
BREWasm: A General Static Binary Rewriting
Framework for WebAssembly

Shangtong Cao1⋆, Ningyu He2⋆, Yao Guo2, and Haoyu Wang3�

1 Beijing University of Posts and Telecommunications, China
2 Key Lab on HCST (MOE), Peking University, China

3 Huazhong University of Science and Technology, China
haoyuwang@hust.edu.cn

Abstract. Binary rewriting is a widely adopted technique in software
analysis. WebAssembly (Wasm), as an emerging bytecode format, has
attracted great attention from our community. Unfortunately, there is
no general-purpose binary rewriting framework for Wasm, and existing
effort on Wasm binary modification is error-prone and tedious. In this
paper, we present BREWasm, the first general purpose static binary
rewriting framework for Wasm, which has addressed inherent challenges
of Wasm rewriting including high complicated binary structure, strict
static syntax verification, and coupling among sections. We perform ex-
tensive evaluation on diverse Wasm applications to show the efficiency,
correctness and effectiveness of BREWasm. We further show the promis-
ing direction of implementing a diverse set of binary rewriting tasks based
on BREWasm in an effortless and user-friendly manner.

Keywords: WebAssembly, Binary Rewriting

1 Introduction

WebAssembly (Wasm) [58], endorsed by Internet giants like Google and Mozilla,
is an assembly-like stack-based low-level language, aiming to execute at native
speed. Portability of Wasm is achieved by the ability of being a compiling target
for mainstream high-level programming languages, e.g., C/C++ [61], Go [48],
and Rust [31]. Lots of resource-consumed and -sensitive software have been com-
piled to Wasm binaries and embedded in browsers [2], like 3D graphic engines
and scientific operations Beyond the browser, Wasm is moving towards a much
wider spectrum of domains, e.g., IoT [29], serverless computing [18], edge com-
puting [36], and blockchain and Web 3.0 [15].

The rising of Wasm has attracted massive attention from our research com-
munity. As an emerging instruction format, our fellow researchers have invested
huge effort into Wasm binary analysis, e.g., static analysis for vulnerability de-
tection [7], dynamic analysis based on program instrumentation [25], Wasm bi-
nary transformation [10], and binary optimization [9]. More or less, most exist-
ing studies rely on Wasm binary rewriting to achieve their goals. For example,

⋆ The first two authors contribute equally. Haoyu Wang is the corresponding author.

Wasabi [25] is a dynamic analysis framework against Wasm, which obtain the
runtime information of target binaries via instrumenting. However, due to the
case-specific demands of existing work, researchers need to implement a specific
set of rewriting rules from scratch, or even manually modify Wasm binaries,
which are error-prone. We, therefore, argue that a general purpose rewriting
framework is necessary to facilitate the research on Wasm binaries.

Binary rewriting is a general technique to modify existing executable pro-
grams, which is a well-studied direction for native binaries [33,16,13,59,30]. Un-
fortunately, there currently is no general-purpose binary rewriting framework for
Wasm. Implementing such a rewriting framework is challenging. First, Wasm is
unreadable and complicated in syntax. The low-level nature of such an assembly-
like language makes it extremely hard to reason about its original intention.
Though Wasm formally explains the functionalities of its 11 valid sections, the
syntax of them is highly structured and varies. As a user-friendly general rewrit-
ing framework, it should handle both the unreadability and the syntactic com-
plexity in a concise way, which is a natural contradiction. Second, modifying a
functionality in Wasm may require updating several sections accordingly. For
example, if a user intends to insert a new function, he has to update several
sections simultaneously. Manually updating all sections is fallible. Third, Wasm
enforces a strict verification before executing, while any violations against the
Wasm syntax during rewriting Wasm binaries will invalidate them. An invalid
Wasm binary cannot be loaded and executed at all. Therefore, the binary rewrit-
ing on syntactic level cannot be conducted in an arbitrary way.

This Work. In this paper, we implement BREWasm, a general-purpose bi-
nary rewriting framework for Wasm, consisting of:Wasm parser, section rewriter,
semantics rewriter, and Wasm encoder. Specifically, the Wasm parser and en-
coder are implemented based on our abstraction of Wasm binaries. Based on
these abstracted objects, the section rewriter is able to conduct fine-grained
rewriting, e.g., inserting/deleting a new object. The semantics rewriter further
combines them and offers another set of high-level APIs, where each of them
possesses rich semantics, like inserting a function. Thus, Wasm binaries can be
arbitrarily modified without considering the underlying complexity of syntax.

