1]]♯d)

−−−−−−−−−−−−−−→
[[if be s1 else s2]]♯d =

−−→
[[s1]]♯(FILTERD(be, d)) ⊔D

−−→
[[s2]]♯(FILTERD(¬be, d))

−−−−−−−−−−−→
[[while be do s]]♯d = FILTERD(¬be, lfp♯

−→
ϕ♯)

−→
ϕ♯(x) = d ⊔D

−→
[[s]]♯(FILTERD(be, x))

Fig. 6. Definitions of
−−→
[[s]]♯ : D→ D.

←−−−−
[[skip]]♯d = d
←−−−−−
[[x = ae]]♯d = B-ASSIGNu

D(x = ae, d)
←−−−−−−
[[s1 ; s2]]♯d =

←−−
[[s1]]♯(

←−−
[[s2]]♯d)

←−−−−−−−−−−−−−−
[[if be s1 else s2]]♯d = B-FILTERu

D(be,
←−−
[[s1]]♯d) ⊓D B-FILTERu

D(¬be,
←−−
[[s2]]♯d)

←−−−−−−−−−−−
[[while be do s]]♯d = gfp♯

←−
ϕ♯

←−
ϕ♯(x)=B-FILTERu

D(¬be, d)⊓DB-FILTERu
D(be,

←−
[[s]]♯x)

Fig. 7. Definitions of
←−−
[[s]]♯ : D→ D.

3.4 Abduction

The standard abduction allows the inference of a single unknown predicate
R(x) defined over a vector of variables x, known as abducible, from a formula
R(x)∧χ =⇒ C. That is, the standard abduction finds a formula ϕ over variables
x, such that (1) ϕ ∧ χ ̸|= false; and (2) ϕ ∧ χ |= C. A solution ϕ to the standard
abduction problem is an interpretation of R(x) that strengthens the left-hand side
of the implication in order to make the implication logically valid. Every solvable
abduction problem has an unique logically weakest solution. The procedure
Abduce(χ, C, x) that solves the problem R(x) ∧ χ =⇒ C is implemented in the
EXPLAIN tool [8]. It computes the logically weakest solution containing the fewest
number of variables. That is, it finds the most general and simple solution.

Proposition 2 ([8]). If the abduction problem is solvable, Abduce(χ, C, x) ter-
minates with an unique weakest solution containing a fewest number of variables.

4 Synthesis Algorithm

In this section, we present our synthesis algorithm for solving the generalized
sketching problem. In particular, we employ the abstract interpretation-based
analyses, Inv♯

dI
and Cond♯

dF
, as well as the logical abduction procedure, Abduce,

to automatically find expressions for the holes in a program sketch, so that the
resulting complete program satisfies its assertions.
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Algorithm 1: GenSketching(p, H)
Input: Program sketch p, and a set of holes H
Output: Complete control function ϕ or an empty set

1 ϕ := ∅ ;
2 for (??i ∈ H) do
3 l⃝si l’⃝ := Extract(p, ??i) ;
4 ei := Solve(p, l⃝si l’⃝) ;
5 if (ei = ∅) then return ∅ ;
6 ϕ := ϕ ⊎ [??i 7→ ei]
7 for (??i ∈ H) do
8 l⃝si l’⃝ := Extract(p, ??i) ;
9 ϕi := ϕ[??i 7→ ⊥] ;

10 e′
i := Solve(p[ϕi], l⃝si l’⃝) ;

11 if (ei = ∅) then return ∅ ;
12 ϕ := ϕ ⊎ [??i 7→ e′

i]
13 return ϕ

High-level description. The GenSketching(p, H) synthesis procedure is shown in
Algorithm 1. The procedure takes as input two parameters: a program sketch p,
and a set of holes H in p. For each hole ??i in H, we first find an initial solution,
an expression ei, where all other holes are treated as non-deterministic choices
over integers or booleans (lines 2–6). This is achieved by identifying the statement
“ l⃝si l’⃝” in which ??i occurs using Extract(p, ??i), and by calling the function
Solve(p, l⃝si l’⃝) to find the expression ei corresponding to hole ??i. This way,
we construct an initial complete control function ϕ : [??i 7→ ei] by using the
above initial solutions for all holes in H. Then, we weaken the solution ϕ by
iteratively weakening initial solutions for all holes (lines 7–12). To weaken the
solution for each ??i, we fix the solutions ej for all other ??j in a partial control
function ϕi, such that ϕi(??i) = ⊥ and ϕi(??j) = ϕ(??j) for all other ??j ∈ H.
Next, we construct a program sketch p[ϕi] with only one hole ??i. Finally, we
call Solve(p[ϕi], l⃝si l’⃝) to find the weaken expression e′

