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Abstract. Fault localization aims to automatically identify the cause
of an error in a program by localizing the error to a relatively small
part of the program. In this paper, we present a novel technique for
automated fault localization via error invariants inferred by abstract
interpretation. An error invariant for a location in an error program
over-approximates the reachable states at the given location that may
produce the error, if the execution of the program is continued from that
location. Error invariants can be used for statement-wise semantic slicing
of error programs and for obtaining concise error explanations. We use
an iterative refinement sequence of backward-forward static analyses by
abstract interpretation to compute error invariants, which are designed
to explain why an error program violates a particular assertion. We
demonstrate the effectiveness of our approach to localize errors in realistic
C programs.

Keywords: Fault localization · Error invariants · Abstract interpreta-
tion · Statement-wise semantic slicing.

1 Introduction

Static program analyzers [6,8,22,27,36] are today often applied to find errors in
real-world programs. They usually return an error report, which shows how an
assertion can be violated. However, the programmers still need to process the
error report, in order to isolate the cause of an error to a manageable number of
statements and variables that are relevant for the error. Using this information,
they can subsequently repair the given program either manually or automatically
by running specialized program repair tools [31,33].

In this paper, we present a novel technique for automated fault localization,
which automatically generates concise error explanations in the form of statements
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relevant for a given error that describe the essence of why the error occurred.
In particular, we describe a fault localization technique based on so-called error
invariants inferred via abstract interpretation. An error invariant for a given
location in a program captures states that may produce the error, that is, there
may be executions of the program continued from that location violating a given
assertion. We observe that the same error invariants that hold for consecutive
locations characterize statements in the program that are irrelevant for the error.
A statement that is enclosed by the same error invariant does not change the
nature of the error. Hence, error invariants can be used to find only relevant
statements and information about reachable states that helps to explain the
cause of an error. They also identify the relevant variables whose values should be
tracked when executing the program. The obtained relevant statements constitute
the so-called statement-wise semantic slicing of the error program, which can be
changed (repaired) to make the entire program correct.

Abstract interpretation [7,29] is a general theory for approximating the
semantics of programs. It has been successfully applied to deriving computable
and approximated static analysis that infer dynamic properties of programs, due
to its soundness guarantee (all confirmative answers are indeed correct) and
scalability (with a good trade-off between precision and cost). In this paper,
we focus on applying abstract interpretation to automate fault localization via
inferring error invariants. More specifically, we use a combination of backward
and forward refining analyses based on abstract interpretation to infer error
invariants from an error program. Each next iteration of backward-forward
analyses produces more refined error invariants than the previous iteration.
Finally, the error invariants found in the last iteration are used to compute a
slice of the error program that contains only relevant statements for the error.

The backward (over-approximating) numerical analysis is used for computing
the necessary preconditions of violating the target assertion, thus reducing the
input space that needs further exploration. Error invariants are constructed by
going backwards step-by-step starting at the property violation, i.e. by propagat-
ing the negated assertion backwards. The negated assertion represents an error
state space. When there is a precision loss caused by merging the branches of an
if statement, we collect in a set of predicates the branching condition of that
conditional. Subsequently, the forward (over-approximating) numerical analysis of
a program with reduced abstract sub-input is employed to refine error invariants
in all locations, thus also refining (reducing) the error state space. Based on
the inferred error invariants, we can find the relevant statements and relevant
variables for the assertion violation. Initially, in the first iteration, both analyses
are performed on a base abstract domain (e.g., intervals, octagons, polyhedra). In
the subsequent iterations, we use the set of predicates generated by the previous
backward analysis to design a binary decision diagram (BDD) abstract domain
functor, which can express disjunctive properties with respect to the given set
of predicates. A decision node in a BDD abstract element stores a predicate,
and each leaf node stores an abstract value from a base abstract domain under
specific evaluation results of predicates. When the obtained set of predicates as
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well as the (abstract) error state sub-space stay the same over two iterations, the
iterative process stops and reports the inferred error invariants. Otherwise, the
refinement process continues by performing backward-forward analyses on a BDD
abstract domain based on the refined set of predicates as well as on a reduced
error state sub-space. The BDD abstract domain and the reduced error state
sub-space enable our analyses in the subsequent iterations to focus on smaller
state sub-spaces, i.e. partitionings of the total state space, in each of which the
program may involve fewer disjunctive or non-linear behaviours and thus the
analyses may produce more precise results.

We have implemented our abstract interpretation-based approach for fault
localization of C programs in a prototype tool. It takes as input a C program with
an assertion, and returns a set of statements whose replacement can eliminate
the error. The tool uses the numerical abstract domains (e.g., intervals, octagons,
polyhedra) from the APRON library [25], and the BDD abstract domains from
the BDDAPRON library [24]. BDDAPRON uses any abstract domain from
the APRON library for the leaf nodes. The tool also calls the Z3 SMT solver
[30] to compute the error invariants from the information inferred via abstract
interpretation-based analyses. We discuss a set of C programs from the literature,
SV-COMP and TCAS suites that demonstrate the usefulness of our tool.

In summary, this work makes the following contributions:

(1) We define error invariants as abstract representations of the reason why the
program may go wrong if it is continued from that location;

(2) We propose an iterative abstract interpretation-based analyses to compute
error invariants of a program. They are used to identify statements and
program variables that are relevant for the fault in the program;

(3) We implemented the approach in a prototype tool, which uses domains from
APRON and BDDAPRON libraries as well as Z3 SMT solver;

(4) We evaluate our approach for fault localization on a set of C benchmarks.

2 Motivating Examples

We demonstrate our technique for fault localization using the illustrative examples
in Figs. 1, 2, and 3. The first example, program1, in Fig. 1 shows a program
code that violates the assertion (x > y) for all values of the parameter x, since
y = x + 1 holds at the end of the program. A static analysis of this program will
establish the assertion violation. However, the static analysis returns a full list of
invariants in all locations of the program, including details that are irrelevant
for the specific error. Similarly, other verification tools will also report many
irrelevant details for the error (e.g. full execution paths).

