
Quantum Constant Propagation

Yanbin Chen[0000−0002−1123−1432]? and Yannick Stade[0000−0001−5785−2528]?

Technical University of Munich
TUM School of Computation, Information and Technology

Boltzmannstr. 3, 85748 Garching, Germany
{chya,stya}@cit.tum.de

Abstract. A quantum circuit is often executed on the initial state where
each qubit is in the zero state. Therefore, we propose to perform a sym-
bolic execution of the circuit. Our approach simulates groups of entangled
qubits exactly up to a given complexity. Here, the complexity corresponds
to the number of basis states expressing the quantum state of one entan-
glement group. By doing that, the groups need neither be determined
upfront nor be bound by the number of involved qubits. Still, we ensure
that the simulation runs in polynomial time—opposed to exponential
time as required for the simulation of the entire circuit. The information
made available at gates is exploited to remove superfluous controls and
gates. We implemented our approach in the tool quantum constant prop-
agation (QCP) and evaluated it on the circuits in the benchmark suite
MQTBench. By applying our tool, only the work that cannot be carried
out efficiently on a classical computer is left for the quantum computer,
hence exploiting the strengths of both worlds.

Keywords: quantum computation · constant propagation · simula-
tion · optimization · static analysis

1 Introduction

Current status in quantum computing. Quantum computers have seen rapid im-
provements in recent years, especially the capability of the physical realizations of
quantum computers has increased significantly [5]. There are applications where
quantum computers promise an advantage over classical machines [19,8,10,23].
Currently, the provided number of qubits does not reach the order of magnitude
required for putting the majority of quantum algorithms into practical use. More-
over, current hardware faces significant problems with noise that perturbs the
? Both authors contributed equally to this research and are ordered alphabetically.

computed results and makes them harder to use as the circuits grow deep [15].
Consequently, the number of gates in the quantum circuit should be reduced as
much as possible beforehand. For this purpose, several tools have been devel-
oped, e. g., T|ket〉 [24], pyzx [14], Qiskit [20], staq [2], QGo [27]. More details
about existing optimization techniques can be found in Section 7.

Considering initial configuration. A quantum program is usually executed start-
ing from a state where all qubits are |0〉. Surprisingly, tools listed above take this
information only slightly into account and they heavily rely on gate cancellation
rules and pattern matching to simplify circuits. When it comes to the initial
state, quantum circuits designers provide ad-hoc arguments why particular con-
trols or gates can be omitted based on the initial configuration, e. g., in the
context of Shor’s algorithm [17,26]. Jang et al. [13] propose to use the knowledge
of the initial state to automatically remove superfluous controls of controlled
gates. For their optimization, they need to execute the quantum circuit on a
quantum machine many times. In our view, executing a circuit on a quantum
computer several thousand times to achieve an optimized version of the same
circuit seems to be laborious. More in the spirit of our approach is Liu et al. [16],
who propose a Relaxed Peephole Optimization (RPO) approach that leverages
the information on single-qubit states which could be efficiently determined at
compile time. However, their idea of treating qubits as independent systems has
the drawback that information on single qubits is lost when a multi-qubit gate is
applied, with few exceptions. Our approach avoids this issue by tracing entangled
qubits’ states up to a given complexity.

Restricted polynomial-time simulation. Since the full simulation of a quantum
circuit takes exponential time in the number of qubits [9] in general, simulating
the entire quantum circuit is not a viable solution for efficient optimization. For
this reason, we propose a restricted simulation of a quantum circuit in Section 3,
which simulates the circuit only up to a given complexity. The complexity of
an entanglement group (the group of qubits that are entangled) corresponds
to the number of basis quantum states. For example, the complexity of the
three-qubit state, 1

2 (|000〉+ |001〉+ |010〉+ |111〉), is 4, since there are 4 basis
states in the entanglement group, namely |000〉, |001〉, |010〉, and |111〉. The
complexity up to which circuits are simulated is chosen beforehand and thus not
depending on the number of qubits. This restriction on complexity ensures that
our approach runs in polynomial time, which we will prove in Section 5. Using
the idea of restricted simulation, we propose to perform a quantum equivalent
to constant propagation [22], called quantum constant propagation (QCP). We
have implemented our idea into a publicly available tool1.

Objective of QCP. With QCP we aim to reduce the number of controls and
eliminate superfluous controlled gates, following the same objective as Jang et al..
Overall QCP reduces quantum circuits in their costs to be executed on target
1 The implementation of QCP is accessible under https://github.com/i2-tum/qcp.

https://github.com/i2-tum/qcp

platforms. Nevertheless, the circuit processed by QCP still produces the same
desired outcome, as what we prove in Section 4.

|0〉 H X X H

|0〉

|0〉

≡
|0〉

|0〉

|0〉

Fig. 1. Our proposed quantum constant propagation identifies the doubly controlled
not-gate in the middle as superfluous and hence the circuit reduces to the empty
circuit on the right.

Effects of QCP. Our proposed optimization technique is capable of identifying
the doubly controlled not-gate in the middle of the circuit shown in Figure 1 as
superfluous and, hence, the circuit reduces to the empty circuit. Our evaluation
in Section 6 MQT Bench [21] demonstrates the impact of our novel optimiza-
tion technique. Applying our optimization followed by Qiskit using the highest
optimization level, we can remove up to 26k more gates compared to just using
Qiskit [20], which corresponds to 0.5% of all gates evaluated. When we compare
our approach with a similar existing optimization called Relaxed Peephole Op-
timization (RPO) [16] by running ours after RPO, we can remove 17.2% more
gates on the evaluated circuits than just using RPO alone. It shows that this
existing optimization even benefits our optimization. We believe that, especially
in the future, QCP will become more important when larger circuits are built
based on building blocks controlled by one or multiple controls. We comment on
this in more detail in Section 8. In the next section, Section 2, we give a brief
introduction to quantum computing on aspects important to this article.

2 Preliminaries
In the following, we give a brief introduction to quantum computing in order to
make this article as self-contained as possible; for a more in-depth explanation,
the interested reader is referred to the textbooks [12,18].

Quantum bits. Instead of bits, quantum computers operate on qubits (quantum
bits). Those cannot just assume the two basis states |0〉 and |1〉 but also every
state that can be expressed as their linear combination, |Ψ〉 = α |0〉+β |1〉, where
α, β ∈ C—often called amplitudes—satisfy |α|2 + |β|2 = 1. Hence, a qubit can
be in a so-called superposition of both basis states. Upon measured, it collapses
into either |0〉 or |1〉 with probability |α|2 or |β|2, respectively.

Multiple quantum bits. The state of a multi-qubit quantum system is denoted by
a vector in C2⊗· · ·⊗C2 = C2n . The basis vectors are written as |b1〉⊗ · · ·⊗ |bn〉
or |b1 . . . bn〉 for short, with bi ∈ {0, 1}. Sometimes the abbreviated notation |n〉
is used where n =

∑n
i=0 bi · 2i.

Gates. Operations on qubits are expressed as gates, each of which is denoted
by a unitary matrix. A quantum computer only offers a discrete set of basis
(parameterized) gates that can be applied to the qubits. Similar to conditioned
branches in classical programs, gates can be controlled on the state of one or
multiple other qubits. Then the controlled gate is applied to the target qubit if
and only if all controlling qubits are in the |1〉 state.

Entanglement. Entanglement refers to the situation in which the measurement
result of one qubit depends on the rest of the quantum system. For example, the
circuit in Figure 2 creates an entanglement among three qubits: The Hadamard-
gate brings the first qubit into maximal superposition (|0〉+ |1〉)/

√
2; then, two

controlled not-gates are applied in sequence; when measuring the resulting quan-
tum state (|000〉+ |111〉)/

√
2, there are only two possible outcomes—“000” and

“111”—and no other combination of results, e.g., “010” and “110”, can be ob-
tained even if the three qubits are not measured simultaneously.

|0〉 H

|0〉

|0〉

Fig. 2. This circuit creates a GHZ state of three qubits.