i for ??i. That is, we use
the existing solution given by the current control function for all other holes and
infer the weakest expression for ??i that implies the assertion validity.

Solving one-hole sketches. The function Solve(p, l⃝s l’⃝), shown in Algorithm 2,
takes two parameters: a program sketch p and a statement “ l⃝s l’⃝” in which
the hole ?? we want to handle occurs. Note that all other holes in p are treated
(analyzed) as non-deterministic choices: [−∞,∞] for arithmetic and {true, false}
for boolean expressions. We first call a forward abstract analysis

−→
[[p]]♯dI , where

dI = ⊤D, to compute the invariants Inv♯
dI

(line 1). Then we reason by the
structure of the statement “ l⃝s l’⃝”. For assignments and if-s, we call a backward
abstract analysis

←−
[[p]]♯dF , where dF = FILTERD(bef , Inv♯

dI
( f⃝)), to compute the

sufficient conditions Cond♯
dF

of program p. When s is an assignment “x = ??”
(lines 2-7), we construct an abduction query where the premise is Inv♯

dI
( l⃝)[x′/x],
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Algorithm 2: Solve(p, l⃝s l’⃝)
Input: Program sketch p, and a statement l⃝s l’⃝ in which a hole occurs
Output: Expression e or an empty set

1 Inv♯
dI

:=
−→
[[p]]♯ dI ;

2 switch (s) do
3 case (x := ??) do
4 Cond♯

dF
:=
←−
[[p]]♯ dF ;

5 R(x) := Abduce(Inv♯
dI

( l⃝)[x′/x], Cond♯
dF

( l’⃝), x) ;
6 if (unsat(R(x))) then return ∅ ;
7 return SolveAsg(R(x), x)
8 case (if (??) t⃝s1 else e⃝s2) do
9 Cond♯

dF
:=
←−
[[p]]♯ dF ;

10 Rtrue(x) := Abduce(Inv♯
dI

( l⃝), Cond♯
dF

( t⃝), x) ;
11 Rfalse(x) := Abduce(Inv♯

dI
( l⃝), Cond♯

dF
( e⃝), x) ;

12 if (unsat(Rtrue(x)) ∨ unsat(Rfalse(x))) then return ∅ ;
13 return SolveCond(Rtrue(x), Rfalse(x))
14 case (while h⃝(??i) do b⃝s1) do
15 Rfalse(x) := Abduce(Inv♯

dI
( h⃝), dF , x) ;

16 (x=n) = Model(Rfalse(x)) ;
17 Cond♯,1

dF
=
←−−−−−−−−−−−−−−−−−−
[[p[??i 7→ (x > n) ∧ ??i]]]♯(dF ) ;

18 Cond♯,2
dF

=
←−−−−−−−−−−−−−−−−−−
[[p[??i 7→ (x < n) ∧ ??i]]]♯(dF ) ;

19 R1
true(x) := Abduce(Inv♯

dI
( h⃝), Cond♯,1

dF
( b⃝), x) ;

20 R2
true(x) := Abduce(Inv♯

dI
( h⃝), Cond♯,2

dF
( b⃝), x) ;

21 if (unsat(R1(x)) ∨ unsat(R2(x))) then return ∅ ;
22 return (x > n ∧R1

true(x)) ∨ (x < n ∧R2
true(x))

the desired conclusion is Cond♯
dF

( l’⃝), and the unknown predicate (abducible)
R(x) is defined over all variables x that are in scope of si including x and x′.
We denote by [x′/x] the renaming of x as x′. Moreover, we configure the call to
Abduce so that the variable x has the highest priority to occur in the solution
R(x) of the given abduction query. Then we call SolveAsg(R(x)) to find one
expression ei such that x = ei satisfies the predicate R(x). This is realized by
asking an SMT solver for one interpretation (model) of the formula R(x). Finally,
we return the expression ei[x/x′] as solution of this case. We recall the example
intro.c in Section 2 to see how this case works in practice.