Our technique works as follows. We begin with the first iteration of the
backward-forward analyses. The backward analysis defined over the Polyhedra
domain starts with the negated assertion (x ≤ y) at loc. 4⃝. By propagating it
backwards, it infers the preconditions: (x ≤ y) at loc. 3⃝, (x ≤ z) at loc. 2⃝, and
⊤ at loc. 1⃝. The subsequent forward analysis starts with invariant ⊤ at loc. 1⃝,
and then infers invariants: (z = x + 1) at loc. 2⃝, (z = x + 1 ∧ y = x + 1) at
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void main(int x){
⊤
1⃝ int z := x + 1;
z = x + 1
2⃝ int y := z;
y = x + 1
3⃝ z := z+1;
y = x + 1
4⃝ assert (x > y);

Fig. 1. program1.

void main(int input){
input ≤ 41
1⃝ int x := 1;
input ≤ 41
2⃝ int y := input− 42;
B ∧ input ≤ 41 ∧ y = input− 42
3⃝ if (y<0) then
B ∧ input ≤ 41 ∧ y = input− 42
4⃝ x := 0;
B ∧ input ≤ 41 ∧ y = input− 42 ∧ x = 0

5⃝ else
⊥
6⃝ endif
B ∧ input ≤ 41 ∧ y = input− 42 ∧ x = 0

7⃝ assert (x>0);

Fig. 2. program2 (B≡(y<0)).

void main(int n){
n ≥ 11
1⃝ int x := 6;
n ≥ 11 ∧ x = 6
2⃝ int y := n;
n ≥ 11 ∧ x = 6
3⃝ while (x < n) do
n ≥ 11 ∧ n ≥ x + 1
4⃝ x := x + 1;
n ≥ 11 ∧ n ≥ x

5⃝ y := y + 1;
n ≥ 11 ∧ n ≥ x

6⃝ od;
n ≥ 11 ∧ n = x

7⃝ assert (x ≤ 10);

Fig. 3. program3.

loc. 3⃝, and (z = x + 2 ∧ y = x + 1) at loc. 4⃝. Note that we use boxed code,
such as z = x + 1 , to highlight the inferred error invariants by our technique.
The computed error invariants after one iteration of backward-forward analysis,
shown in Fig. 1, are: ⊤ , z = x + 1 , y = x + 1 , y = x + 1 in locs. 1⃝ to 4⃝,
respectively. Note how the results of backward analysis are refined using the
forward analysis to compute more precise error invariants. For example, the error
invariant at loc. 3⃝, y = x + 1 , is obtained by refining the backward precondition
(x ≤ y) using the forward invariant (z = x+1∧y = x+1) at loc. 3⃝. By analyzing
the inferred error invariants, we get a set of relevant statements that are potential
indicators of the error. Since the error invariants at locs. 3⃝ and 4⃝ are the same,
the statement at loc. 3⃝, z := z + 1, is dropped from the resulting program slice.
That is, the program will remain erroneous even if z := z + 1 is removed from the
program. Hence, this statement is irrelevant for the error. In effect, the computed
program slice of relevant statements for the error consists of statements at locs. 1⃝
and 2⃝. A fix of the error program would be to change some of those statements.
Error invariants also provide information about which variables are responsible
for the error. After executing the statement at loc. 2⃝, y := z, we can see from
the error invariant y = x + 1 that z is no longer relevant and only x and y

has to be considered to the end of the program. For the purpose of comparison
with the state-of-the-art, we also ran the BugAssist tool [26] on this example.
BugAssist returns only the statement at loc. 1⃝ as potential bug.

Consider program2 in Fig. 2 taken from [4]. The assertion is violated if main
is called with a value less than 42 for the parameter input. In this case, the
assignment at loc. 4⃝ is executed and the assigned value 0 to x makes the assertion
fail. The backward analysis in the first iteration of our procedure starts with the
negated assertion (x ≤ 0), and it infers that the precondition of then branch is ⊤
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and the precondition of else branch is (x ≤ 0). Their join ⊤ is the precondition
before the if statement at loc. 3⃝, which is then propagated back to loc. 1⃝.
Hence, there is a precision loss in analyzing the if statement, so we record the
if condition (y < 0), denoted as B, in the set of predicates P. As a result of this
precision loss, the error invariants inferred after first iteration are: ⊤ for locs.

1⃝ - 4⃝, (x = 1) for locs. 5⃝, 7⃝, and ⊥ for loc. 6⃝. In effect, we would drop
the statement at loc. 2⃝, y := input− 42, as irrelevant for the error. However,
the second iteration is performed on the refined BDD abstract domain defined
over the Polyhedra leaf domain and the set P = {B ≡ (y < 0)} of predicates
for decision nodes. Thus, we can analyze the if statement more precisely and
obtain more precise analysis results. From the obtained error invariants, shown
in Fig. 2, we can see that statement at loc. 2⃝ is now relevant for the error, while
statement at loc. 1⃝, x := 1, is encompassed with the same invariants, so it can
be dropped from the resulting program slice as irrelevant for the error. Consider
a variant of program2, denoted program2-a, where the assertion in loc. 7⃝ is
changed to (x ≤ 0). The single backward analysis infers very imprecise results by
reporting that all statements are relevant for the error. However, our approach
finds more precise results inferring that the whole if statement (locs. 3⃝ - 6⃝) is
irrelevant for the error since it cannot set x to a positive value that contradicts
the assertion. BugAssist also gives less precise results. It reports locs. 2⃝ and 3⃝
as potential bugs for both program2 and program2-a.

Finally, consider program3 in Fig. 3. The error due to the violation of the
assertion occurs when main is called with a value greater than 10 for the parameter
n. In this case, at the end of the while loop, the value of x becomes equal to n,
thus conflicting the given assertion. Our technique for fault localization works
as follows. In the first iteration, the backward analysis starts with the invariant
(x ≥ 11) at the assertion location 7⃝. After computing the error invariants
at the end of the first backward-forward iteration, we infer the more precise
invariant (n ≥ 11 ∧ x = n) at loc. 7⃝. We also obtain the error invariant ⊤
for locs. 4⃝, 5⃝, and 6⃝, which would make the body of while irrelevant for
the error. Since the error state space at loc. 7⃝ is refined from (x ≥ 11) to
(n ≥ 11 ∧ x = n) after the first iteration, we continue with the second iteration
on the reduced error sub-space. Therefore, the second iteration starts with the
invariant (n ≥ 11 ∧ x = n) at loc. 7⃝. It infers the error invariants shown in
Fig. 3. We can see that statements at locs. 2⃝ and 5⃝ are redundant and can be
eliminated as irrelevant. Moreover, the error invariants imply that variables n and
x are relevant, while y is completely irrelevant for the assertion violation. On the
other hand, BugAssist fails to report any potential bug locations for program3
by default. In particular, BugAssist builds on the CBMC bounded model checker
[6] for construction of the logic formula, which is then analyzed using a MAX-SAT
solver. Hence, it reasons about loops by unrolling them, making it very sensitive
to the degree of unrolling. If the loop is unrolled 15 times, BugAssist reports
some potential bug locations. Still, it wrongly returns loc. 5⃝ as potential bug,
and misses to return loc. 1⃝ as potential bug.
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3 The Language and its Semantics

Syntax. We consider a simple C-like sequential non-deterministic programming
language. The program variables Var are statically allocated and the only data
type is the set Z of mathematical integers. The control locations before and after
each statement are associated to unique syntactic labels l ∈ L.

s (s ∈ Stm) ::= skip | x=ae | s; s | if (be) then s else s | while (be) do s |assert(be)
ae (ae ∈ AExp) ::= n | [n, n′] | x ∈ Var | ae⊕ae,
be (be ∈ BExp) ::= ae▷◁ae | ¬be | be ∧ be | be ∨ be

where n ranges over integers Z, [n, n′] over integer intervals, x over program
variables Var, and ⊕ ∈ {+,−, ∗, /}, ▷◁∈ {<,≤, =, ̸=}. Without loss of generality,
we assume that a program is a sequence of statements followed by a single
assertion. That is, a program p ∈ Prog is of the form: lin:s;lass: assert(beass).