Based on benchmarks consisting of representative Wasm binaries, the evalua-
tion results show the efficiency, correctness, effectiveness, and real-world usability
of BREWasm. Specially, it is practical to achieve various kinds of complicated
Wasm binary rewriting tasks by combining the APIs provided by BREWasm, in-
cluding binary instrumentation, binary hardening, and mutation-based fuzzing.
Comparing with the cumbersome implementation of these specific tasks, the
work built on BREWasm is effortless and user-friendly.

Our contribution can be summarized as follows:

– To the best of our knowledge, we have implemented the first general purpose
Wasm binary rewriting framework, named BREWasm, which offers more
than 31 semantic APIs that are summarized from real-world usage scenarios.
It offers new insights for the design of binary rewriting tools.

(module
(type $type1 (func (param i32))) ;; declare types
(type $type2 (func (param i32) (result i32)))
(import "env" "sqrt" ;; import sqrt

(func $sqrt (type $type2))) ;; signature is type2
(import "env" "print" ;; import print

(func $print (type $type1)) ;; signature is type1
(func $start ;; entry function

(type $type1) ;; signature is type1
(local $var i32) ;; declare another local variable
local.get 0
local.set $var ;; assign $var with the param
loop ;; a new code block (#1)

block ;; a new code block (#2)
local.get $var ;; push $var on the stack
call $sqrt ;; call the imported sqrt
local.set $var ;; pop the return value to $var

end
local.get $var ;; push $var on the stack
i32.const 0 ;; push a 0 on the stack
i32.eq ;; if $var is equal to 0
br_if 1 ;; jump out of this function
local.get $var
i32.const 1 ;; push the offset of the callee
call_indirect (type $type2) ;; the callee is with type2
br 0 ;; jump to line 13, and restart the loop

end)
(table 5 5 funcref)
(elem (i32.const 1) func $print)) ;; The offset 1 corresponds to $print

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

extern int sqrt(int x);
extern void print(int x);

void start(int param){
int var = param;
while(1){

var = sqrt(var);
if(var == 0){

return;
}
print(var);

}
}

Fig. 1. A code snippet of WebAssembly in WAT text format with its source code.

– We perform extensive evaluation on diverse Wasm applications to show the
efficiency, correctness and effectiveness of BREWasm.

– We show that it is useful, effortless, scalable, and user-friendly to implement
a diverse set of binary rewriting tasks based on BREWasm.

To boost further research on Wasm binary rewriting, we release the imple-
mentation of BREWasm as well as the corresponding documentation at link.

2 Background

2.1 WebAssembly Binary

WebAssembly (Wasm) is an emerging cross-platform low-level language that can
be compiled from various programming languages, e.g., C/C++ [61], Rust [31],
and Go [48]. Wasm is designed to be effective and compact. It can achieve nearly
native code speed in performance with a sufficiently small size (100KB to 1MB
for an ordinary Wasm binary [32]). In addition, some official auxiliary tools are
proposed to facilitate the development of Wasm. For example, wasm2wat can
translate a Wasm binary into WebAssembly Text Format (WAT for short), and
wasm-validate [51] can validate the syntax of a Wasm binary.

Each Wasm binary is composed of sections with different functionalities.
Specifically, in a Wasm binary, functions are implemented in the code section,
and their signatures are declared in the type section. The function section
maintains a mapping from the index of each function to the index of its corre-
sponding type. Functions can also be imported from environment through the
import section, and be exported via the export function. Except for their
independent contexts, data stored in the global section, data section, and

https://github.com/security-pride/BREWasm

0 4

1 0

… …

Idx → TypeIdx

Function Section

(func $add (param i32) (result i32)
(local $var i32)
local.get 0
i32.const 1
i32.add

)

0 (i32) → (i32)

1 (i32) → (i64)

… …

TypeIdx → Type

Type Section

0 Code1

1 Code2

… …

Code Section
– ImportFuncNum

Locals

Instructions

Idx → Code

call 2

0 “sub”

1 “div”

2 “add”

… …

Custom Section

FuncIdx → name

Fig. 2. Function indexing is achieved by coupling several sections.

memory section can be accessed arbitrarily. To implement function point-
ers, Wasm designs an indirect call mechanism, where all possible callees have to
be declared in the table section and element section (also denoted as elem
section). Additionally, debugging information or third-party extensions will be
stored in the custom section, which has no effect on execution.