When s is a conditional statement “if (??) then t⃝s1 else e⃝s2” (lines 8–13),
we construct two abduction queries in which the premise is Inv♯

dI
( l⃝) and the

unknown predicate is defined over all variables x that are in scope of s. The
conclusions are Cond♯

dF
( t⃝) and Cond♯

dF
( e⃝) in the first and second abduction

query, respectively. We then call SolveCond(Rtrue(x), Rfalse(x)) to check if
¬Rtrue(x) =⇒ Rfalse(x) by an SMT solver, where Rtrue(x) and Rfalse(x) are



Title Suppressed Due to Excessive Length 11

solutions of the first and second abduction query. If this is true, then Rtrue(x)
is returned as solution for this case. Otherwise, Rtrue(x) is strengthen until
¬Rtrue(x) =⇒Rfalse(x) holds, in which case the found Rtrue(x) is returned as
solution. For example, see how abs.c in Section 2 is resolved.

Similarly, we handle the case when s is an iteration “while h⃝(??) do b⃝s1”
(lines 14-22). First, we construct an abduction query where the premise is
Inv♯

dI
( h⃝), the desired conclusion is dF , and the unknown predicate (abducible)

is Rfalse(x). Then, we find one interpretation (x=n) of the formula Rfalse(x),
which is obtained by finding a model M of Rfalse(x) by an SMT solver and setting
x = M(x). Next, we perform two backward analyses defined as follows: Cond♯,1

dF
=

←−−−−−−−−−−−−−−−−−−
[[p[??i 7→ (x > n) ∧ ??i]]]♯(dF ) and Cond♯,2

dF
=
←−−−−−−−−−−−−−−−−−−
[[p[??i 7→ (x < n) ∧ ??i]]]♯(dF ). We

create two abduction queries using: (1) Inv♯
dI

( h⃝), Cond♯,1
dF

( b⃝), R1
true(x); and (2)

Inv♯
dI

( h⃝), Cond♯,2
dF

( b⃝), and R2
true(x). Finally, the solution is (x > n∧R1

true(x))∨
(x < n ∧R2

true(x)). For example, see how while.c in Section 2 works.

Correctness. The following theorem states correctness of the GenSketching
algorithm.

Theorem 1. GenSketching(p, H) is correct and terminates.

Proof. The procedure GenSketching(p, H) terminates since all steps in it are
terminating. The correctness of GenSketching(p, H) follows from the soundness
of Inv♯

dI
and Cond♯

dF
(see Proposition 1) and the correctness of Abduce (see

Proposition 2).
The correctness proof is by structural induction on statements s in programs

p of the form “ i⃝ s; f⃝ assert (bef )”. We consider the case of assignment x=??.
Since there is one hole in p, we call Solve(p, i⃝x=?? f⃝). We infer Inv♯

dI
( i⃝) = ⊤D

and Cond♯
dF

( f⃝) = bef , so we obtain the abduction query Abduce(true, bef , x).
The solution is R(x) ≡ bef , thus we call SolveAsg(bef , x) to find one expression
ae such that x=ae satisfies bef . By construction of ae, it follows that the program
“ i⃝ x=ae; f⃝ assert (bef )” is valid. Similarly, we handle the other cases. ⊓⊔

5 Evaluation

We now evaluate our approach for generalized program sketching. The evaluation
aims to show that we can use our approach to efficiently resolve various C program
sketches with numerical data types.