Curse of dimensionality. Entanglement is the root cause of why it is so hard to
simulate a quantum computer on a classical machine. As long as all the qubits
are separable, i. e., not entangled, one needs to store two complex numbers for
each qubit. As soon as some k qubits are entangled with each other, one needs
to store potentially O(2k) complex numbers, which would immediately lead to
exponential running time [1,11].

Concrete semantics. A quantum program consists of a sequence of quantum
gates that are applied on an initial configuration of a quantum system, where
usually all qubits are in the |0〉 state. The application of a gate transforms the
concrete quantum state, represented as a state vector, according to the unitary
matrix associated with the gate via matrix multiplication.

Interface of an optimization. In our setting, a quantum circuit is represented as
a list of gates. The optimization is expected to accept a list of gates and output
an optimized version. For this purpose, an optimization provides a function
transform : gate list -> gate list. In the next section, we explain how we
implement QCP utilizing a restricted simulation.

3 Methodology

As mentioned in Section 1, up to now, many quantum circuit designers have
argued in complex manners about the superfluousness of specific controls and
gates. Our approach aims to automate those reasonings and apply them auto-
matically as an optimization pass to a quantum circuit. For that, we simulate
the circuit and identify controls and gates that can be dropped without chang-
ing the semantics of the circuit. To make our optimization efficient in terms of a
polynomial time complexity, we propose a restricted simulation that simulates
the circuit only partially but satisfies the required time-bound, with the help of
our specially tailored data structures that efficiently represent quantum states.

3.1 Union-Table

Efficient union-find customization. One central idea of our approach to allow
polynomial running time is to keep groups of qubits that are not entangled with
each other separated as long as possible. For that, we need a data structure
that stores a collection of sequences, i. e., qubits, supports the operation union,
and can retrieve the position of an element in its sequences. Additionally, it
needs to maintain extra information associated with each sequence. The required
functionality suggests augmenting a union-find data structure. However, we have
the advantage that the total number of all elements stored in our structure is
constant and known a priori, namely the number of qubits. For this reason, we
use a table-like approach, hence, the name union-table. To store n elements in a
union-table, we use an array of length n, where each field denotes one element.
Each field contains a pointer to a value of type entry storing all indices idxs also
pointing to this entry, their number card, and the value elem associated with
this entry. This leads to the following type definitions for the union-table as an
OCaml module where t is the type of the union-table itself.
module UnionTable : sig

type 'a entry = { card: int; idxs: int list; elem: 'a }
type 'a t =

{ size: int; perm: int array; content: 'a entry array }
...

Use of permutation. Note that we use an extra attribute perm that stores a
permutation serving as a view onto the underlying data structure. If one calls a
function that accesses an entry at index i, then i is first looked up in perm that
returns a potentially different index j; the index j is then used for actual access
to the union-table structure. More information about the functions to operate
on a union-table, especially their running times, can be taken from Table 1.

3.2 Representation of a Quantum State

Bitwise representation. The union-table is polymorphic in the type used to
store the extra information for each set. For that, we introduce another module

Function Description

make n x
int -> 'a -> 'a t

creates a union-table with an initial value x in all n en-
tries; each entry corresponds to its own set, no entries are
united yet into a common set, see also the corresponding
paragraph in the text.

pos_in_group i ut
int -> 'a t -> int

returns the position of the qubit referred to by i within
its entanglement group; this is important to identify its
state stored in the quantum state for this group.

union i j combine ut
int -> int -> ('a -> 'a ->

bool Seq.t -> 'a)-> 'a t ->

'a t

unites the two entries pointed to by i and j. To retrieve
the new element in the new entry, the combine function
is used. The boolean sequence passed to combine denotes
the choices made during the merging of the two sets.

get i ut
int -> 'a t -> 'a

returns the element in the entry pointed to by i.

set i x ut
int -> 'a -> 'a t -> 'a t

updates the element in the entry pointed to by i.

swap i j ut
int -> int -> 'a t -> 'a t

swaps two elements with each other. It alters the permu-
tation that serves as a view of the content.

card i ut
int -> 'a t -> int

returns the number of elements in the entry pointed to
by i.

same i j ut
int -> int -> 'a t -> bool

returns true if and only if i and j point to the same
entry in the union-table.

Table 1. The table lists all functions provided by the module union-table to access
and modify the stored data. The type definition of each function is given in script size
below it. All functions in the lower block are implemented to run in O(1) time. The
functions make and pos_in_group take O(n) time and union needs O(n+ f(n)) where
n is the size of the union-table and f the running time of combine.

QuantumState that is a hash table with bit combinations as keys and complex
numbers as values inspired by the data structure used in [7]. The bit combi-
nations correspond to basis states, e. g., if there are stored three qubits in a
group in the union-table, the binary number 11bin corresponds to the quantum
state |011〉 where the first of the three qubits is in the state |0〉 and the other
two in |1〉. The values denote the amplitudes for each state. For this to work
correctly, the length of keys must not be limited by the number of bits used
for an integer, e. g., 32 or 64 bits; instead, we use arbitrary large integers as
keys for the hash table. The indices of qubits in each group in the union-table
are ordered; this way, one gets a mapping from the global index of a qubit
to its position within the state. Figure 3 shows the representation of the state
(|10000〉 − |10101〉+ |11000〉 − |11101〉) /2 ⊗ (1 + i)/

√
2 |0〉 using a union-table

and bitwise representation of the quantum states.

0:

1:

2:

3:

4:

5:

|100〉 → 1
√

2
; |110〉 → 1

√

2

|00〉 → 1
√

2
; |11〉 → − 1

√

2

|0〉 → 1+i
√

2

Fig. 3. The representation of a quantum system with six qubits using the union-table
data structure (left), where the quantum state of each entanglement group is a hash
table with the basis states as keys and their complex amplitudes as values (right). The
qubits in each state are indexed from left to right. The represented quantum state
is (|10000〉 − |10101〉+ |11000〉 − |11101〉) /2 ⊗ (1 + i)/

√
2 |0〉. Using the usual tensor-

product notation, it is not obvious that qubits {0, 1, 3} and {2, 4} are separable.

Merging entanglement groups. The correct ordering of indices becomes, in par-
ticular, tricky when two entanglement groups are merged and, consequently,
also their quantum states must be merged. For this purpose, the union func-
tion requires a combine function to combine the two entries, i. e., in our case
the two quantum states. The union-table merges the sequences of two groups in
one merge step known from the merge-sort algorithm. The combine function re-
ceives the order in which the elements from the two former groups were merged,
in order to apply the same merging behavior to the quantum states. When the
quantum state for n qubits contains k many basis states, the combine function
requires O(k · n) steps.

Application of gates. Here, we only describe the application of a single-qubit
gate to a state; the approach generalizes to gates operating on multiple qubits.
Let U be the matrix representation of some gate that is to be applied on qubit
i in a given quantum state where U = (uij)i,j∈{0,1}. We iterate over the keys in
the quantum state: For keys with the i-th bit equal to 0, we map the old key-
value pair (|Ψ〉 , α) to the two new pairs (|Ψ〉 , α · u11) and (|Ψ′〉 , α · u21), where
|Ψ′〉 emerges from |Ψ〉 by flipping the i-th bit; for keys with the i-th bit equal
to 1, we map the old key-value (|Φ〉 , β) pair to the two new pairs (|Φ′〉 , β · u12)
and (|Φ〉 , β · u22), where, again, |Φ′〉 emerges from |Φ〉 by flipping the i-th bit.
Generated pairs with the same key (basis state) are merged by adding their
values (amplitudes). For a matrix of dimension 2d and k states in the quantum
state of n qubits, this procedure takes O(2d · k · n) steps where d is the number
of affected qubits.