Concrete Semantics. A store σ : Σ = Var → Z is a mapping from program
variables to values. The semantics of arithmetic expressions [[ae]] : Σ → P(Z)
(resp., boolean expressions [[be]] : Σ → P({true, false})) is the set of possible
integer (resp., boolean) values for expression ae (resp., be) in a store σ. E.g.,

[[n]]σ = {n}, [[[n, n′]]]σ = {n, . . . , n′}, [[x]]σ = {σ(x)},
[[ae0 ▷◁ ae1]]σ = {n0 ▷◁ n1 | n0 ∈ [[ae0]]σ, n1 ∈ [[ae1]]σ}
[[¬be]]σ = {¬t | t ∈ [[be]]}

We define a necessary precondition (backward) semantics and an invariance
(forward) semantics on the complete lattice ⟨L 7→ P(Σ), ⊆̇, ∪̇, ∩̇, λl.∅, λl.Σ⟩ by
induction on the syntax of programs. The dotted operators ⊆̇, ∪̇, ∩̇ defined on
L 7→ P(Σ) are obtained by point-wise lifting of the corresponding operators
⊆,∪,∩ defined on P(Σ). The above semantics work on functions from labels to
sets of stores. The necessary precondition semantics backtracks from an user-
supplied property to its origin [1], so it associates to each label l ∈ L a necessary
precondition in the form of a set of possible stores S ∈ P(Σ) that may lead to the
execution of the user-supplied property. The stores resulting from the necessary
precondition semantics

←−
[[s]] : P(Σ)→ P(Σ) are built backwards: each function

←−
[[s]] takes as input a set of stores S at the final label of s and outputs a set of
possible stores before s from which stores from S may be reached after executing
s. The invariance semantics [7] associates to each label l ∈ L an invariant in
the form of a set of possible stores S ∈ P(Σ) that may arise each time the
execution reaches the label l from some initial store. The stores resulting from
the invariance semantics

−→
[[s]] : P(Σ) → P(Σ) are built forward: each function

−→
[[s]] takes as input a set of stores S at the initial label of s and outputs a set
of possible stores reached after executing s from S. The complete definitions of
functions

←−
[[s]] and

−→
[[s]] are given in Fig. 4.

In this way, we can collect the set of possible stores denoting necessary
preconditions, written CondF , and invariants, written InvI , at each label l ∈ L
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←−−−−
[[skip]]S = S
←−−−−−−
[[x := ae]]S = {σ ∈ Σ | ∃n∈ [[ae]]σ, σ[x 7→ n]∈S}
←−−−−−−
[[s1 ; s2]]S =

←−−
[[s1]](

←−−
[[s2]]S)

←−−−−−−−−−−−−−−−−−
[[if be then s1 else s2]]S = {σ∈

←−−
[[s1]]S | true∈ [[be]]σ} ∪ {σ∈

←−−
[[s2]]S | false∈ [[be]]σ}

←−−−−−−−−−−−
[[while be do s]]S = lfp

←−
ϕ

←−
ϕ (X)={σ∈S | false∈ [[be]]σ} ∪ {σ∈

←−
[[s]]X |true∈ [[be]]σ}

−−−−→
[[skip]]S = S
−−−−−−→
[[x := ae]]S = {σ[x 7→ n] | σ∈S, n∈ [[ae]]σ}
−−−−−−→
[[s1 ; s2]]S =

−−→
[[s2]](

−−→
[[s1]]S)

−−−−−−−−−−−−−−−−−→
[[if be then s1 else s2]]S =

−−→
[[s1]]{σ∈S | true∈ [[be]]σ} ∪

−−→
[[s2]]{σ∈S | false∈ [[be]]σ}

−−−−−−−−−−−→
[[while be do s]]S = {σ∈lfp

−→
ϕ | false∈ [[be]]σ}

−→
ϕ (X) = S ∪

−→
[[s]]{σ ∈ X | true ∈ [[be]]σ}

Fig. 4. Necessary precondition (above) and invariance (below) semantics.

of a program lin:s;lass: assert(beass). We assume that at the assertion label lass

the possible stores are F ∈ P(Σ), whereas at the initial label lin are I ∈ P(Σ).
That is, CondF (lass) = F and InvI(lin) = I. For each statement l:sl′ , the set
CondF (l) ∈ P(Σ) (resp., InvI(l′) ∈ P(Σ)) of possible necessary preconditions
(resp., invariants) at the initial label l (resp., final label l′), are:

CondF (l) =
←−
[[s]] CondF (l′), InvI(l′) =

−→
[[s]] InvI(l)

We now define the error invariant map ErrInvF : L→ P(Σ) as follows. Let
F = {σ ∈ Σ | [[beass]]σ = false} be a set of stores in which assert(beass) is
not valid. Given a set of stores S ∈ P(Σ), we define the set of unconstrained
variables in S as UVarS = {x ∈ Var | ∀y ∈ Var\{x}, (∃n ∈ Z.∃σ[y 7→ n] ∈
S =⇒ ∀n′ ∈ Z.∃σ′[x 7→ n′][y 7→ n] ∈ S)}. The set of constrained variables of S
is CVarS = Var\UVarS . Given a store σ ∈ Σ, let σ |Var′ denote the restriction
of σ to the sub-domain Var′ ⊆ Var, such that σ |Var′ (x) = σ(x) for all x ∈ Var′.
Given a set of stores S ∈ P(Σ), define S |Var′= {σ |Var′ | σ ∈ S}. Then, we define:

ErrInvF (l) = {σ ∈ CondF (l) | σ |CVarCondF (l)∈ InvCondF (lin)(l) |CVarCondF (l)} (1)

That is, the error invariants at label l is the set of necessary preconditions
CondF (l) restricted with respect to the constrained variables from CVarCondF (l)
with the values they obtain in the set InvCondF (lin)(l) of invariants at l obtained
by taking as the initial set of stores CondF (lin). For example, let Var = {x, y, z},
CondF (l) = {σ ∈ Σ | σ(x) = σ(y)}, and InvCondF (lin)(l) = {[x 7→ 2, y 7→ 2, z 7→
3]}. Then, we have CVarCondF (l) = {x, y}, UVarCondF (l) = {z}, and ErrInvF (l) =
{[x 7→ 2, y 7→ 2, z 7→ n] | n ∈ Z}.