Implementation We have implemented our synthesis algorithm in a prototype tool.
The abstract operations and transfer functions of the numerical abstract domains
(e.g. Polyhedra [7]) are provided by the APRON library [25], while the abduction
and SMT queries are solved by the EXPLAIN [8] and the MISTRAL [9] tools.
Our tool is written in OCaml and consists of around 7K lines of code. Currently,
it provides only a limited support for arrays, pointers, struct and union types.
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void main(int n1, int n2, int n3){
1⃝ int max = n1;
2⃝ if (n2>max) max = n2;
3⃝ if (n3>max) max = ??;

// if (??) max = n3;
4⃝ assert (max ≥ n1);
5⃝ assert (max ≥ n2);
6⃝ assert (max ≥ n3); }

Fig. 8. max.c.

void main(int n){
1⃝ int x = n;
2⃝ if (??) x = x+2n;
3⃝ else x = x-2n;
4⃝ assert (x ≤ 3); }

Fig. 9. cond.c.

void main() {
1⃝ unsigned int j;
2⃝ int i = 0;
3⃝ j = [0, 9]; //j = ??;
4⃝ while (??) {

//while (i<100) {
5⃝ i = i+1;
6⃝ j = j+[0,1]; }
7⃝ assert (j ≤ 105); }

Fig. 10. mine.c.

Experiment setup and Benchmarks All experiments are executed on a 64-bit
Intel®CoreT M i5 CPU, Lubuntu VM, with 8 GB memory, and we use a time-
out value of 300 sec. All times are reported as average over five independent
executions. We report times needed for the actual synthesis task to be per-
formed. The implementation, benchmarks, and all obtained results are available
from [16]: https://zenodo.org/record/8165119. We compare our approach
GenSketching based on the Polyhedra domain with program sketching tool
Sketch version 1.7.6 that uses SAT-based inductive synthesis [33,32], as well
as with the FamilySketcher that uses lifted (family-based) static analysis by
abstract interpretation (the Polyhedra domain) [19]. Note that Sketch and
FamilySketcher can only solve the standard sketching problem, where the un-
known holes represent some integer constants. Therefore, they cannot resolve our
benchmarks. We need to do some simplifications, so that the unknown holes refer
to integer constants. Moreover, their synthesis times depend on the sizes of hole
domains (and inputs for Sketch). Hence, for Sketch and FamilySketcher
we report synthesis times to resolve simplified sketches with 5-bits and 10-bits
sizes of unknown holes. On the other hand, GenSketching can synthesize arbi-
trary expressions and its synthesis time does not depend on the sizes of holes.
For GenSketching, we report Time which is the total time to resolve a given
sketch, and AbdTime which is the time to solve the abduction queries in the
given synthesis task.

The evaluation is performed on several C numerical sketches collected from
the Sketch project [33,32], SV-COMP (https://sv-comp.sosy-lab.org/),
and the literature [28]. In particular, we use the following benchmarks: intro.c
(Fig. 1), abs.c (Fig. 2), while.c (Fig. 3), max.c (Fig. 8), cond.c (Fig. 9), and
mine.c (Fig. 10).

Performance Results Table 1 shows the performance results of synthesizing
our benchmarks. To handle intro.c using Sketch and FamilySketcher,
we need to simplify it so that the hole represents an integer constant. This
is done by replacing y = ?? by y = y-?? or y = y+??. Moreover, they cannot
handle non-deterministic choices, so we use constants instead. Sketch and
FamilySketcher resolve the simplified intro.c in 0.208 sec and 0.0013 sec for
5-bit sizes of holes, while GenSketching resolves the intro.c in 0.0022 sec.

https://zenodo.org/record/8165119
https://sv-comp.sosy-lab.org/
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Table 1. Performance results of GenSketching vs. Sketch vs. FamilySketcher. All
times in sec.

Bench. GenSketching Sketch FamilySketcher

Time AbdTime 5-bits 10-bits 5-bits 10-bits

intro.c 0.0022 0.0011 0.208 0.239 0.0013 0.0016
abs.c 0.0021 0.0013 0.204 0.236 0.0020 0.0021
while.c 0.0055 0.0013 0.213 0.224 0.0047 0.0053
max.c 0.0042 0.0011 0.229 24.25 0.0025 0.0026
max2.c 0.0040 0.0015 0.227 31.88 0.0022 0.0033
cond 0.0019 0.0011 1.216 2.362 0.0021 0.0023
mine.c 0.0757 0.0012 0.236 1.221 0.0035 0.0042
mine2.c 0.0059 0.0013 0.215 1.217 0.0024 0.0031