3.3 Restricted Simulation

Restrict complexity. The state in Figure 2 contains only two basis states as
opposed to 23 = 8 possible ones for which a complex number needs to be stored
each. Exploiting this fact, the key features of the restricted simulation are

(i) to keep track of the quantum state as separable entanglement groups of
qubits, where qubits are included in the same entanglement group if and
only if they are entangled, and

(ii) to limit the number of basis states representing the quantum state of an
entanglement group by a chosen constant.

Note that the number of basis states allowed in the quantum state of one entan-
glement group corresponds to the number of amplitudes required to be stored;
all other amplitudes are assumed to be zero.

Reaching maximum complexity. The careful reader may ask how to proceed
when the maximum number of allowed basis states is reached. We set the state
of the entanglement group of which the limit is exceeded to >, meaning that we
no longer track any information about this group of qubits. By doing so, we can
continue simulating the remaining entanglement groups until they may also end
up in the >. For this, we utilize a flat lattice that consists of either an element
representing a concrete quantum state of an entanglement group, >, or ⊥ (not
used) satisfying the partial order in Figure 4. The following definitions establish
the relation between the concrete quantum states and their abstract description.

⊤

|0 · · · 0〉 · · · |ψ〉 =
∑

i
αi |i〉

at most nmax many αi 6= 0

· · · |1 · · · 1〉

⊥

Fig. 4. Lattice for the abstract description of quantum states.

Definition 1 (Abstract state). The abstract state s is an abstract description
of a concrete quantum state if and only if s = > or s = |ψ〉 where |ψ〉 is a concrete
quantum state consisting of at most nmax many non-zero amplitudes.

Definition 2 (Abstract description relation). Let ∆ denote the description
relation between quantum states and their abstract description. Furthermore, let
|ψ〉 be a quantum state and s be an abstract description. The quantum state |ψ〉
is described by s, formally |ψ〉 ∆ s, if and only if s = > or s = |ψ〉.

Consequently, the entry in the union-table is not the quantum state itself but
an element of the flat lattice, an abstract description of the quantum state.
Definition 3 defines a concretization operator for abstract states.

Definition 3 (Concretization operator). Let γ be the concretization oper-
ator, and s be an abstract description. Then γ s = {|ψ〉 | |ψ〉 ∆ s}.

Next, we define the abstract effect for gates acting on quantum states.
Definition 4 (Abstract gate). Let [[U]]] denote the abstract effect of the
quantum gate U . For an abstract description s, the abstract effect of U is:

[[U]]]s =

{
U |ψ〉
>

if
s = |ψ〉
s = >

Theorem 1 justifies of the above-defined abstract denotation of quantum states.
It follows directly from Definition 1, Definition 2, and Definition 4.
Theorem 1 (Correctness of abstract denotation). For any quantum state
|ψ〉 and abstract description s satisfying |ψ〉 ∆ s, U |ψ〉 ∆ [[U]]]s holds.

Operating with separated states. In the beginning, every qubit constitutes its
own entanglement group. Single-qubit gates can be applied without further ado
by modifying the corresponding amplitudes accordingly; the procedure behind
is matrix multiplication which can be implemented in constant time given the
constant size of matrices. The case where multi-qubit gates are applied is split
into two subcases. When the multi-qubit gate is applied only to qubits within
one entanglement group, the same argument for applying single-qubit gates still
holds. Applying a multi-qubit gate across several entanglement groups will most
likely entangle those; hence, we need to merge the affected groups into one.

Applying multi-qubit gates. In the case of an uncontrolled multi-qubit gate, such
as an echoed cross-resonance (ecr) gate, we first merge all affected entanglement
groups into one. If one of those groups is already in the > state, we must set
the entire newly formed entanglement group to >. Otherwise, we can apply the
merging strategy of the involved quantum states as described in Section 3.2.
Afterward, matrix multiplication is performed to reflect the expected transfor-
mation of the state. A special case is the swap gate: we leave the entanglement
groups as is and keep track of the effect of the swap gate in the permutation
embedded in the quantum state structure. Before we apply a controlled gate,
we perform control reduction—the central part of the optimization—which we
outline in the next section, to remove superfluous controls.

3.4 Control Reduction
Classically determined qubits. The central task of quantum constant propagation
is to remove superfluous controls from controlled gates. First, we identify and
remove all classically determined qubits, i. e. those that are either in |0〉 or |1〉. If
we find a qubit always in |0〉, the controlled gate can be removed. If we find qubits
always in |1〉, those controls can be removed since they are always satisfied.

Satisfiable combination. By filtering out classically determined qubits as de-
scribed above, a set of qubits may remain in some superposition. Even then, for
the target operation to be applied, there must be a basis-state where each of the
controls is satisfied, i. e., each is in |1〉. If no such combination exists, the gate
can be removed entirely.

Implied qubits. When a combination with all controls in the |1〉 state was found,
there can still be some superfluous controls among the remaining qubits. Con-
sider the situation in Figure 5. Here, the upper two qubits are both in |1〉 state
when the third qubit is as well; hence, the third qubit implies the first and second
one. The semantics of the controlled gate remains unchanged when we remove
the two upper controls. To generalize this idea, we consider every group of entan-
gled qubits separately since there can not be any implications among different
entanglement groups. Within each entanglement group, we look for implications,
i. e., whether one qubit being in |1〉 state implies that other qubits are also in
the |1〉 state. Those implied qubits can be removed from the list of controls.

|0〉 H

|0〉 H

|0〉

|0〉

1

2
(|0000〉+ |0100〉+ |1000〉+ |1110〉)

≡

|0〉 H

|0〉 H

|0〉

|0〉

Fig. 5. For the rightmost gate, the third qubit implies the first and second qubit, hence
the first and second control qubits can be removed from it.

Further optimization potential. In some cases, there might be an equivalence
relation between two qubits; here, either one or the other qubit can be removed.
This choice is made arbitrarily right now; by considering the circuit to the left
or right of the gate, more optimization potential could be exploited. Moreover,
the information of more than one qubit might be needed to imply another qubit.
Here, we limit ourselves to the described approach because of two reasons: First,
in currently common circuits [21] multi-controlled gates with more than two
controls rarely occur, and for two controls, our approach finds all possible impli-
cations; second, to find the minimal set of controlling qubits is a computationally
expensive task that is to the best of our knowledge exponential in the number
of controls.

Handle the abstract state >. If some of the entanglement groups covered by
the controls are in >, the optimization techniques can be applied nevertheless.
Within groups that are in > no classically determined qubits or implications
between qubits can be identified; however, this is still possible in all other groups.
To check whether a satisfiable combination exists across all entanglement groups,
we assume one within each group that is >. This is a safe choice: It does not
lead to any unsound optimizations since there could be a satisfiable combination
in such groups.