We now show that the error invariants enable us to locate irrelevant statements
for the error as ones that do not change the occurrence of the error if they are
replaced by skip.
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Proposition 1. Let p[l1:−l2 ] be a program with a missing hole that represents
a statement between labels l1 and l2, and let F be a set of final error states.
Let ErrInvF and ErrInv′

F be the error invariants for the programs p[l1:sl2 ] 1

and p[l1:skip l2 ], respectively. If ErrInvF (l1) = ErrInvF (l2), then ErrInvF (l) =
ErrInv′

F (l) for all l ∈ L.

Proof. The proof is by structural induction on statements s that can be inserted
in the hole − in p[−]. We consider the case of assignment x=ae. Let ErrInvF
be the error invariants inferred for p[l1:sl2 ]. Since ErrInvF (l1) = ErrInvF (l2),
the variable x must be unconstrained in CondF (l1) and CondF (l2) due to the
definition of ErrInvF (l) (see Eqn. 1). Therefore, the assignment x=ae has no
effect on CondF and ErrInvF due to the definition of

←−−−−−−
[[x := ae]] (see Fig. 4).

Note that
←−−−−−−
[[x := ae]]S = S when x is unconstrained in S. That is, CondF (l1) =

CondF (l2). Hence, we will obtain the same CondF and ErrInvF for p[l1:x=ae l2 ]
and p[l1:skip l2 ]. Similarly, we handle the other cases. ⊓⊔

However, the necessary precondition semantics
←−
[[s]] and CondF , the invari-

ance semantics
−→
[[s]] and InvI , as well as the error invariants ErrInvF are not

computable since our language is Turing complete.

Abstract Semantics. We now present computable abstract analyses that over-
approximate the concrete semantics. We consider an abstract domain (D,⊑D),
such that there exist a concretization-based abstraction ⟨P(Σ),⊆⟩ γD←−−⟨D,⊑D⟩.
2 We assume that the abstract domain D is equipped with sound operators
for ordering ⊑D, least upper bound (join) ⊔D, greatest lower bound (meet) ⊓D,
bottom ⊥D, top ⊤D, widening ▽D, and narrowing △D, as well as sound transfer
functions for assignments ASSIGND : Stm×D→ D, tests FILTERD : BExp×D→ D,
and backward assignments B-ASSIGND : Stm× D→ D. We let lfp# denote an
abstract fix-point operator, derived using widening ▽D and narrowing △D, that
over-approximates the concrete lfp. Finally, the concrete domain (L→ P(Σ), ⊆̇)
is abstracted using ⟨L→ P(Σ), ⊆̇⟩ γ̇D←−−⟨L→ D, ⊑̇⟩.

For each statement s, its abstract necessary precondition semantics
←−
[[s]]♯ and

its abstract invariance semantics
−→
[[s]]♯ are defined as mappings D 7→ D. The

complete definitions of functions
←−
[[s]]♯ and

−→
[[s]]♯ are given in Fig. 5. Suppose that at

the assertion label lass the abstract element is dF ∈ D, whereas at the initial label
lin is dI ∈ D. Thus, Cond♯

dF
(lass) = dF and Inv♯

dI
(lin) = dI . For a statement l:sl′ ,

abstract element Cond♯
dF

(l) (resp., Inv♯
dI

(l′)) of necessary preconditions (resp.,
invariants) at initial label l (resp., final label l′), are:

Cond♯
dF

(l) =
←−
[[s]]♯ Cond♯

dF
(l′), Inv♯

dI
(l′) =

−→
[[s]]♯ Inv♯

dI
(l)

The soundness of abstract semantics follows from the soundness of D [7,29].
1 p[l1:sl2 ] is a complete program in which statement s is inserted at the place of hole.
2 Concretization-based abstraction is a relaxation of the known Galois connection

abstraction, which is more used in practice (e.g., Polyhedra domain).
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←−−−−
[[skip]]♯d = d
←−−−−−−
[[x := ae]]♯d = B-ASSIGND(x := ae, d)
←−−−−−−
[[s1 ; s2]]♯d =

←−−
[[s1]]♯(

←−−
[[s2]]♯d)

←−−−−−−−−−−−−−−−−−
[[if be then s1 else s2]]♯d = FILTERD(be,

←−−
[[s1]]♯d) ⊔D FILTERD(¬be,

←−−
[[s2]]♯d)

←−−−−−−−−−−−
[[while be do s]]♯d = lfp♯

←−
ϕ♯

←−
ϕ♯(x)=FILTERD(¬be, d)⊔DFILTERD(be,

←−
[[s]]♯x)

−−−−→
[[skip]]♯d = d
−−−−−−→
[[x := ae]]♯d = ASSIGND(x := ae, d)
−−−−−−→
[[s1 ; s2]]♯d =

−−→
[[s2]]♯(

−−→
[[s1]]♯d)

−−−−−−−−−−−−−−−−−→
[[if be then s1 else s2]]♯d =

−−→
[[s1]]♯(FILTERD(be, d)) ⊔D

−−→
[[s2]]♯(FILTERD(¬be, d))

−−−−−−−−−−−→
[[while be do s]]♯d = FILTERD(¬be, lfp♯

−→
ϕ♯)

−→
ϕ♯(x) = d ⊔D

−→
[[s]]♯(FILTERD(be, x))

Fig. 5. Abstract necessary precondition (above) and invariance (below) semantics.

Algorithm 1: AbsAnalysis(p, derr,D)
Input: Program p, error state derr, abstract domain D
Output: Error invariants ErrInv♯

derr
, refined error state d′

err, predicates set P
1 Cond♯

derr
,P :=

←−
[[p]]♯ derr ;

2 din := Cond♯
derr

(lin) ;
3 if (din = ⊥D) then {ErrInv♯

derr
:= Cond♯

derr
; d′

err := ⊥D; P := ∅ } ;
4 if (din ̸= ⊥D) then
5 Inv♯

din
:=
−→
[[p]]♯ din;

6 ErrInv♯
derr

:= MinSupport(Inv♯
din
⊓D Cond♯

derr
, Cond♯

derr
) ;

7 d′
err := ErrInv♯

derr
(lass)

8 return ErrInv♯
derr

, d′
err,P;

Proposition 2. Let F = γD(dF ) and I = γD(dI). For any l ∈ L, we have:
CondF (l) ⊆ γD(Cond♯

dF
(l)) and InvI(l) ⊆ γD(Inv♯

dI
(l)).

4 Inferring Abstract Error Invariants

In this section, we first present one iteration of the backward-forward analysis
for generating abstract error invariants. Then, we introduce our procedure for
iterative abstract analysis and the BDD abstract domain functor we use.

4.1 Abstract Analysis

Sound abstract error invariants can be computed automatically by backward
abstract interpretation, Cond♯

d, and forward abstract interpretation, Inv♯
d. Both
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analyses are parameterized by an abstract domain D. In this work, we combine
backward and forward abstract analyses to generate for each label the constraints,
called (abstract) error invariants, that describe states which are reachable from
the input and may cause the target assertion fail.