Sections can be further divided into vectors, the smallest unit that declares a
functionality. For example, Fig. 1 shows a code snippet of Wasm binary (shown
in WAT text format) as well as its source code in C. As we can see, L24 is a
vector belonging to type section, which declares a function signature. A vector
may have many attributes, e.g., the vector at L3 consists of its index ($type2),
parameters type (i32), and the return value type (i32). In Wasm, however, a
single semantics is often achieved by coupling several sections. Taking indexing
a function as an example, which is shown in Fig. 2. Once an internal function,
indexed by 2 in this example, is invoked by a call instruction, its readable
name can be indexed via the custom section. To obtain its signature, we need
a two-layer translation through the function section and the type section. Its
implementation can be accessed only via the code section. Note that, all imported
functions are located in front of normal functions, thus we need to subtract the
number of imported functions, which is 1 in this example, to obtain its real index
when indexing in the function section and the code section.

2.2 Binary Rewriting

Binary rewriting5 refers to the process of taking a binary as an input, rewriting
various parts of it, and generating another binary that is properly formatted.
The semantics of the rewritten program depends on the rewriting purpose and
strategy. This technique has been widely adopted in the software analysis direc-
tion, e.g., program instrumentation [28,41,8,22], binary enhancement [37,60,23],
and program transformation [10,47,5].

4 The second line, denoted by L2. We adopt such notations in the following.
5 In this work, the binary rewriting specifically refers to the static binary rewriting.

Semantics
Rewriter

Section
Rewriter

Offer APIs
Wasm
Binary

Rewritten
Wasm Binary

Offer APIs

Wasm
Parser

Wasm
Encoder

Obfuscation Auto Patch
GenerationInstrumentation

Application Scenarios

…Mutation

BREWasm

Fig. 3. The architecture and workflow of BREWasm.

Currently, some work specifically conducts rewriting against Wasm binaries.
For example, Wasabi [25] is a dynamic analysis framework of Wasm. It can dy-
namically obtain the runtime information of the target binary via instrumenting
Wasm instructions. Fuzzm [27] statically inserts stack canaries into the linear
memory to identify memory bugs by conducting fuzzing. SEISMIC [52] also con-
ducts instrumentation against Wasm binaries to determine whether the target
is a malicious mining program. At last, Wasm-mutate [4] is a binary mutation
tool. It integrates many different strategies for performing mutation on Wasm
binaries, e.g., deliberately inserting functions or a piece of memory. All of these
tools rely on binary rewriting to implement the core functionalities. However,
due to their case-specific demands, developers need to implement a specific set
of rewriting rules from scratch, or even manually modify Wasm binaries.

3 BREWasm

3.1 Overview

To the best of our knowledge, we have implemented the first general rewriting
framework against Wasm binaries, dubbed as BREWasm, whose architecture
and workflow are shown in Fig. 3. As we can see, BREWasm is composed of
four components: Wasm parser, section rewriter, semantics rewriter, and Wasm
encoder. Specifically, the Wasm parser takes a Wasm binary as an input, and
parses it as a list of objects. Based on these objects, the section rewriter is
able to conduct rewriting, e.g., inserting/deleting a new object or modifying
attributes of existing objects. It packs these fine-grained rewriting functions
into four basic APIs. The semantics rewriter combines these fine-grained APIs
and offers another set of high-level APIs, where each of them possesses rich
semantics, like inserting a function, and appending a piece of linear memory.
Through these exposed APIs, users can rewrite Wasm binaries for different goals,
e.g., obfuscation, instrumentation, or patch generation on vulnerabilities. Finally,
these updated objects will be encoded into a valid Wasm binary through the
Wasm encoder. The implementation of BREWasm is detailed in §4, and some
usage scenarios will be depicted in §5.5.

3.2 Challenges

Implementing a general rewriting framework against binaries is often challenging.
Because binaries are highly structured and have little semantic information to
guide the rewriting process. As for Wasm binaries, as we introduced in §2.1,
although Wasm supports inter-conversion between binary and text formats, it is
still infeasible to directly modify its text format for rewriting purposes. This can
be attributed to three points, i.e., complicated format, strict static verification,
and coupling among sections. We detail these three challenges in the following.

C1: Format Complexity. Conducting efficient and effective static binary rewrit-
ing is strongly correlated to the complexity of the rewritten binary. From Fig. 1,
we can observe that Wasm is a syntactic complicated format. Specifically, as
we introduced in §2.1, there are 11 valid sections defined under the current
specification [56]. Each section is composed of vectors, each of which is further
composed of several attributes. As an assembly-like language, each attribute
is indispensable and corresponds to a specific and unique meaning. Moreover,
these sections are highly structured. For example, for a vector in type section
(see L3 in Fig. 1), the attributes param and result are wrapped by a func,
which is further wrapped by the corresponding type. The same situation also
plays for other sections. Therefore, the syntactic complexity of Wasm makes it
exceptionally challenging to implement a general rewriting framework.