Application of controlled gates. Before applying a controlled gate, we assume that
all superfluous controls are already removed according to the approach described
in Section 3.4. Like the application of an uncontrolled multi-qubit gate explained
in Section 3.2, all involved entanglement groups must be merged. Then, all states
that satisfy all remaining controls after the control reduction are filtered. To
those, the gate is applied to the target qubits via matrix multiplication, whereas
the amplitudes of all other states remain unchanged. However, if one of the
controls belongs to an entanglement group in >, the resulting state cannot be
determined, and we set the merged entanglement group to >.

|0〉 H H

|0〉 H T H

|0〉 H T S H

|0〉 X

|0〉

|0〉

|0〉

(1)

(2) (3) (4) (5)

(6) (7) (8)

(9) (10) (11)
(12) (13) (14)

Fig. 6. Quantum constant propagation removes the control from the gate (3) and the
gates (6), (10), and (12) entirely. For an explanation, see Example 1

Example 1. We will demonstrate the effect of our optimization on an example
taken from [26]. Vandersypen et al. perform Shor’s algorithm on 7 qubits to
factor the number 15. In this process, they design the circuit from Figure 6. From
the gate labeled with (3), the optimization will remove the control because the
state of the controlling qubit is known to be |1〉 at this point. Gate (6) will be
removed entirely because the controlling qubit is known to be in the |0〉 state.
Also, gates (10) and (12) are removed since their controlling qubit will be in
the |0〉 state. These optimizations seem to be trivial. However, the difficult part
when automating this process is to scale it to larger and larger circuits without
sacrificing efficient running time. Here, we provide the right tool for that with
our proposed restricted simulation. 2 ※

4 Correctness of Control Reduction

In this section, we complement the intuitive justification for the correctness of
the optimization with a rigorous proof. We first establish the required definitions
2 Note that our optimization will not remove redundant gates such as the two

Hadamard gates on top; we leave this step for other optimization tools since we
already have enough to perform this task sufficiently well.

to characterize the concrete semantics of controlled operations. Similar reasoning
about the correctness is contained in [13]; we see our style as more comprehen-
sible since it argues only over the superfluousness of one qubit at a time but is
still sufficient to show the correctness of the optimization.

Definition 5 (Controlled gate). Let U ∈ C2n×2n for n ∈ N be a unitary
matrix of a gate. Let Cm(U) denote the matrix representing the m-controlled
version of this gate (the application of gate U is controlled on m qubits).

Example 2. Consider the X-gate. The corresponding matrix is given by

X = (0 1
1 0) .

The doubly-controlled version C2(X) (the Toffoli-gate), amounts to
1
1
1
1
1
1
0 1
1 0

 ∈ C8×8.

※

Definition 6 (Superfluousness of controls). Given a state |Ψ〉 ∈ C2m+n

and a unitary U ∈ C2n×2n . Let I ∈ C2×2 denote the identity matrix. The first
one of m controls is superfluous with respect to |Ψ〉 if

Cm(U) |Ψ〉 = I⊗ Cm−1(U) |Ψ〉 . (1)

For the following, we assume without loss of generality that the first m qubits
are the controlling ones for a gate applied to the following n qubits.

Theorem 2 (Superfluousness of controls). With the notation from Defini-
tion 6 and |Ψ〉 =

∑2m−1
i=0

∑2n−1
j=0 λi,j |i〉 ⊗ |j〉, the condition from Definition 6 is

equivalent to λi,0
...

λi,2n−1

∣∣∣∣∣∣∣
i=2m−1−1

being an eigenvector of U for the eigenvalue 1 or the 0 vector. 3

Proof. When we write out the left-hand side of Equation (1) in Definition 6
using the definition of |Ψ〉, we get the following equation:

Cm(U) |Ψ〉 =
2n−1∑
j=0

(
2n−1∑
k=0

uj,kλi,k |i〉 |j〉

)∣∣∣∣∣∣
i=2m−1

+

2m−2∑
i=0

2n−1∑
j=0

λi,j |i〉 |j〉 4 (2)

3 We index elements in matrices starting with 0 as opposed to the mathematical
convention with 1 such that the λ corresponding to the basis state |0〉 has index 0.

4 For simplicity we omitted the ⊗ sign to multiply the states.

We do the same with the right-hand side of Equation (1), which results in:

Cm(U) |Ψ〉 =
∑

i∈{2m−1−1,2m−1}

2n−1∑
j=0

(
2n−1∑
k=0

uj,kλi,k |i〉 |j〉

)∣∣∣∣∣∣
i=2m−1

+

2m−1∑
i=0

i/∈
{
2m−1−1,2m−1

}
2n−1∑
j=0

λi,j |i〉 |j〉
(3)

Such that Equation (1) in Definition 6 is satisfied, both, Equation (2) and 3
must be equal, which gives us:

2n−1∑
j=0

(
2n−1∑
k=0

uj,kλi,k

)
|i〉 |j〉 !

=

2n−1∑
j=0

λi,j |i〉 |j〉

∣∣∣∣∣∣
i=2m−1−1

By performing a summand-wise comparison, this reduces to:

2n−1∑
k=0

uj,kλi,k = λi, j

∣∣∣∣∣
i=2m−1−1

∀j ∈ {0, . . . , 2n − 1}

This is equivalent to (λi,0, . . . , λi,2n−1)
> with i = 2m−1− 1 being an eigenvector

to the eigenvalue 1 or being the zero-vector, concluding the proof. ut

From Theorem 2 we can derive a corollary that brings this result in a closer
relationship with our optimization using the following definition.

Definition 7 (Implied control). Using the notation from Definition 5, we
say the first control is implied by the other controls if λi,j = 0 for i = 2m−1 − 1
and all j ∈ {0, . . . , 2n − 1}.

If one interprets the basis states as equal-length bitstrings representing vari-
able assignments of m+ n truth variables, then this condition intuitively states
that the implication x1 ∧ · · · ∧ xm−1 =⇒ x0 holds.

Corollary 1 (Sufficient condition for a control to be superfluous). If
the first control is implied by the other controls, it is superfluous.

The following main theorem shows that each of the three possible modifica-
tions, as described in Section 3.4, does not change the semantics of the circuit.

Theorem 3. Quantum constant propagation does not change the semantics rel-
ative to the initial configuration with all qubits in the |0〉 state.

Proof. Without loss of generality, we can assume that the optimization pass
detects the first one of m controlling qubits as superfluous. Depending on the
state of the first qubit, the optimization continues in three different ways.

(i) The first qubit is in |0〉: Here, different from the other two cases, not just
the controlling qubit is removed from the controlled gate, rather than the
entire gate is removed. Thus, we need to show

Cm(U) |Ψ〉 = |Ψ〉 .

Since all λi,j = 0 where i = 2m − 1 the sum on the right of Equation (2)
reduces to 0 and the claim follows.

(ii) The first qubit is in |1〉: Then the amplitude of all basis state with the first
qubit in |0〉 are equal to 0, i. e., λi,j = 0 where i = 2m−1 − 1 and for all
j ∈ {1, . . . , 2n − 1}. Consequently, the condition in Theorem 2 is satisfied,
and the first control qubit can safely be removed.

(iii) Otherwise: This case can only occur if the optimization found another qubit
j among the controlling ones such that the first qubit is only in |1〉 if the
j-th qubit is also in |1〉. Hence, the sufficient condition from Corollary 1 is
satisfied and here the first control qubit can be safely removed.

Altogether, this proves the correctness of the QCP optimization pass. ut

We continue with an analysis to show that QCP runs in polynomial time.

5 Running Time Analysis

Variable definition. For the rest of this section, let m be the number of gates in
the input circuit and n the number of qubits. Furthermore, let k be the maxi-
mum number of controls attached to any gate in the circuit. Each entanglement
group is limited in the number of basis states by the custom constant nmax.
The achieved asymptotic running time of our QCP is then established by the
following lemmas and the main theorem of this section.

Lemma 1. Control reduction runs in O(k2 · n) time.

Proof. As described in Section 3.4, the control reduction procedure consists of
three steps. First, scanning for classically determined qubits takes O(n · k) time
since the state of all controlling qubits needs to be determined and the entan-
glement group contains at most nmax basis states, which is constant. The factor
of n comes from retrieving the position and later the state of a specific qubit
within the entanglement group which comprises O(n) qubits, see also Table 1.

Second, the check for a combination where every controlling qubit is in |1〉,
requires splitting the controlling qubits into groups according to their entangle-
ment groups and then checking within each such group whether a combination
of all controlling qubits in |1〉 exists. There can be O(k) groups containing each
O(k) qubits in the worst case. For each such group, a basis state among the at
most nmax basis states where all contained controlling qubits are in |1〉, needs
to be found. This requires retrieving the position and then the state of the in-
dividual controlling qubits, which takes O(n) for each of those. Together, this
step runs in O(k2 · n).