The AbsAnalysis(p, derr,D) procedure is given in Algorithm 1. It takes as
input a program p, a target abstract error state derr, and a chosen abstract
domain D. First, we call a backward abstract analysis

←−
[[p]]♯ derr (Line 1), which

computes the necessary preconditions Cond♯
derr

of program p. Additionally, the
backward analysis computes a set of predicates P by selecting branch condi-
tions of if statements, where precision loss is observed. Given a conditional
l:if (be) then ltt:stt else lff :sff , the precondition in l is obtained by joining the
preconditions found in the then ltt and else branches lff . If those preconditions
are not equal, that is Cond♯

derr
(ltt) ̸= Cond♯

derr
(lff ), then we collect the corre-

sponding branch condition be in P since some precision loss occurs. Subsequently,
we check the precondition found at the initial label din = Cond♯

derr
(lin) (Lines

2,3,4). If din = ⊥D (which means there is no concrete input state that violates
the assertion), the assertion must be valid and the procedure terminates with no
further computations (Line 3). Otherwise, a forward analysis

−→
[[p]]♯ din is started

to refine the inferred Cond♯
derr

(l) and the abstract error state derr (Line 5). It
takes as input the program p and the input abstract state din, and computes
invariants Inv♯

din
in all labels. The (abstract) error invariants map ErrInv♯

derr
is

then generated using Cond♯
derr

and Inv♯
din

as follows (Line 6):

ErrInv♯
derr

(l) = MinSupport(Inv♯
din

(l) ⊓D Cond♯
derr

(l), Cond♯
derr

(l)), for l ∈ L

where MinSupport is minimal support set. Finally, the procedure returns as
outputs ErrInv♯

derr
, refined abstract error state ErrInv♯

derr
(lass), and set P.

We now show how the minimal support set MinSupport is computed [23].

Definition 1. Let P = {p1, . . . , pn} and p′
1∧. . .∧p′

k be linear constraint formulas
over program variables, such that p1 ∧ . . . ∧ pn |= p′

1 ∧ . . . ∧ p′
k. A subset P ′ ⊆ P

supports the inference
∧

pi∈P pi |= p′
1 ∧ . . . ∧ p′

k iff
∧

pj∈P ′ pj |= p′
1 ∧ . . . ∧ p′

k. A
support set P ′ is minimal iff no proper subset of P ′ can support the inference.

For P |= p′
1 ∧ . . . ∧ p′

k, let the MinSupport(P, p′
1 ∧ . . . ∧ p′

k) denote the set of
minimal supporting conjuncts in P that imply p′

1∧ . . .∧p′
k. An implementation of

MinSupport through unsatisfiability cores is available in existing SMT solvers
(e.g., Z3 [30]) for many theories such as linear arithmetic. That is, we ask the
SMT solver to find the unsatisfiability core of

∧
pi∈P pi ∧ ¬(p′

1 ∧ . . . ∧ p′
k) (which

is negation of
∧

pi∈P pi =⇒ (p′
1 ∧ . . . ∧ p′

k)). The conjuncts in P that are part of
this unsatisfiability core represent a minimal support set for (p′

1 ∧ . . . ∧ p′
k).

Example 1. Suppose that at a given program location the precondition (x ≥ 0)
is inferred by the backward analysis, while the invariant (x = 1 ∧ z = y + 1) is
inferred using the refined forward analysis. The formulas p1 : x = 1, p2 : z = y + 1
together imply the formula p′ : x ≥ 0. By checking the unsatisfiability core of the
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Algorithm 2: IterativeAbsAnalysis(p, beass,D)
Input: Program p, assertion beass, abstract domain D
Output: Program slice p′

1 P := ∅; P′ := ∅; derr := ⊥D; d′
err := FILTERD(¬beass,⊤D); A := D ;

2 while (P ̸=P′) or (derr ̸=d′
err) do

3 P := P′; derr := d′
err ;

4 ErrInv♯
derr

, d′
err,P′ := AbsAnalysis(p, derr,D) ;

5 if (d′
err =⊥D) then return skip ;

6 if (d′
err ̸=⊥D) then D := BD(P′,A) ;

7 if (T imeout) then break ;
8 return Slice(p, ErrInv♯

derr
);

formula p1 ∧ p2 ∧ ¬p′, we can find that the subset {p1} suffices to establish p′,
and thus {p1 : x = 1} represents a minimal support set. ⊓⊔

We assume that the elements of the abstract domain are finite conjunctions
of linear constraints over program variables. The application of MinSupport
removes the redundant conjuncts from the invariants in Inv♯

din
(l) ⊓D Cond♯

derr
(l).

By using Proposition 2 and definition of ErrInv♯
derr

, we can show the following.

Proposition 3. Let F=γD(dF ). For any l ∈ L, ErrInvF (l) ⊆ γD(ErrInv♯
dF

(l)).

4.2 Iterative Abstract Analysis

The AbsAnalysis(p, derr,D) procedure may produce very imprecise (abstract)
error invariants due to the over-approximation. One of the major sources of
imprecision is that the most commonly used base abstract domains D (intervals,
octagons, polyhedra) have limitations in expressing disjunctive and non-linear
properties, which are common in programs. To address these issues, we propose
an iterative abstract analysis, wherein the refinement process makes use of
the predicates P inferred at the joins of if statements as well as the reduced
abstract error sub-space derr. In particular, we use a BDD abstract domain
functor, denoted as BD(P,A), which can characterize disjunctions of elements
from domain A. A decision node in the BDD abstract domain stores a predicate
from P, and a leaf node stores an abstract element from the base abstract domain
A under specific evaluation results of predicates found in decision nodes up to the
given leaf. We refer to Section 4.3 for detailed description of the BDD domain.

The overall IterativeAbsAnalysis(p, beass,D) procedure is shown in Algo-
rithm 2. The procedure is called with the following parameters: a program p,
an assertion beass to be checked, and a base abstract domain D. Initially, we
call AbsAnalysis(p, FILTERD(¬beass,⊤D),D), given in Algorithm 1, with the
negated assertion ¬beass as error state space derr in order to infer error invariants
ErrInv♯

derr
, a refined abstract error sub-space d′

err, and predicate set P′ (Line
4). If the refinement process is enabled, that is, the newly obtained P′ and d′

err
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Slice(skip, ErrInv♯
derr

) = skip

Slice(x := ae, ErrInv♯
derr

) =
{

skip, if ErrInv♯
derr

(l) = ErrInv♯
derr

(l′)
x := ae, otherwise

Slice(s1 ; s2, ErrInv♯
derr

)=
{

skip, if ErrInv♯
derr

(l) = ErrInv♯
derr

(l′)
Slice(s1, ErrInv♯

derr
);Slice(s2, ErrInv♯

derr
), otherwise

Slice(if be then s1 else s2, ErrInv♯
derr

) ={
skip, if ErrInv♯

derr
(l) = ErrInv♯

derr
(l′)

if be then Slice(s1, ErrInv♯
derr

) else Slice(s2, ErrInv♯
derr

), otherwise

Slice(while (be) do s, ErrInv♯
derr

) =
{

skip, if ErrInv♯
derr

(l) = ErrInv♯
derr

(l′)
while (be) do Slice(s, ErrInv♯

derr
), otherwise

Fig. 6. Definition of Slice(s, ErrInv♯
derr

), where “l : s; l′” is a statement in program
whose error invariants map is ErrInv♯

derr
.