Our Solution: In order to enhance readability and facilitate the following
rewriting process, we implement a parser to translate the given Wasm binary
into an array of objects, each of which is composed of several attributes. During
the parsing process, we also omit some auxiliary strings, like the type and the
func at L3 of Fig. 1. Therefore, each highly structured and nested vector will
be translated into an object with several side-by-side attributes according to
its semantics. Binary rewriting can be easily performed by modifying objects.
Meanwhile, we also implement an encoder to conduct the opposite process, i.e.,
translating objects into a Wasm binary. Please see §4.1 for more details.

C2: Static Verification. Each Wasm binary will be thoroughly and strictly
verified statically before executing [17,57]. Such a static verification performs on
several aspects. For example, sections are composed of vectors, each of which
is indexed by an index. Thus, if a user inserts/deletes a vector, he has to up-
date vectors of the whole section to ensure the continuity of indices of vectors.
Moreover, as we mentioned in C1, the encoder has to reassemble objects and
complete the auxiliary strings that are discarded in the parsing process. Any
negligence will invalidate the rewritten Wasm binary.

Our Solution: To solve this problem, we implement a fixer that will be auto-
matically invoked after each time of invoking the APIs exposed by the section
rewriter. Specifically, the fixer is mainly responsible for repairing the incontinu-
ity for indices of the rewritten section. It can also fix some context-aware errors,
like increasing the limitation field (if necessary) to hold a newly inserted mem-
ory. After the encoding process, the official syntactic checker, wasm-validate, is
invoked to examine the validity. Please refer to §4.2.

C3: Sections Coupling. As we mentioned in §2.1, some functionalities should
be achieved by combining multiple sections. For example, if we add an extra
function in a Wasm binary, except for inserting its implementation in the code
section, we have to modify the function section and the type section to declare
its signature. Moreover, if the added function can be taken as the callee of a
function pointer, the table section and the elem section should also be updated
accordingly. Manually updating them is tedious and error-prone. Such a section
coupling raises another challenge for the user to achieve his intended goal.
Our Solution: To address the sections coupling problem, we abstract the cou-
pling between sections into a set of Wasm program semantics, i.e., global variable,
import and export, linear memory, function and custom content. Based on these
five semantics, we expose a set of APIs, e.g., insertInternalFunc, which takes
a function’s body and signature as inputs. Inside the API, we determine if the
signature already exists, and insert a new one if necessary. Then, we will insert
its declaration and implementation in the function section and the code section,
respectively. It is worth noting that if any reference relation goes wrong due to
indices mismatch, like the index of callee of a call is incremented by 1 due to
inserting a function, these reference relations will be repaired automatically after
each time of invoking APIs of the semantics rewriter. Please refer to §4.3.

4 Approach

In this section, we will introduce the technical details of components of BRE-
Wasm, and how we address the aforementioned challenges.

4.1 Wasm Parser & Wasm Encoder

Wasm has a highly structured and complicated format. Specifically, a Wasm bi-
nary is composed of sections, which is a vector of elements. Further, an element
consists of several fields according to the section where it locates. As we men-
tioned in C1, to facilitate the following rewriting process, we hide unnecessary
and verbose details and translate Wasm binaries in a semantically equivalent
format. Referring to the official Wasm specification, we formally define the rela-
tionships among sections, elements, and fields as shown in Fig. 4.

As we can see, each section is composed of a list of elements with the same
name, where elements are composed of several fields. Specifically, each custom
element is composed of a set of index-name pairs. These pairs can be parsed
as debugging information for different purposes, like keeping readable names of
functions, global variables, and a piece of data. Moreover, each type element con-
sists of three fields, indicating the function signature typeparam

∗ → typeresult
∗

is declared by the idxtype-th type element. The definitions of import elements
and export elements are similar. An import element indicates the idxfunc-th
function with the type declared by idxtype is imported from modulename and
named as name, while an export element refers to the idxfunc-th function is
exported as name, which can be invoked by the environment. Note that, an