For the third step of finding implications between qubits, we need to consider
every pair of qubits in each group already calculated for the previous step. For
each pair, we need to retrieve the position and state of the corresponding qubits
again, which takes O(n) times. Since there are O(k2) pairs to consider, this gives
us a running time of O(k2 · n) for this step.

Combined, the running time of the entire control reduction is O(k2 · n). ut

To perform the control reduction, the current quantum state needs to be
tracked. The running time required for that is given by the next lemma.

Lemma 2. The application of one gate requires O(n) time.

Proof. For multi-qubit (un- and controlled) gates, first the affected entanglement
groups need to be merged. With the results mentioned in Section 3, this requires
O(n) time considering that nmax is constant.

For uncontrolled gates, there are only single-qubit and two-qubit gates avail-
able in current quantum programming tools, hence, we consider the size of the
unitary that defines the transformation of those as constant. We first check
whether the number of basis states would exceed nmax after the application of
the gate; this can be done in O(n) by iterating over the basis states in the en-
tanglement group and counting the states relevant for the matrix multiplication.

For the application of the associated unitary, one must iterate over the states
in the entanglement group and add for each the corresponding states with their
modified amplitudes as described in Section 3.2. Since the number of states in
an entanglement group is bound by nmax and the unitary is constant in size,
this requires O(n) time. Checking the state of a specific qubit in a basis state
within the entanglement group comprising O(n) qubits requires O(n) time.

For the controlled case, the procedure is slightly more complicated, since the
unitary transformation shall only be applied to basis states where all controlling
qubits are satisfied. This can be done by filtering out the right states and then
applying the same procedure as above. Hence, since there are at most nmax

states, this does not change the overall running time. Consequently, the whole
application of one gate can be performed in O(n) time. ut

Theorem 4. QCP runs in O(m · k2 · n).

Proof. Lemma 1 and Lemma 2 show together, that processing one gate takes
O(k2 ·n+n) = O(k2 ·n) time. With m the number of gates present in the input
circuit, this gives us the claimed result. ut

In particular, this shows that the entire QCP runs in polynomial time which
we consider important for an efficient optimization. This is due to the restriction
of the number of states in each entanglement group since this number could
otherwise grow exponentially in the number of qubits, i. e., would be in O(2n).

6 Evaluation

The QCP, we propose, only applies control reduction and gate cancellation be-
cause of unsatisfiable controls. This may facilitate the elimination of duplicate
gates or rotation folding afterward— optimizations which we leave for existing
tools capable of this task. In more detail, with the evaluation presented here, we
pursue three objectives:

(i) Measure the effectiveness of QCP in terms of its ability to facilitate widely
used quantum circuit optimizers.

(ii) Show that QCP extends existing optimizations that also use the idea of con-
stant propagation, namely the Relaxed Peephole Optimization (RPO) [16].

(iii) Demonstrate the efficiency (polynomial running time) of QCP even when
processing circuits of large scale.

In the following, we describe the experiments performed to validate our objec-
tives, and afterward, we show and interpret their results. The corresponding
artifact [4] provides the means to reproduce the results reported here.

6.1 Experiments

The benchmark suite. To provide realistic performance numbers for our opti-
mization, we evaluate it on the comprehensible benchmark suite MQTBench [21].
This benchmark contains circuit representations of 28 algorithms at different ab-
straction levels; most are scalable in the number of qubits ranging from 2 to 129
qubits. We use the set of circuits at the target-independent level compiled with
Qiskit using optimization level 1. This results in a total number of 1761 circuits
of varying sizes.

Representation of numeric parameters. Due to considerations of practicability
and to avoid dealing with symbolic representations of numeric parameters of
gates, we convert the parameters to floats and introduce a threshold5 of ε = 10−8;
numbers that differ by less than this threshold are treated as equal, especially
numbers less than ε are treated equal to zero. Consequently, some gates in the
input circuits reduce to the identity gate; we remove those from the benchmark
circuit in a preprocessing step.

Test settings. For purpose (i), we evaluate the influence of QCP with different
values for nmax on optimization passes provided by three well-established and
widely accepted circuit optimizers—PyZX [14], Qiskit [20], and T|ket〉 [24]. For
that, we let those passes run on all benchmark circuits without QCP to create
results for a baseline; these numbers are compared with those resulting from first
processing the circuits with QCP for different nmax values and then applying
5 Based on personal discussion with Johannes Zeiher from the Max Planck Institute

for Quantum Optics, gate parameters can be realized with a precision of π · 10−3.

pyzx qiskit tket

0 400 800 1200 0 400 800 1200 0 400 800 1200

changed
failed

unchanged

circuits

st
at
u
s

Fig. 7. This shows how many circuits remained unchanged, changed, or failed due to
timeout (of one minute) or another error when first applying QCP with nmax = 1024
and then the corresponding optimization tool.

those passes. For purpose (ii), we compare the results of the optimization com-
posed by RPO and Qiskit with those when placing QCP before or after RPO
into this pipeline. The above comparisons are both conducted for two metrics,
namely gate count and control count. For purpose (iii), we record the running
times of QCP alone on each input circuit. All experiments are executed on a
server running Ubuntu 18.04.6 LTS with two Intel® Xeon® Platinum 8260 CPU
@ 2.40GHz processors offering in total 48 physical cores.

Pre-processing to fit circuit optimizer. Each circuit optimizer supports only a
specific gate set. Therefore, certain pre-processing is required to adapt the cir-
cuits to the circuit optimizer. This pre-processing includes parameter format-
ting, gate substitution, and gate decomposition. The latter modification leads to
a larger gate count than the input circuit. However, this larger gate count will
already be included in our baseline for each circuit optimizer and hence, will not
lead to a deterioration of the gate count through the optimization.

6.2 Results

Statistics of the benchmark suite. As mentioned in the previous section, we eval-
uate the QCP on 1761 circuits using between 2 and 129 qubits. The smallest
circuits comprise only two gates, whereas the largest circuit contains almost 4.9
million gates. However, except for 16 circuits, the majority contain less than 50
thousand gates. The entire benchmark comprises 23.3 million gates and 22.5 mil-
lion controls, of which approximately 17 thousand belong to a doubly controlled
X-gate and the rest to single-controlled gates. The preprocessing of the circuits
to make them suitable for the different circuit optimizers must be considered
a best-effort approach. Consequently, some circuits still could not be parsed by
the corresponding circuit optimizer. Figure 7 shows exemplarily how many of
the 1761 circuits failed either due to a timeout of one minute or another error,
remained unchanged regarding their gate count, or changed when first applying
QCP for nmax = 1024 and then the corresponding optimizer.

Improvement of standard optimizers. Figure 8 shows a summary of the first
experiment; the plots show how many more gates and controls, respectively,
could be removed in total over the entire benchmark utilizing QCP than just
using the corresponding optimizer alone. The plots for Qiskit and T|ket〉 show
that the reduction of gates and controls increases gradually with the value of

pyzx qiskit tket

1 2 4 8 16 32 64 128
256

512
1024

1 2 4 8 16 32 64 128
256

512
1024

1 2 4 8 16 32 64 128
256

512
1024

0

10000

20000

30000

0

10000

20000

0

250

500

750

1000

nmax

g
at

e
co

u
n

t
re

d
u

ct
io

n

pyzx qiskit tket

1 2 4 8 16 32 64 128
256

512
1024

1 2 4 8 16 32 64 128
256

512
1024

1 2 4 8 16 32 64 128
256

512
1024

0

5000

10000

15000

0

10000

20000

30000

0

200

400

600

nmax

co
n

tr
o

l
co

u
n

t
re

d
u

ct
io

n

Fig. 8. This plot depicts the aggregated number of gate count (top) and control
count (bottom) reduction relative to the baseline, respectively, when applying QCP
with different values for nmax (x-axis) and then the corresponding optimizer. Note
that a y-value greater than 0 corresponds to an improvement over the baseline of only
performing the corresponding optimization alone (i. e., PyZX, Qiskit, or T|ket〉).

nmax. Note that the absolute numbers for PyZX are smaller since PyZX fails on
a lot more circuits compared to the other two optimization tools. In any case, it
is evident from the plot that QCP improves the result of each optimizer.