are not the same as P and derr from the previous iteration (Line 2), the call
to AbsAnalysis is repeated again with refined parameters d′

err and BD(P′,A)
(Line 6), where A is the input base domain D. Note that, if P′ = ∅ then BD(P′,A)
is simply A. The procedure terminates when either the refinement is no longer
enabled (Line 2), or the assertion is proved true when d′

err = ⊥D (which means
there is no concrete error state, so we return the program slice “skip” since no
statement is relevant for the error) (Line 5), or a time limit is reached (Line 7).
The procedure Slice(p, ErrInv♯

derr
) (Line 8) returns a slice of program p con-

taining only the statements relevant for the assertion failure. Given a statement
l:s l′ , Slice replaces statement s with skip if ErrInv♯

derr
(l) = ErrInv♯

derr
(l′). In

this case, we say s is irrelevant for the error. That is, the statements for which we
can find an encompassing error invariant are not needed to reproduce the error
and can be dropped. Otherwise, Slice recursively pre-process all sub-statements
of compound statements or returns basic statements. The complete definition of
Slice(s, ErrInv♯

derr
) is given in Fig. 6.

4.3 BDD Abstract Domain Functor

The binary decision diagram (BDD) abstract domain functor, denoted BD(P,A),
plays an important role in the iterative abstract analysis procedure. The abstract
elements of the domain BD(P,A) are disjunctions of leaf nodes that belong to an
existing base abstract domain A, which are separated by the values of Boolean
predicates from the set P organized in decision nodes. Therefore, the state space
P(Σ) is partitioned with respect to the set of predicates P, such that each top-
down path of a BDD abstract element represents one or several partitionings of
P(Σ), and we store in the leaf node the property inferred for those partitionings.

We first consider a simpler form of binary decision diagrams called binary
decision trees (BDTs). A binary decision tree (BDT) t ∈ BT(P,A) over the set P
of predicates and the leaf abstract domain A is either a leaf node≪a≫with a ∈ A
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and P = ∅, or [[P : tl, tr]], where P is the smallest element of P with respect to its
ordering, tl is the left subtree of t representing its true branch, and tr is the right
subtree of t representing its false branch, such that tl, tr ∈ BT(P\{P},A). Note
that, P = {P1, . . . , Pn} is a totally ordered set with ordering: P1 < . . . < Pn.

However, BDTs contain some redundancy. There are three optimizations
we can apply to BDTs in order to reduce their representation [2]: (1) Removal
of duplicate leaves; (2) Removal of redundant tests; (3) Removal of duplicate
non-leaves. If we apply reductions (1)-(3) to a BDT t ∈ BT(P,A) until no
further reductions are possible, and moreover if the ordering on the Boolean
predicates from P occurring on any path is fixed to the ordered list [P1, . . . , Pn],
then we obtain a reduced ordered binary decision diagram (or only BDD for
short) b ∈ BD(P,A). Notice that BDDs have a canonical form, so any disjunctive
property from the BDT domain can be represented in an unique way by a BDD.

Given a set of predicates P, an evaluation for P is a function µ : P →
{true, false}. Eval(P) denotes the set of all evaluations for P. Each evaluation
µ ∈ Eval(P) can be represented as a formula

∧
P ∈P ν(P ), where ν(P ) = P if

µ(P ) = true and ν(P ) = ¬P if µ(P ) = false. Given a BDD b ∈ BD(P,A), the
concretization function γBD returns γA(a) for µ ∈ Eval(P), where µ satisfies the
constraints reached along the top-down path to the leaf node a ∈ A.

The abstract operations, transfer functions, and soundness of the domain
BD(P,A) are obtained by lifting the corresponding operations, transfer functions,
and soundness of the leaf domain A. We refer to [3,35,11] for more details.
However, the assignment transfer function needs more care, since its application
on a leaf node in one partitioning (i.e., one evaluation of P) may cause its result to
enter other partitionings. In such a case, the result in each partitioning is updated
to be the join of all elements which belong to that partitioning after applying the
transfer function to all leaf nodes of the current BDD. This procedure is known
as reconstruction on leaves [3].

Example 2. Suppose we have a BDD b = [[(x ≤ 0) :≪x=0≫,≪1 ≤ x ≤ 10≫]] and
an assignment x := x-1. Note that the left leaf ≪x =0≫ satisfies the decision
node (x ≤ 0), while the right leaf ≪1 ≤ x ≤ 10≫ satisfies its negation. After
performing the (forward) assignment transfer function without reconstruction on
leaves, we obtain: [[(x ≤ 0) :≪x=−1≫,≪0 ≤ x ≤ 9≫]]. Hence, the right leaf node
(0 ≤ x ≤ 9) does not satisfy the predicate leading to it: ¬(x ≤ 0). However, after
the reconstruction on leaves, we obtain: [[(x ≤ 0) :≪−1 ≤ x ≤ 0≫,≪1 ≤ x ≤ 9≫]].

5 Evaluation

We have implemented a prototype tool based on our approach for fault localization
via inferring error invariants. We now evaluate our tool.

Implementation and Experimental setup. Our tool is based on the APRON
library [25], which includes the abstract domains of intervals, octagons, and
polyhedra, and the BDDAPRON library [24]. It also calls the Z3 SMT solver
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[30] to compute minimal support sets. The tool is written in OCaml and consists
of around 7K LOC. It supports a subset of the C language. The current tool
provides a limited support for arrays, pointers, struct and union types.

For the aim of evaluation, we ran: (1) our tool, denoted Full_AI; (2) a single
backward analysis, denoted Single_AI; and (3) the logic formula-based fault
localization tool BugAssist [26]. 3 Given an error program, BugAssist uses the
CBMC bounded model checker [6] to generate an error trace as well as to construct
the corresponding trace formula, which is then analyzed by a MAX-SAT solver. We
use a set of numerical benchmarks taken from the literature [4], different folders
of SV-COMP (https://sv-comp.sosy-lab.org/) and TCAS [21].

Experiments are executed on 64-bit Intel®CoreT M i7-1165G7 CPU@2.80GHz,
VM LUbuntu 20.10, with 8 GB memory, and we use a timeout value of 300
seconds. All times are reported as average over five independent executions. We
report total times, measured via real values of the time command, needed for
the actual tasks to be performed. For all three approaches, this includes times to
parse the program, to check the assertion violation of the given program, and
to identify potential error locations. The implementation is available from [14]:
https://doi.org/10.5281/zenodo.8167960.