To resolve abs.c using Sketch and FamilySketcher, we use the if-guard
(n ≤ ??). In this case Sketch and FamilySketcher terminate in 0.204 sec and
0.0022 sec for 5-bit sizes of holes, while GenSketching terminates in 0.0021 sec.
Still, FamilySketcher reports “I don’t know” answer due to the precision loss.
In particular, it infers the invariant (2*??-n+abs≥0∧ 0≤??≤31∧ n+abs≥0) at
loc. 4⃝, thus it is unable to conclude for which values of ?? the assertion (abs≥0)
will hold. For similar reasons, FamilySketcher cannot successfully resolve the
other simplified sketches that contain holes in if-guards (see max2.c and cond.c
below).

We simplify the while-guard of while.c to (x>??). Sketch still cannot
resolve this example, since it uses only 8 unrollments of the loop by default. If
the loop is unrolled 10 times, Sketch terminates in 0.213 sec for 5-bit sizes of
holes. FamilySketcher terminates in 0.0047 sec for 5-bits, while GenSketching
terminates in 0.0055 sec.

Consider the program sketch max.c in Fig. 8 that finds a maximum of three
integers. It contains one hole in the assignment at loc. 3⃝. The forward analysis of
GenSketching generates the invariant (max′ ≥ n1∧max′ ≥ n2∧n3 ≥ max′) before
the hole (where max′ denotes the value of max before the hole), while the backward
analysis infers the sufficient condition (max ≥ n1 ∧ max ≥ n2 ∧ max ≥ n3) after
the hole. The result of the corresponding abduction query is (max = n3), so we
fill the hole with the assignment max = n3. For Sketch and FamilySketcher,
we simplify the hole to max = n3-??. Since there are three inputs and one hole,
Sketch takes 24.25 sec to resolve this simplified sketch for 10-bit sizes and
timeouts for bigger sizes.

Consider a variant of max.c, denoted max2.c, where the commented statement
in Fig. 8 is placed at loc. 3⃝, so the hole is if-guard. The forward analysis of
GenSketching infers the invariant (max ≥ n1 ∧ max ≥ n2) before the hole, while
the backward analysis infers the sufficient conditions (n3 ≥ n1 ∧ n3 ≥ n2) at
the then branch after the hole and (max ≥ n1 ∧ max ≥ n2 ∧ max ≥ n3) at the
else branch after the hole. We construct two abduction queries, and the results



14 A. S. Dimovski

are (max ≤ n3) and (max ≥ n3), respectively. Hence, we fill the hole with the
boolean expression (max ≤ n3). For Sketch and FamilySketcher, we use the
simplified sketch where the if-guard is (max<??). Sketch timeouts for bigger
than 10-bit sizes of holes and inputs, while FamilySketcher returns “I don’t
know” answer.

The sketch cond.c contains an if-guard hole. The inferred invariant of
GenSketching is (x=n) before the hole, while sufficient conditions are (x+2n ≤ 3)
at the then branch and (x-2n ≤ 3) at the else branch after the hole. The results
of the two abductions queries are Rtrue(x,n) ≡ (n ≤ 1) and Rfalse(x,n) ≡ (n>-4).
Since (¬n ≤ 1) =⇒ (n>-4) is valid, the hole is filled with (n ≤ 1).

Consider the mine.c sketch, taken from [28], containing a while-guard and
the GenSketching approach. The forward analysis infers the while-invariant
(j ≥ 0 ∧ i ≥ 0 ∧ i ≥ j-9). Hence, the answer to the first abduction query
(j≥0 ∧ i≥0 ∧ i≥j-9) ∧ Rfalse(i, j) =⇒ (j≤105) is (i≤96). One solution is
(i=96), so we perform two backward analyses with while-guards (i<96∧??) and
(i>96 ∧ ??). We construct two abduction queries and obtain R1

true(i, j) ≡ (true)
and R2

true(i, j) ≡ (false). Thus, we fill the hole with (i<96).
Consider a variant of mine.c, denoted mine2.c, where the commented state-