Distributon of relative improvement. To show the impact of QCP in more detail,
we calculate the relative gate reduction for each circuit by dividing the absolute
gate reduction by the total gate count before optimization; analogously, we calcu-
late the relative control reduction for every gate. Only for those circuits that fall
into the category changed in Figure 7, we plot the respective distribution of the
relative gate and control count reduction. Figure 9 shows the histograms when
applying QCP with nmax = 1024 before each circuit optimizer. In those plots,
the width of each bin amounts to 0.02. We only plot these plots for nmax = 1024
because they look almost identical for other values of nmax. These plots show
that the impact of QCP is small on the majority of circuits. However, some
circuits benefit considerably, especially when applying the optimizer T|ket〉 af-
terward, which looks for patterns to replace with fewer gates; apparently, QCP
modifies the circuit such that more of those patterns occur in the circuit.

Interaction with RPO. RPO [16] propagates the initial state through the circuit
as long as the single qubits are in a pure state, see also Section 7. To achieve
this type of state propagation in our framework, a value for nmax of two suffices.
Still, QCP with nmax = 2 can track more information as RPO since also two
basis states can suffice to express multiple qubits that are in a superposition of
two basis states. Figure 10 and Figure 11 depict the mutual influence of RPO
and QCP. For values 1 and 2 for the parameter nmax, QCP does deteriorate
the results of RPO when applied before RPO. This is because RPO also im-
plements some circuit pattern matching together with circuit synthesis; when
QCP destroys such a pattern, this optimization can not be applied at this posi-

pyzx qiskit tket

0 10 20 30 40 50 0 50 100 150 200 0 20 40 60 80

0.00

0.25

0.50

0.75

Changed circuits

R
el

at
iv

e
g
at

e
co

u
n
t

re
d
u
ct

io
n
 (

%
)

pyzx qiskit tket

0 10 20 30 40 0 50 100 150 0 20 40 60 80

0.00

0.25

0.50

0.75

1.00

Changed circuits

R
el

at
iv

e
co

n
tr

o
l

co
u
n
t

re
d
u
ct

io
n
 (

%
)

Fig. 9. The relative reduction of gates (top) and controls (bottom) of the circuits that
appear in the category changed in the plot from Figure 7.

0e+00

1e+05

2e+05

3e+05

1 2 4 8 16 32 64 128
256

512
1024

nmax

g
at

e
co

u
n

t
re

d
u

ct
io

n

0e+00

1e+05

2e+05

3e+05

1 2 4 8 1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

nmax

c
o

n
tr

o
l

c
o

u
n

t
re

d
u

c
ti

o
n

Fig. 10. Those two plots show the reduction of gates and controls, respectively, when
applying QCP with different values for nmax (x-axis) after RPO and finally Qiskit.

tion anymore. However, for larger values for nmax, those plots show that QCP
finds additional optimization potential and is therefore not subsumed by RPO.
When looking at Figure 10, one can see that RPO even benefits QCP: In this
setting, approximately 10 times more gates can be removed compared to only
using QCP with Qiskit afterward. These remarkable results are mainly due to
two circuit families, namely qpeexact and qpeinexact, where RPO removes
some controlled gates with their technique in the first place and facilitates that
QCP can remove even more controlled gates.

Analysis of QCP alone. QCP only fails on six circuits, of which one is a timeout,
and five produce an error because of an unsupported gate. QCP needs the most
time on the grover and qwalk circuits; on all other circuits, it finishes processing
after at most 3.6 seconds. In general, the running time of QCP is high if it
must track high entanglement for many gates. Accordingly, Figure 12 shows the
running time of QCP on the circuits that belong to the family of Quantum

0

2000

4000

6000

1 2 4 8 16 32 64 128
256

512
1024

nmax

g
at

e
co

u
n

t
re

d
u

ct
io

n

0

1000

2000

3000

4000

5000

1 2 4 8 1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

nmax

c
o

n
tr

o
l

c
o

u
n

t
re

d
u

c
ti

o
n

Fig. 11. Those two plots show the reduction of gates and controls, respectively, when
applying RPO after QCP with different values for nmax (x-axis) and finally Qiskit.

Fourier Transform. Those produce maximum entanglement among the qubits
where all possible basis states are represented at the end of the circuit. The plot
displays the running time against the number of qubits. Note that the number of
gates, and therefore the size of the circuit, grows quadratically with the number
of qubits. A full simulation of those circuits would result in exponential running
time. The plots indicate that QCP circumvents the exponential running time
by limiting the number of basis states to express the state of an entanglement
group by nmax.

Explanation of outliers. The plot in Figure 12 shows outliers, especially for larger
values for nmax. Those outliers indicate an exponential running time cut-off at
a specific qubit count depending on the value of nmax. Considering the circuits
reveals that due to the generation pattern of those circuits, the chunk of gates
executed on the maximal possible entanglement gradually increases in size until
the qubit count where the running time drops again. For example, the maximum
outlier in the plot for nmax = 4096 is reached for 112 qubits. In this circuit, 271
gates are executed on the maximum entanglement comprising 4096 basis states
without increasing the entanglement before the gate that increases the entan-
glement above the limit is processed. In the circuit for one more qubit, i. e., 113
qubits, just 13 gates are executed on the largest possible entanglement. This is
due to the order in which the gates in the input file are arranged. In summary,
those practical running time measurements underpin our theoretical statements
from Section 5 since the exponential growth would continue unrestrained oth-
erwise. The results provided indicate differences from existing optimizations. In
the next section, we compare our proposed optimization with those and other
optimization techniques on a broader basis.

7 Related Work

Other (peephole) optimizations. Existing optimization tools [24,2,20] mostly look
for known patterns consisting of several gates that can be reduced to a smaller
number of gates with the same effect. A special case of those optimizations is
gate cancellation that removes redundant gates: Many of the common gates are
hermitian, i. e., they are self-inverse; when they appear twice directly after each

1024 2048 4096

128 256 512

16 32 64

0 50 100 0 50 100 0 50 100

0.00

0.05

0.10

0.00

0.05

0.10

0.15

0.0

0.5

1.0

1.5

0.00

0.05

0.10

0.00

0.05

0.10

0.15

0.0

0.2

0.4

0.00

0.05

0.10

0.00

0.05

0.10

0.15

0.0

0.1

0.2

qubits

ru
n
n
in

g
 t

im
e

[s
]

Fig. 12. This plot shows the running time of QCP for different values of nmax against
the number of qubits (x-axis). The outliers occur due to the structure in which the
circuits are generated; more details can be found in the text.

other, both can be dropped without influencing the semantics of the program.
When we applied the optimization tools mentioned at the beginning of this
paragraph on the circuit shown in Figure 1, none of those could reduce the
circuit to the equivalent empty circuit.

Bitwise simulation. As already mentioned in Section 3.2, the idea to use a hash
table to store the quantum state goes back to a simulator developed by Da
Rosa et al. [7]. They use a hash table in the same way as we described in
Section 3.2 with the basis states as keys and their associated amplitudes as
values. However, our approach improves upon theirs by keeping qubits separated
as long as they are not entangled following the idea in [3] and, hence, be able to
store some quantum states even more efficiently. In contrast, Da Rosa et al. use
one single hash table for the entire quantum state. Since they want to simulate
the circuit and not optimize it as we aim for, they do not change to > if the
computed quantum state becomes too complex. Consequently, their simulation
runs still in exponential time even though it is not exponential in the number of
qubits but rather in the degree of entanglement [7].