SV-COMP examples. Consider the program in Fig. 7. It represents a suitably
adjusted easy2-1 example from SV-COMP, where the if statement is nested
inside the while. In the first iteration of Full_AI, the if condition (x < 3)
is added to the set of predicates P, due to the analysis imprecision of the if
statement. Hence, in the following iterations we use the BDD domain based on the
predicate set P = {B ≡ (x < 3)}. The inferred error invariants by Full_AI are
shown in Fig. 7. After calling the slicing procedure Slice, we see that statements
at locs. 3⃝ and 6⃝ are redundant, and so can be dropped. E.g., the statement
at loc. 6⃝ is enclosed by the error invariant ¬B∧y ≥ 0 . The computed error
invariants further highlight the information about the state that is essential for
the error at each location, thus indicating that variable z is completely irrelevant.

If we analyze this program using single backward analysis Single_AI, we
do not consider separately the then and else branches of the if statement as
in Full_AI. Thus, we obtain very imprecise analysis results: ⊤ for all locations
inside while and loc. 1⃝, as well as (x ≥ 1) for all other locations. In fact, we
would consider as relevant only statement at loc. 1⃝ and while condition at
loc. 4⃝, whereas all other locations would be irrelevant. This way, we would
drop statements at loc. 2⃝, 5⃝, 7⃝, due to the over-approximation of abstraction,
although they are relevant for the error. We thus obtain 53% precision for
Single_AI (see Table 1, column Prec%).

Consider the program Mysore-1 from SV-COMP given in Fig. 8. The inferred
error invariants by Full_AI are shown in Fig. 8. We can see that the statements
in the body of while are redundant and so can be eliminated from the generated
program slice. On the other hand, if we use a single backward analysis Single_AI,

3 The other known logic formula-based tool [20,4] is not available online.

https://sv-comp.sosy-lab.org/
https://doi.org/10.5281/zenodo.8167960
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void main(int n) {
⊤
1⃝ int x := 7;
¬B ∧ x = 7
2⃝ int y := 0;
¬B ∧ x = 7 ∧ y = 0
3⃝ int z := y;
¬B ∧ x = 7 ∧ y = 0
4⃝ while (x>0) do
(¬B ∧ x ≥ 3 ∧ y ≥ 0) ∨ (B ∧ 1 ≤ x ≤ 2 ∧ x + y ≥ 2)

5⃝ if (x<3) then y := y+1;
6⃝ else z := z-1;
7⃝ x := x− 1;
(¬B ∧ x ≥ 3 ∧ y ≥ 0) ∨ (B ∧ 0 ≤ x ≤ 2 ∧ x + y ≥ 2)

8⃝ od;
(B ∧ x = 0 ∧ y ≥ 2)
9⃝ assert (y ≤ 0);

Fig. 7. easy2-1 example.

void main(int x) {
(x ≤ −1)
1⃝ int c := 0;
(x ≤ −1 ∧ c = 0)
2⃝ while (x + c ≥ 0) do
⊥
5⃝ x := x-c;
⊥
6⃝ c := c+1;
⊥
8⃝ od;
(c = 0)
9⃝ assert (c > 0);

Fig. 8. Mysore-1 example.

then the loop invariant is (c ≤ 0∧x+c ≤ −1), and thus no statement is eliminated
as irrelevant. As a result, Single_AI gives 66% precision (see Table 1).

BugAssist again reports less precise results by wrongly identifying as irrele-
vant statements at locs. 1⃝, 2⃝ for easy2-1 and at loc. 1⃝ for Mysore-1, as well
as statement at loc. 6⃝ for easy2-1 as potential bug. Recall that BugAssist
reasons about loops by unrolling them. Thus, it needs 10 unrollings of the loop for
easy2-1. The precision of BugAssist is 66% for easy2-1 and 83% for Mysore-1.

TCAS example. The final example is an error implementation of the Traffic Alert
and Collision Avoidance System (TCAS) [21], which represents an aircraft colli-
sion detection system used by all US commercial aircrafts. An extract from the
error implementation is shown in Fig. 9. The error in this TCAS implementation
is caused by a wrong comparison in the function Non_Crossing_Biased_Climb().
On some inputs, this error causes the variable need_upward_RA to become
1. The effect is that the assertion will get violated. Note that the strict in-
equality ‘>’ in ¬(Down_Separation > Positive_RA_Alt_Tresh) from function
Non_Crossing_Biased_Climb() is problematic, which causes the error. It should
be replaced with ‘≥’ for the implementation to be correct.

Our tool first inlines all functions into the main() function, which is then
analyzed statically. Thus, the complete program has 308 locations in total, and
the main() function after inlinement contains 118 locations. Full_AI needs two
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int Non_Crossing_Biased_Climb() {
...

if (own_below_threat=0)∨((own_below_threat=1)∧¬(Down_Separation>Positive_RA_Alt_Tresh))
then result := 1;
else result := 0;
...

return result;
}

int alt_sep_test() {
if (High_Confidence=1)∧(Own_Tracked_Alt_Rate ≤ OLEV)∧(Cur_Vertical_Sep>MAXALTDIFF)
then enabled := 1;
else enabled := 0;
...

if (enabled=1)∧
(
((tcas_equipped=1)∧(intent_not_known=1))∨(tcas_equipped=0)

)
then {

if (Non_Crossing_Biased_Climb() = 1)∧(Own_Below_Threat() = 1)
then need_upward_RA := 1;
else need_upward_RA := 0;
...

}
assert (need_upward_RA=0)∨(Down_Separation ≥ Positive_RA_Alt_Tresh);
}

void main() {
...

int High_Confidence := [0, 1];
int Other_Tracked_Alt := ?;
...

int Down_Separation := ?;
int Other_RAC := [0, 1];
int Other_Capability := [0, 1];
int Climb_Inhibit := [0, 1];
int Positive_RA_Alt_Tresh := 740;
...

int res := alt_sep_test() ;
}

Fig. 9. An excerpt from an error TCAS implementation.

iterations to terminate by using the BDD domain with four predicates:
B1 ≡ (need_upward_RA=1) ∧ (need_downward_RA=1)
B2 ≡ (Own_Tracked_Alt < Other_Tracked_Alt)
B3 ≡ (own_above_threat=0) ∧ (Curr_Vertical_Sep ≥ MINSP)∧

(Up_Separation ≥ Positive_RA_Alt_Tresh)
B4 ≡ (own_below_threat=0)∨

(own_below_threat=1 ∧ ¬(Down_Separation > Positive_RA_Alt_Tresh))
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The slice computed by Full_AI approach contains 44 locations relevant for
the error. Some of these statements are shown underlined in Fig. 9. Note that
not underlined else branches are classified as irrelevant. The reported relevant
statements are sufficient to understand the origins of the error. The generated
slice depends only on 15 variables instead of 37 variables in the original program.
The number of input variables is also reduced from 12 to 6. Thus, we conclude
that the obtained slice significantly reduces the search space for error statements.