ments (see Fig. 10) are placed at locs. 3⃝ and 4⃝, so the hole is in the assignment
j = ??. The invariant at loc. 3⃝ is (i=0), while the sufficient condition obtained
at loc. 4⃝ is (j≥0 ∧ i≥0 ∧ i≥j-5 ∧ j≤105). Note that the backward sufficient
condition analysis infers conditions at all locations so that all executions branch-
ing from those locations will satisfy the assertion. By solving the corresponding
abduction query, we obtain the answer (0≤j≤5), so we fill the hole at loc. 3⃝
with j = [0, 5]. Even if the non-deterministic choice [0, 1] always evaluates to 1 in
the while-body, the assertion (j≤105) will hold in the resulting complete pro-
gram where the initial value of j is in [0, 5]. For Sketch and FamilySketcher
to successfully handle the simplified versions of mine.c and mine2.c we need to
use constants instead of non-deterministic choices.

Discussion. In summary, we can conclude that GenSketching can successfully
synthesize the holes in all sketches, and it does not depend on the sizes of
holes thus outperforming the other tools. The abduction time is proportional
to the number of abduction queries that need to be solved in a given synthesis
task. FamilySketcher achieves comparable synthesis times to GenSketching.
FamilySketcher performs one forward (lifted) analysis using decision tree
abstract elements, in which decision nodes are linear constraints defined over
unknown holes and the leaves provide analysis information (in the form of
polyhedral constraints) corresponding to each partition of the tree. Furthermore,
FamilySketcher has similar synthesis times for 5-bit and 10-bit sizes of holes,
since all integer holes in the given simplified examples can be handled symbolically.
However, if a hole occurs in more complex expressions, e.g. ??*x+y, then the
performance of FamilySketcher will decline since the hole should be handled
explicitly [19].

The current tool supports an interesting subset of C, so we can handle many
interesting benchmarks. The selected benchmarks represent the proof-of-concept
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that our approach can be successfully applied in practice. They are chosen to show
some distinctive features of our approach compared to the other state-of-the-art
tools. To handle bigger programs, we can use some computationally cheaper
abstract domains, such as octagons and intervals, but this will result in additional
precision loss that will influence the precision of our approach. For example, if
we use intervals domain we cannot handle abs.c example from Section 2.

6 Related Work

Abstract interpretation in program analysis and verification. Forward invariance
and backward sufficient condition analyses by abstract interpretation have been
used in practice for a long time [5,7,29,3,28]. The three most popular forward
invariance analyses are based on the Interval [5], the Octagon [27], and the
Polyhedra [7] domains that infer variable bounds, unit affine inequalities and
arbitrary affine inequalities on variables, respectively. Sufficient condition analysis
has been first introduced by Bourdoncle [3] in his work on abstract debugging of
deterministic programs. Miné [28] has presented a technique for automatically
inferring sufficient conditions of non-deterministic programs by using a polyhe-
dral backward analysis. The under-approximating sound abstract operators are
implemented as part of the APRON library in the Banal tool.

Several works use a combination of forward-backward analyses to extract
interesting dynamic properties of programs [3,21,30,34]. In particular, the com-
bination of forward-backward analyses are used by Rival [30] to obtain a set
of traces that may lead to error; by Bourdoncle [3] to find preconditions for
invariant and intermittent assertions to always hold; by Dimovski and Legay [21]
to calculate the probability that a target assertion is satisfied/violated; and by
Urban and Miné [34] to infer ranking functions for proving termination.

Many recent approaches and tools for program verification use static analysis
by abstract interpretation. ASTREE [6] is an industrial-scale static analyzer
for verifying avionics software. SeaHorn [23] combines Horn-clause solving
techniques with abstract interpretation, Pagai [24] combines SMT-solving with
abstract interpretation, whereas Ulitimate Taipan [22] is a CEGAR-based
software model checker that uses abstract interpretation to derive invariants for
the path program corresponding to a given spurious counterexample. VATer
[35] uses input space partitioning to iteratively refine static analyses by abstract
interpretation, and moreover it uses bounded exhaustive testing to complement
static analyses.