Initial-state optimizations. Circuit optimization tools developed by Liu et al. [16]
and Jang et al. [13] both take advantage of the initial state. Liu et al. leverage
the information on the single-qubit state which could be efficiently determined
at compile time [16]. They implement state automata to keep track of the single-

qubit information on each pure state for circuit simplifications. Single-qubit in-
formation is lost though when a multi-qubit gate is applied except for a few
special cases since a pure state could then turn into a mixed state. To tackle
this issue, users are allowed to insert annotations from which some single-qubit
information can be recovered. Our approach, however, avoids treating qubits as
independent of each other and tries to trace the global state of the quantum
system, enabling us not to lose all the information on qubits even after applying
a multi-qubit gate on them. The circuit optimizer proposed by Jang et al. aims
to remove redundant control signals from controlled gates based on the state in-
formation [13]. Instead of classical simulation, they repeatedly perform quantum
measurements at truncation points to determine state information. Besides, in
order to consider the noise of quantum computers, they set thresholds depending
on gate errors and the number of gates and drop observations that are below the
thresholds. Although their approach is lower in computational cost compared to
classical simulation, the fact that quantum measurements are needed disallows
their tool to run at the compile time only, since shipping circuits to the quantum
runtime is necessary for performing measurements. Additionally, in their scheme,
it is assumed that the controlled gate in the circuit is either a Toffoli gate or
a singly-controlled unitary operation denoted to avoid computations growing
exponentially, therefore gate decompositions are needed to guarantee that the
assumption holds. In contrast, our approach runs statically at compile time and
no prior assumption or pre-processing is required for the success of the analysis.
In addition, Markov et al. [17] and Vandersypen et al. [26] optimize their circuits
manually using arguments based on initial-state information.

Quantum abstract interpretation. Another point of view within the static analy-
sis of quantum programs was established by Yu and Palsberg [28]. They introduce
a way of abstract interpretation for quantum programs to verify assumptions on
the final state reached after the execution of the program, hence their focus is not
on the optimization of the circuit but rather to verify its correctness. Interest-
ingly, their approach to focus on a particular set of qubits mimics our separation
of entanglement groups, or to put it the other way around, our separation can be
seen as one instantiation of their abstract domain just that we allow to alter the
groups during simulation of the circuit instead of keeping them fixed over the
entire computation as they do. Consequently, our approach dynamically adapts
to the current circuit whereas Yu and Palsberg need to fix the set of qubits to
focus on statically for their quantum abstract interpretation.

Classical constant propagation. When designing our optimization we were in-
spired by constant propagation known from classical compiler optimizations for
interprocedural programs such as C/C++ programs [22]. However, our QCP
differs fundamentally from classical constant propagation: In our case, we just
need to pass the information along a linear list of instructions (the gates); the
problem here is the sheer mass of information that needs to be tracked. In the
classical case, the challenge is to deal with structural program elements such as
loops and conditional branches that prevent linearly passing information about

values. Here, a constraint system consisting of equations over an abstract domain
is derived from the program which then needs to be solved.

8 Conclusions

Summary. In our work, we take the idea of utilizing the most common execu-
tion condition of quantum circuits where the initial states of all qubits are in
|0〉 and propose our optimization, QCP, which simulates circuits in a restricted
but computationally efficient way and has demonstrated its power in one of the
circuit optimization tasks, namely control reduction. In addition, QCP works in
harmony with quantum computers: QCP runs in polynomial time and hence can
be executed efficiently on classical computers, the output of QCP, optimized cir-
cuits, which cannot be efficiently simulated on classical computers, are submitted
to quantum computers for execution. That is, we let the classical computer do
all where it is good at and leave only the rest for the quantum computer. The
success of QCP not only proves the value that resides within initial state in-
formation but also contributes to the research on quantum circuit optimization
based on methods of static analysis running on classical computers. It is already
clear that quantum circuits are expected to grow larger and larger, where build-
ing blocks containing multi-controlled gates will be heavily used. For example,
OpenQASM 3.0, a highly accepted Quantum assembly language for circuit de-
scription, allows users to write arbitrarily many controls for gates [6]. Therefore,
it is likely that our QCP will play to its strengths even more in the future.

Future Work. It is worthwhile to consider other abstract domains, e. g., the one
used by Yu and Palsberg [28] that keep partial information about the state and
still maintain the efficiency we desire. Additionally, it could be useful for QCP to
consider an abstract state of meta-superposition which stores possible states af-
ter the measurement in a probability distribution. The use of meta-superposition
would allow QCP to simulate circuits with intermediate measurements, i. e., mea-
surements that happen not at the end of the circuit. We also plan to incorporate
and evaluate the idea of the threshold from [13], so that QCP will be able to
discard basis states that are not significant to the simulation and will be indistin-
guishable from noise on a real quantum computer. Besides, currently QCP is not
able to detect when qubits become separable again after they were entangled.
Implementing such detection facilitates keeping more state information and thus
performs better optimizations. Another direction is to increase the capability of
the control reduction itself: For this, we want to generalize the ideas proposed
in [16] that use only pure state information of single qubits, to our setting. This
includes replacing fully simulated parts of the circuit by means of circuit syn-
thesis methods, such as KAK decomposition [25]. It is possible that performing
QCP causes a loss of opportunities for other optimizations. So, one might also
be interested to study how to determine the optimal order to perform different
optimization passes.

Acknowledgements

We thank our reviewers for their tremendous efforts and their helpful suggestions.
This has greatly improved the quality of this article. We are grateful to our
supervisor Helmut Seidl for many fruitful discussions and his support at all
times. Johannes Zeiher from Max Planck Institute of Quantum Optics has also
provided us with precious advice. This work has been supported in part by the
Bavarian state government through the project Munich Quantum Valley with
funds from the Hightech Agenda Bayern Plus.

References

1. Aaronson, S., Chen, L.: Complexity-Theoretic Foundations of Quantum Supremacy
Experiments (2016). https://doi.org/10.48550/ARXIV.1612.05903

2. Amy, M., Gheorghiu, V.: Staq – A full-stack quantum processing toolkit. Quantum
Sci. Technol. 5(3), 034016 (Jun 2020). https://doi.org/10.1088/2058-9565/ab9359

3. Bauer-Marquart, F., Leue, S., Schilling, C.: symQV: Automated Symbolic Verifi-
cation of Quantum Programs. In: Chechik, M., Katoen, J.P., Leucker, M. (eds.)
Formal Methods, vol. 14000, pp. 181–198. Springer International Publishing, Cham
(2023). https://doi.org/10.1007/978-3-031-27481-7_12

4. Chen, Y., Stade, Y.: Artifact for Quantum Constant Propagation (May 2023).
https://doi.org/10.5281/zenodo.8033829

5. Chow, J., Dial, O., Gambetta, J.: IBM Quantum breaks the 100-qubit pro-
cessor barrier. https://research.ibm.com/blog/127-qubit-quantum-processor-eagle
(Feb 2021)

6. Cross, A.W., Javadi-Abhari, A., Alexander, T., de Beaudrap, N., Bishop, L.S.,
Heidel, S., Ryan, C.A., Sivarajah, P., Smolin, J., Gambetta, J.M., Johnson, B.R.:
OpenQASM 3: A broader and deeper quantum assembly language. ACM Trans-
actions on Quantum Computing 3(3), 1–50 (Sep 2022). https://doi.org/10.1145/
3505636

7. Da Rosa, E.C.R., De Santiago, R.: Ket Quantum Programming. J. Emerg. Technol.
Comput. Syst. 18(1), 1–25 (Jan 2022). https://doi.org/10.1145/3474224