Anonymous Author(s) 7

Section, Element & Field
Section S ::= element+

element ::= custom | type | import | function| table | memory

| global | export| start | elem | code | data

custom ::= (idxfunc|global|data name)∗

type ::= idxtype typeparam
∗ typeresult

∗

import ::= idxfunc module name idxtype

function ::= idxfunc idxtype

table ::= min | min max

memory ::= min | min max

global ::= idxglobal typeval mut val

export ::= idxexport name idxfunc

start ::= idxfunc

elem ::= idxelem offset idxfunc
∗

code ::= idxfunc local∗ instruction∗

data ::= idxdata offset initData

local ::= idxlocal typeval

instruction ::= op operand∗

Types & Literals
type∗ ::= i32|i64|f32|f64
mut ::= 0x00|0x01

module|name|initData ::= byte∗

op|operand ::= byte
idx∗|val|min|max|offset ::= u32

Figure 4 Formal definition of sections, elements and fields.

is declared by the idxtype-th type element. The definitions of import element and export214

element are similar. An import element indicates the idxfunc-th function with type declared215

by idxtype is imported from modulename and named as name, while an export element refers216

to the idxfunc-th function is exported as name, that can be invoked by the environment.217

Note that, the function element only declares a function’s index and its signature, where218

the implementations are defined by the code element. The min and max defined in memory219

elements jointly limit the available size of the linear memory, and data element declares220

that the initial value (initData) of the idxdata-th linear memory starts from the designated221

offset. Similarly, table elements and elem elements share the pattern, but idxfunc
∗ refers222

to callee indices for call_indirect instructions. Finally, a global element declares its value223

as val with type of typeval, where mut indicates whether its value can be updated by224

instructions. Two extra terms local and instruction are defined which are nestedly adopted225

in code elements.226

For each section, we have defined a class with its fields as attributes. Each elements is227

Fig. 4. Formal definition of sections, elements, and fields in Wasm.

function element only declares a function’s index and its signature, where the
implementations are defined in the corresponding code element. The min and
max defined in memory elements jointly limit the available size of the linear
memory, and each data element declares that the initial value (initData) of the
idxdata-th linear memory starts from the designated offset. Similarly, table ele-
ments and elem elements share the pattern, but idxfunc

∗ refers to callee indices
for call indirect instructions. Finally, a global element declares its value as val
with type of typeval, where mut indicates whether its value can be updated by
instructions. Two extra terms local and instruction are defined that are nestedly
adopted in code elements.

For each section, we have defined a class with its fields as attributes. Each
element is an object of the corresponding class. To this end, the Wasm parser is
able to translate a Wasm binary into a list of objects. For example, Listing 1.1
illustrates the parsed objects of the Wasm binary in Fig. 1.

As we can see from Listing 1.1, the Wasm parser translates each element and
packs them into their corresponding objects. The field names are hidden, but
we can obtain the corresponding value according to the definition in Fig. 4. For
example, L8 is a code element, its first parameter 2 indicates that it corresponds
to the implementation of the second function. According to L6, its type can
be indexed by 0, i.e., returns nothing but takes an i32 (declared at L2). The

second field of the code element is a list of local objects, each of which declares
the type and the value of local variables. Similarly, the third field declares all its
instructions, which are wrapped by Instruction objects. The first instruction
has an op valued as 0x20 and an operand as 0, corresponding to the local.get 0

at L11 in Fig. 1. Through the opposite direction, the Wasm encoder can translate
and reassemble these objects into a Wasm binary in a lossless way.

1 parsedWasm = [

2 Type(0, ["i32"], []),

3 Type(1, ["i32"], ["i32 "]),

4 Import(0, "env", "sqrt", 0),

5 Import(1, "env", "print", 0),

6 Function(2, 0),

7 # omit following instructions

8 Code(2, [Local(0, "i32")], [Instruction ("0 x20", [0]),

...]),

9 Table(5, 5),

10 Elem(0, 1, [1])

11]

Listing 1.1. Parsed objects of the Wasm binary of Fig. 1.

4.2 Section Rewriter

The section rewriter plays a vital role for BREWasm. It provides four basic
APIs that allow users to manipulate sections on fine-grained level, i.e., select,
insert, delete, and update. Through combining these four operations, users are
able to manipulate any elements or fields we mentioned in §4.1. The syntax for
these operations is formally expressed as follows:

select : elementtemplate → element∗

insert : element∗ × elementnew → true|false

delete : element∗ → true|false

update : field× fieldnew → true|false

Specifically, within the context after parsing the givenWasm binary, the select
takes an element template (elementtemplate) to filter out all elements conform-
ing to the elementtemplate. Note that the wild card, an understrike character, is
allowed when designating a field. For example, select(Type(, , [‘i32’]))

returns all type elements that return a single i32 without considering their ar-
guments. To this end, the object at L3 in Listing 1.1 instead of the one at L2
will be returned. Based on the selected results, the insert and delete can be
conducted to insert a new element (elementnew) after the designated one(s) and
delete the given elements, respectively. Take a concrete situation as an instance.
Against Listing 1.1, if a user wants to delete the first type element and insert a

new one, with arguments as i64 and returns as i32, he can write:

delete(select(Type(0, [‘i32’], [])))

insert(select(Type(, ,))[-1], Type(, [‘i64’], [‘i32’]))