The single backward analysis Single_AI reports a slice containing only 28
locations. However, the slice does not contain any statement from the buggy
Non_Crossing_Biased_Climb(), thus missing the real reasons for the error. On
the other hand, the BugAssist tool reports as potential bugs only 2 locations,
the condition ‘if (enabled=1) . . .’ and the assertion, both from alt_sep_test()
function. Similarly as in the case of Single_AI, none of these locations is from
the buggy Non_Crossing_Biased_Climb().

Performances Table 1 shows the result of running our tool Full_AI, the sin-
gle backward analysis Single_AI, and the BugAssist tool on the benchmarks
considered so far. The column “LOC#” is the total number of locations in the
program, “Time” shows the run-time in seconds, “Slice#” is the number of
potential (relevant) fault locations, and “Perc%” is the percentage precision of
the given approach to locate the relevant statements for the error. This is the
ratio of the sum of correctly classified erroneous and non-erroneous locations by
an approach to the total number of locations in the program. A classification of
a location as erroneous given by the concrete semantics is considered correct.

We conclude that our technique, Full_AI, gives more precise information
about potential error statements than simply performing a backward analysis
and BugAssist. In fact, Full_AI pin-pointed the correct error locations for
all examples. On average, the number of locations to check for potential error
(Slice#) is reduced to 47.6% of the total code (LOC#). On the other hand, the
precision of Single_AI is 70% and the precision of BugAssist is 64%, on average.
Although our technique Full_AI is the most precise, it is slower than Single_AI
due to the several iterations it needs to produce the fully refined error invariants.
Full_AI and BugAssist have often comparable running times, except for the
loop benchmarks when BugAssist is slower due to the need to unwind the
loops. Moreover, Full_AI reports more fine-grained information by identifying
relevant variables for the error, whereas BugAssist reports only potential bug
locations. Finally, we should note that the run-time of our technique Full_AI in
all examples is still significantly smaller than our human effort required to isolate
the fault.

6 Related Work

Fault localization has been an active area of research in recent years [4,5,20,26,33].
The most successful approaches for fault localization are based on logic formulae
[4,5,20,26,33]. They represent an error trace using an SMT formula and analyze
it to find suspicious locations. Hence, they assume the existence of error traces
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Table 1. Performance results of Full_AI vs. Single_AI vs. BugAssist. Full_AI and
Single_AI use Polyhedra domain. All times in sec.

Bench. LOC#
Full_AI Single_AI BugAssist

Time Slice# Perc% Time Slice# Prec% Time Slice# Perc%

program1 6 0.056 2 100% 0.013 2 100% 0.031 1 66%
program2 9 0.187 5 100% 0.013 4 83% 0.031 2 50%
program2-a 9 0.088 2 100% 0.015 6 33% 0.030 2 66%
program3 10 0.453 3 100% 0.016 3 100% 2.954 5 71%
easy2-1 15 2.401 10 100% 0.011 3 41% 8.441 9 66%
Mysore-1 9 0.050 4 100% 0.014 6 66% 0.210 3 83%
TCASv.1 118 57.78 44 100% 0.225 28 86% 0.095 1 62%

on input. The error traces are usually obtained either from failing test cases or
from counterexamples produced by external verification tools. In contrast, our
approach is directly applied on (error) programs, thus it needs no specific error
traces from other tools making it more self-contained. This way, the two phases
of error-detection and error-localization are integrated by our approach.

The closest to our approach for inferring error invariants applied to fault
localization is the work proposed by Ermis et. al [20,4]. They use Craig inter-
polants and SMT queries to calculate error invariants in an error trace. Another
similar approach that uses error traces and SAT queries is BugAssist [26]. It
uses MAX-SAT based algorithm to identify a maximal subset of statements
from an error trace that are not needed to prove the unsatisfiability of the
logical formula representing the error trace. One limitation of BugAssist is that
control-dependent variables and statements are not considered relevant. Moreover,
BugAssist do not report error invariants, which can be especially useful for dense
errors where the error program cannot be sliced significantly. Hence, BugAssist
cannot identify relevancy of variables. Other logic formula-based approaches
include using weakest preconditions [5], and syntactic information in the form of
graphs for static and dynamic dependency relations [33] to localize the errors.

Rival [32] uses abstract interpretation static analyzer ASTREE [9] to inves-
tigate the found alarms and to classify them as true errors or false errors. It uses
an refining sequence of forward-backward analyses to obtain an approximation of
a subset of traces that may lead to an error. Hence, the above work aims to find
a set of traces resulting in an error, thus defining so-called trace-wise semantic
slicing. In contrast, our approach aims to find statements that are reasons for the
error, thus defining the statement-wise semantic slicing. The under-approximated
backward analysis proposed by Mine [28] infers sufficient preconditions ensuring
that the target property holds for all non-deterministic choices. It would produce
the under-approximations of concrete error invariants if applied to our approach.
We could then combine the results of under- and over-approximating error in-
variants, so that if both are the same for some locations we can be certain that
the corresponding statements are either error-relevant or error-irrelevant. The
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work [19] also uses forward-backward analyses to estimate the probability that a
target assertion os satisfied/violated.

Decision-tree domains have been used in abstract interpretation community
recently [3,10,35]. Segmented decision tree abstract domains have enabled path
dependent static analysis [3,10]. Their elements contain decision nodes that are
determined either by values of program variables [10] or by the if conditions
[3], whereas the leaf nodes are numerical properties. Urban and Miné [35] use
decision tree abstract domains to prove program termination. Decision nodes
are labelled with linear constraints that split the memory space and leaf nodes
contain affine ranking functions for proving termination. Recently, specialized
decision tree lifted domains have been proposed to analyze program families (or
any other configurable software system) [11,16,12,18]. Decision nodes partition
the configuration space of possible feature values (or statically configurable
options), while leaf nodes provide analysis information of program variants
(family members) corresponding to each partition. The work [11] uses lifted BDD
domains to analyze program families with Boolean features. Subsequently, the
lifted decision tree domain has been proposed to handle program families with
both Boolean and numerical features [18], as well as dynamic program families
with features changing during run-time [16].

Once a set of statements relevant for the error has been found, we need to
replace those statements in order to fix the error. Recently, abstract interpretation
has been successfully applied to program sketching [17,13,15]. The above works
leverage a lifted (family-based) static analysis to synthesize program sketches,
which represent partial programs with some missing integer holes in them [34]. We
can combine our approach for fault localization with the techniques for program
sketches to develop an automatic procedure for program repair.

7 Conclusion

In this work, we have proposed error invariants for reasoning about the relevancy
of portions of an error program. They provide a semantic argument why certain
statements are irrelevant for the cause of an error. We have presented an algo-
rithm that infers error invariants via abstract interpretation and uses them to
obtain compact slices of error programs relevant for the error. Our evaluation
demonstrates that our algorithm provides useful error explanations.
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