8. Farhi, E., Goldstone, J., Gutmann, S., Zhou, L.: The Quantum Approximate Opti-
mization Algorithm and the Sherrington-Kirkpatrick Model at Infinite Size. Quan-
tum 6, 759 (Jul 2022). https://doi.org/10.22331/q-2022-07-07-759

9. Feynman, R.P.: Simulating physics with computers. Int J Theor Phys 21(6),
467–488 (Jun 1982). https://doi.org/10.1007/BF02650179

10. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proc.
Twenty-Eighth Annu. ACM Symp. Theory Comput. - STOC 96. pp. 212–219. ACM
Press, Philadelphia, Pennsylvania, United States (1996). https://doi.org/10.1145/
237814.237866

11. Haferkamp, J., Hangleiter, D., Bouland, A., Fefferman, B., Eisert, J., Bermejo-
Vega, J.: Closing Gaps of a Quantum Advantage with Short-Time Hamiltonian
Dynamics. Phys. Rev. Lett. 125(25), 250501 (Dec 2020). https://doi.org/10.1103/
PhysRevLett.125.250501

12. Hidary, J.D.: Quantum Computing: An Applied Approach. Springer International
Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-83274-2

https://doi.org/10.48550/ARXIV.1612.05903
https://doi.org/10.48550/ARXIV.1612.05903
https://doi.org/10.1088/2058-9565/ab9359
https://doi.org/10.1088/2058-9565/ab9359
https://doi.org/10.1007/978-3-031-27481-7_12
https://doi.org/10.1007/978-3-031-27481-7_12
https://doi.org/10.5281/zenodo.8033829
https://doi.org/10.5281/zenodo.8033829
https://doi.org/10.1145/3505636
https://doi.org/10.1145/3505636
https://doi.org/10.1145/3505636
https://doi.org/10.1145/3505636
https://doi.org/10.1145/3474224
https://doi.org/10.1145/3474224
https://doi.org/10.22331/q-2022-07-07-759
https://doi.org/10.22331/q-2022-07-07-759
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1103/PhysRevLett.125.250501
https://doi.org/10.1103/PhysRevLett.125.250501
https://doi.org/10.1103/PhysRevLett.125.250501
https://doi.org/10.1103/PhysRevLett.125.250501
https://doi.org/10.1007/978-3-030-83274-2
https://doi.org/10.1007/978-3-030-83274-2

13. Jang, W., Terashi, K., Saito, M., Bauer, C.W., Nachman, B., Iiyama, Y., Okubo,
R., Sawada, R.: Initial-State Dependent Optimization of Controlled Gate Opera-
tions with Quantum Computer. Quantum 6, 798 (Sep 2022). https://doi.org/10.
22331/q-2022-09-08-798

14. Kissinger, A., van de Wetering, J.: PyZX: Large Scale Automated Diagrammatic
Reasoning. Electron. Proc. Theor. Comput. Sci. 318, 229–241 (May 2020). https:
//doi.org/10.4204/EPTCS.318.14

15. Knill, E.: Quantum Computing with Very Noisy Devices. Nature 434(7029), 39–44
(Mar 2005). https://doi.org/10.1038/nature03350

16. Liu, J., Bello, L., Zhou, H.: Relaxed Peephole Optimization: A Novel Compiler
Optimization for Quantum Circuits. In: 2021 IEEEACM Int. Symp. Code Gener.
Optim. CGO. pp. 301–314. IEEE, Seoul, Korea (South) (Feb 2021). https://doi.
org/10.1109/CGO51591.2021.9370310

17. Markov, I.L., Saeedi, M.: Constant-Optimized Quantum Circuits for Modular Mul-
tiplication and Exponentiation (Apr 2015)

18. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, first edn. (Jun 2012). https:
//doi.org/10.1017/CBO9780511976667

19. Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.H., Zhou, X.Q., Love, P.J.,
Aspuru-Guzik, A., O’Brien, J.L.: A variational eigenvalue solver on a photonic
quantum processor. Nat Commun 5(1), 4213 (Jul 2014). https://doi.org/10.1038/
ncomms5213

20. Qiskit contributors: Qiskit: An open-source framework for quantum computing
(2023). https://doi.org/10.5281/zenodo.2573505

21. Quetschlich, N., Burgholzer, L., Wille, R.: MQT Bench: Benchmarking Software
and Design Automation Tools for Quantum Computing (Sep 2022). https://doi.
org/10.48550/arXiv.2204.13719

22. Seidl, H., Wilhelm, R., Hack, S.: Compiler Design: Analysis and Transformation.
Springer Berlin Heidelberg, Berlin, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-17548-0

23. Shor, P.: Algorithms for quantum computation: Discrete logarithms and factoring.
In: Proc. 35th Annu. Symp. Found. Comput. Sci. pp. 124–134. IEEE Comput. Soc.
Press, Santa Fe, NM, USA (1994). https://doi.org/10.1109/SFCS.1994.365700

24. Sivarajah, S., Dilkes, S., Cowtan, A., Simmons, W., Edgington, A., Duncan, R.:
T$|$ket\rangle : A Retargetable Compiler for NISQ Devices. Quantum Sci. Tech-
nol. 6(1), 014003 (Jan 2021). https://doi.org/10.1088/2058-9565/ab8e92

25. Tucci, R.R.: An Introduction to Cartan’s KAK Decomposition for QC Program-
mers (Jul 2005)

26. Vandersypen, L.M.K., Steffen, M., Breyta, G., Yannoni, C.S., Sherwood, M.H.,
Chuang, I.L.: Experimental realization of Shor’s quantum factoring algorithm using
nuclear magnetic resonance. Nature 414(6866), 883–887 (Dec 2001). https://doi.
org/10.1038/414883a

27. Wu, X.C., Davis, M.G., Chong, F.T., Iancu, C.: QGo: Scalable Quantum Cir-
cuit Optimization Using Automated Synthesis (2020). https://doi.org/10.48550/
ARXIV.2012.09835

28. Yu, N., Palsberg, J.: Quantum abstract interpretation. In: Proc. 42nd ACM SIG-
PLAN Int. Conf. Program. Lang. Des. Implement. pp. 542–558. ACM, Virtual
Canada (Jun 2021). https://doi.org/10.1145/3453483.3454061

https://doi.org/10.22331/q-2022-09-08-798
https://doi.org/10.22331/q-2022-09-08-798
https://doi.org/10.22331/q-2022-09-08-798
https://doi.org/10.22331/q-2022-09-08-798
https://doi.org/10.4204/EPTCS.318.14
https://doi.org/10.4204/EPTCS.318.14
https://doi.org/10.4204/EPTCS.318.14
https://doi.org/10.4204/EPTCS.318.14
https://doi.org/10.1038/nature03350
https://doi.org/10.1038/nature03350
https://doi.org/10.1109/CGO51591.2021.9370310
https://doi.org/10.1109/CGO51591.2021.9370310
https://doi.org/10.1109/CGO51591.2021.9370310
https://doi.org/10.1109/CGO51591.2021.9370310
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.48550/arXiv.2204.13719
https://doi.org/10.48550/arXiv.2204.13719
https://doi.org/10.48550/arXiv.2204.13719
https://doi.org/10.48550/arXiv.2204.13719
https://doi.org/10.1007/978-3-642-17548-0
https://doi.org/10.1007/978-3-642-17548-0
https://doi.org/10.1007/978-3-642-17548-0
https://doi.org/10.1007/978-3-642-17548-0
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1038/414883a
https://doi.org/10.1038/414883a
https://doi.org/10.1038/414883a
https://doi.org/10.1038/414883a
https://doi.org/10.48550/ARXIV.2012.09835
https://doi.org/10.48550/ARXIV.2012.09835
https://doi.org/10.48550/ARXIV.2012.09835
https://doi.org/10.48550/ARXIV.2012.09835
https://doi.org/10.1145/3453483.3454061
https://doi.org/10.1145/3453483.3454061

	Quantum Constant Propagation