, where the first statement deletes the object at L2 by an exact match, and the
second statement inserts a new type element after the last one. Moreover, the
update can be used to modify a field by a new value (fieldnew). Field values can
be retrieved by a dot operator, like getting values of an attribute in an object.
For example, the user intends to modify the returns as i64 on the just inserted
type element. He can invoke the following statement:

update(select(Type(, [‘i64’],[‘i32’])).resultType,[‘i64’])

, where the field typeresult is accessed by a dot operator with an identical name.
Though we can ensure the flexibility of them, the challenge C2 still occurs

and has to be addressed. For example, the max in memory elements declares
the maximum available space for the corresponding linear memory. It is possible
to update the initData in a data element resulting in exceeding the limitation.
Another example is that inserting a new or deleting an existing element from
any sections may lead to the incontinuity of indices. Both of these situations
invalidate the Wasm binary. Therefore, we implement a fixer that is automati-
cally invoked after each rewriting requests. The fixer can determine which section
should be fixed, identify the bugs resulting from rewriting requests, and fix them.
Therefore, C2 can be addressed after a flexible rewriting process.

1 # suppose params , results , locals , and instrs are given by

the user

2 # insert the type element

3 funcType = select(Type(_, params , results))

4 if funcType:

5 typeIdx = funcType [0]. typeIdx

6 else:

7 insert(select(Type(_, _, _))[-1], Type(_, params ,

results))

8 typeIdx = select(Type(_, _, _))[-1]. typeIdx

9 # insert the function element

10 insert(select(Function(_, _))[-1], Function(_, typeIdx))

11 # insert the code element

12 insert(select(Code(_, _, _))[-1], Code(_, local , instrs))

Listing 1.2. Append a function through APIs offered by the section rewriter.

4.3 Semantics Rewriter

Though the section rewriter allows users to rewrite elements and even their fields
on a fine-grained level without considering the indices continuity, users still have
to make effort to deal with the section coupling problem (see C3). For example,

Table 1. APIs exposed by the semantics rewriter.

Semantic Sections Representative API(s) Explanations

Global
Variables

Global

insertGlobalVariable

idx : u32
valType : i32|i64|f32|f64
mut : 0x00|0x01
initValue : u32

globalItem = Global(idx, valType, mut, initValue)
insert(select(Global(idx, _, _)), globalItem)

insert the type element
functype = select(Type(_, paramsType, resultsType))
if functype:

typeidx = functype.typeIdx
else:

typeidx = insert(select(Type(_, _, _))[-1], functype)
insert the import element
importFunc = Import(_, moduleName, funcName, typeidx)
if select(importFunc):

pass
else:

insert(select(Import(idx, _, _, _)), importFunc)

insert the global element
exportFunc = Export(_, funcName, funcidx)
if select(exportFunc):

pass
else:

insert(select(Export(idx, _, _)), exportFunc)

在section rewriter那里介绍
会判断是否重合

Import
&

Export

Type
Import
Export

insertImportFunction

idx : u32
moduleName : byte∗

funcName : byte∗

paramsType : (i32|i64|f32|f64)*
resultsType : (i32|i64|f32|f64)*

globalItem = Global(idx, valType, mut, initValue)
insert(select(Global(idx, _, _)), globalItem)

insert the type element
functype = select(Type(_, paramsType, resultsType))
if functype:

typeidx = functype.typeIdx
else:

insert(select(Type(_, _, _))[-1], functype)
typeidx = len(Type(_, _, _))[-1].typeIdx

insert the import element
importFunc = Import(_, moduleName, funcName, typeidx)
if select(importFunc):

pass
else:

insert(select(Import(idx, _, _, _)), importFunc)

insert the global element
exportFunc = Export(_, funcName, funcidx)
if select(exportFunc):

pass
else:

insert(select(Export(idx, _, _)), exportFunc)

在section rewriter那里介绍
会判断是否重合

insertExportFunction

idx : u32
funcName : byte∗

funcidx : u32

globalItem = Global(idx, valType, mut, initValue)
insert(select(Global(idx, _, _)), globalItem)

insert the type element
functype = select(Type(_, paramsType, resultsType))
if functype:

typeidx = functype.typeIdx
else:

typeidx = insert(select(Type(_, _, _))[-1], functype)
insert the import element
importFunc = Import(_, moduleName, funcName, typeidx)
if select(importFunc):

pass
else:

insert(select(Import(idx, _, _, _)), importFunc)

insert the global element
exportFunc = Export(_, funcName, funcidx)
if select(exportFunc):

pass
else:

insert(select(Export(idx, _, _)), exportFunc)