Program sketching. The goal of the so-called standard sketching problem is to
synthesize program sketches in which some missing holes are integer constants.
One of the earliest and widely-known approach to solve the standard sketching
problem is the Sketch tool [32,33], which uses SAT-based counterexample-
guided inductive synthesis. It iteratively generates a finite set of inputs and
performs SAT queries to identify values for the holes so that the resulting
program satisfies all assertions for the given inputs. Further SAT queries are then
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used to check if the resulting program is correct on all possible inputs. Hence,
Sketch may need several iterations to converge reporting only one solution.
Moreover, Sketch reasons about loops by unrolling them, so is very sensitive
to the degree of unrolling. Our approach does not have this constraint, and
is able to handle unbounded loops in a sound way. Still, our approach can be
applied to numerical programs, while Sketch is more general and especially
suited for bit-manipulating programs. Another works for solving this standard
sketching problem are proposed in [19,15,17], which use a lifted (family-based)
static analysis by abstract interpretation [18,13,14,20]. The key idea is that the
set of all possible sketch realizations represent a program family with numerical
features. Thus, the effort of conducting an effective search of all possible hole
realizations is delegated to an efficient lifted static analyzer for program families,
which uses a specifically designed decision tree abstract domain. However, the
above works address the standard sketching problem, where each unknown hole
can be replaced by one value from a finite set of integers. In this work, we pursue
this line of work by considering the generalized sketching problem, where each
hole can be replaced by an arbitrary expression. This way, we broaden the space
of program sketches that can be resolved.

Recently, abstract interpretation has been successfully applied to program
synthesis [31,36]. The work [31] efficiently synthesizes imperative programs from
input-output examples. It combines the enumerative search with static analysis,
which is used to identify and ignore partial programs that fail to be a solution.
The work [36] uses specifications given as input-output examples and a bitvector
abstract domain to synthesize bitvector-manipulating programs without loops.
We could replace the Polyhedra domain with the bitvector domain from [36]
in our approach in order to scale to bigger programs. However, the abduction
solver EXPLAIN currently supports only the linear arithmetic SMT theory
(not other theories, such as bitvector). If an abduction solver that supports
bitvecotrs becomes available in the future, we can extend our approach to handle
bitvector-manipulating programs as well.

Abduction in program analysis. Logical abduction has found a number of appli-
cations in program analysis. In the context of separation logic for shape analysis,
abduction (or bi-abduction) are used for performing modular heap reasoning
[4]. An abduction algorithm for first-order SMT theories is described in [8] for
computing a maximally simple and general solution. This form of SMT-based
abduction has also been applied for loop invariant generation [11], for error
explanation and diagnosis of error reports generated by verification tools [10],
and for construction of circular compositional program proofs [26].

Abduction in program synthesis. The abduction has been used before in program
synthesis to infer missing guards from low-level C code such that all buffer accesses
are memory safe [12]. However, this is the constraint-based approach that uses
Hoare logic-style verification condition (VC) generation with a logical abduction
algorithm to solve the generated constraints. To generate verification conditions,
the approach computes the strongest postcondition before the missing guard,
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as well as the weakest precondition that guarantees memory safety after the
missing guard. Since this approach uses loop invariants provided by an external
tool in the VC generation phase, the quality of the solutions is relative to the
used loop invariants. Unlike the prior constraint-based approach to synthesis
[12], our method uses exclusively abstract interpretation-based techniques to
infer invariant postconditions before the hole and sufficient preconditions after
the hole. Hence, no assist from external tools is used. Moreover, our approach
can synthesize arbitrary expressions in general C programs, whereas the prior
approach [12] can only synthesize boolean guards in if-s that ensure memory
safety in buffer accessing C programs.

7 Conclusion

In this paper, we present an approach for program synthesis by interaction
between abstract interpretation and logical abduction. We introduce a synthesis
algorithm that infers arbitrary expressions for unknown holes in program sketches,
so that the resulting complete programs satisfy all assertions. We experimentally
demonstrate the effectiveness of our approach for generating correct solutions of
a variety of C benchmarks.

In the future, we would like to extend our approach for program synthesis by
considering program sketches in which apart from expressions, unknown holes
can be arbitrary statements as well. We hope further fruitful interplay between
abstract interpretation and logical abduction will be possible.
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