在section rewriter那里介绍
会判断是否重合

Linear
Memory

Memory
Data

appendLinearMemory

pageNum : u32

memory = select(Memory(_, _))
if memory.max != 0:

memory.max += pageNum

modify the initData of data
for data in select(Data(_, _, _))

dataEnd = data.offset + len(data.initData)
if data.offset <= offset and offset < dataEnd:

pre = data.initData[:offset – data.offset]
post = data.initData[offset – data.offset + len(bytes):]
data.initData = pre + bytes + post
return

otherwise, insert the data element
data = Data(_, offset, bytes)
insert(select(Data(_, _, _))[-1], data)

insert the import element
functype = Type(_, paramsType, resultsType)
if select(functype):

typeidx = functype.typeIdx
else:

typeidx = insert(select(Type(_, _, _))[-1], functype)
insert the function element
insert(select(Function(funcidx, _)), Function(funcidx, typeidx))
insert the code element
code = Code(funcidx, locals, funcBody)
insert(select(Code(funcidx, _, _)), code)

modifyLinearMemory

offset : u32
bytes : byte∗

memory = select(Memory(_, _))
if memory.max != 0:

memory.max += pageNum

modify the initData of data
for data in select(Data(_, _, _))

dataEnd = data.offset + len(data.initData)
if data.offset <= offset and offset < dataEnd:

pre = data.initData[:offset – data.offset]
post = data.initData[offset – data.offset + len(bytes):]
data.initData = pre + bytes + post
return

otherwise, insert the data element
data = Data(_, offset, bytes)
insert(select(Data(_, _, _))[-1], data)

insert the import element
functype = Type(_, paramsType, resultsType)
if select(functype):

typeidx = functype.typeIdx
else:

typeidx = insert(select(Type(_, _, _))[-1], functype)
insert the function element
insert(select(Function(funcidx, _)), Function(funcidx, typeidx))
insert the code element
code = Code(funcidx, locals, funcBody)
insert(select(Code(funcidx, _, _)), code)

Function

Type
Function
Code
Start
Table
Element

insertInternalFunction

funcidx : u32
paramsType : (i32|i64|f32|f64)*
resultsType : (i32|i64|f32|f64)*
locals : local*
funcBody : instruction*

memory = select(Memory(_, _))
if memory.max != 0:

memory.max += pageNum

modify the initData of data
for data in select(Data(_, _, _))

dataEnd = data.offset + len(data.initData)
if data.offset <= offset and offset < dataEnd:

pre = data.initData[:offset – data.offset]
post = data.initData[offset – data.offset + len(bytes):]
data.initData = pre + bytes + post
return

otherwise, insert the data element
data = Data(_, offset, bytes)
insert(select(Data(_, _, _))[-1], data)

insert the import element
functype = Type(_, paramsType, resultsType)
if select(functype):

typeidx = functype.typeIdx
else:

insert(select(Type(_, _, _))[-1], functype)
typeidx = len(Type(_, _, _))[-1].typeIdx

insert the function element
insert(select(Function(funcidx, _)), Function(funcidx, typeidx))
insert the code element
code = Code(funcidx, locals, funcBody)
insert(select(Code(funcidx, _, _)), code)

insertHookFunction

funcidx : u32
hookedFuncIdx : u32
funcBody : instruction*
paramsType : (i32|i64|f32|f64)*
resultsType : (i32|i64|f32|f64)*
locals : local*

code = select(Code(funcidx, _, _))
code.insert(code.select(Instruction(_, _)[offset]), instrs)

code = select(Code(funcidx, _, _))
Delete old instructions and insert new ones
code.delete(code.select(Instruction(offset, _, _)))
code.insert(code.select(Instruction(offset, _, _)), instr)

insert the hook function
hookFuncidx = insertInternalFunction(funcidx,

paramsType, resultsType, localVec, funcBody)
Modify call instruction
callInstr = Instruction(Call, hookedFuncidx)
newCallInstr = Instruction(Call, hookFuncidx)
importFuncNum = len(select(Import(_, _, _, _)))
for funcidx in range(importFuncNum, len(select(Code(_, _, _)))):

if funcidx != hookFuncidx:
funcInstrs = select(Code(funcidx, _, _)).instrs
for instr in funcInstrs:

if instr == Instruction(‘call’, hookedFuncidx)
instr.operands = hookFuncidx

modifyFunctionInstr

funcIdx : u32
offset : u32
instrs : instruction*

code = select(Code(funcidx, _, _))
code.insert(code.select(Instruction(_, _)[offset]), instrs)

code = select(Code(funcidx, _, _))
Delete old instructions and insert new ones
code.delete(code.select(Instruction(offset, _, _)))
code.insert(code.select(Instruction(offset, _, _)), instr)

insert the hook function
hookFuncidx = insertInternalFunction(funcidx,

paramsType, resultsType, localVec, funcBody)
Modify call instruction
callInstr = Instruction(Call, hookedFuncidx)
newCallInstr = Instruction(Call, hookFuncidx)
importFuncNum = len(select(Import(_, _, _, _)))
for funcidx in range(importFuncNum, len(select(Code(_, _, _)))):

if funcidx != hookFuncidx:
funcInstrs = select(Code(funcidx, _, _)).instrs
for instr in funcInstrs:

if instr == Instruction(‘call’, hookedFuncidx)
instr.operands = hookFuncidx

appendFunctionLocal

funcidx : u32
valType : i32|i64|f32|f64

funcName = select(Custom(funcidx=idx, _))
update(funcName, Custom(funcidx=idx, name))

code = select(Code(funcidx, _, _))
code.insert(code.select(Local(_, _))[-1], Local(_, valType))

Custom
Content

Custom
modifyFunctionName

funcidx : u32
name : byte∗

funcName = select(Custom(funcidx=idx, _))
update(funcName, Custom(funcidx=idx, name))

code = select(Code(funcidx, _, _))
code.insert(code.select(Local(_, _))[-1], Local(_, valType))

the indices mismatch occurs when indices for type elements are changed but
still referred by elements in other sections. Fixing them manually is fallible.
Moreover, to achieve a little complex functionality, it may be inconvenient for
users to solely adopt such fine-grained APIs offered by the section rewriter. Take
appending a function as an example, which is shown in Listing 1.2.

As we can see, L3 firstly checks if the given signature has been declared. If
it is, its index is kept (L5), or a new index is calculated by inserting it into the
type section (L7 to L8). Then, the user has to manually link the type index to
a function index by inserting a function element (L10). Finally, the implemen-
tation of the function is appended (L12). We can see that all newly inserted
elements have no concrete idx, which is because the fixer we mentioned in §4.2
can automatically calculate these indices.

From the instance, we can conclude that rewriting or updating a function-
ality of a Wasm binary always needs a series of combinations of APIs exposed
by the section rewriter. To ease the burden on users and improve the usabil-
ity, BREWasm provides another rewriter, named semantics rewriter. We have
conducted a comprehensive survey in real-world scenarios on applications that
require binary rewriting as the prerequisite. The survey has covered lots of repre-
sentative papers [27,25,52,10] and popular repos on GitHub [4,54]. Consequently,
as shown in Table 1, we have abstracted 5 semantics, which cover all 11 sections
and offer 31 APIs in total that can be used by these applications. Specifically,
the global semantics allows users to arbitrarily update values that can be ac-
cessed under the global scope. Through the import & export semantics, users
can import or export designated functions. The memory semantics can be used
to insert another piece of linear memory with a piece of initiated data, while
the function semantics mainly focuses on updating functions to achieve some
goals. Finally, through the custom semantics, users can update the debug in-
formation to perform obfuscation by changing names of functions. For example,
the 12-LOC listing 1.2 can be abstracted to:

appendInternalFunction(params, results, locals, instrs)

Though it is practical to enhance the usability of implementing some func-
tionalities through calling these 31 APIs, C3 requires another fixer that investi-
gates and maintains reference relations between elements across sections. There-
fore, after APIs have been invoked, another fixer will be automatically waked to
iterate sections and fix reference relations. Take the appendInternalFunction

as an instance, it will examine if any element in other sections has to be fixed.

We argue that the semantics rewriter is not limited by the scalability issue.
These APIs are concluded from real-world scenarios, which can satisfy most
needs. Moreover, it is intuitive and practical to implement case-specific semantics
APIs by users themselves through combining four APIs in the section rewriter.
The three challenges can be properly handled without their intervention. On the
one hand, as for C1, the Wasm parser can translate the given Wasm binary with
complicated syntax into a list of objects (see §4.1). On the other hand, the fix
against C2 and C3 is automatically conducted.

5 Implementation & Evaluation

5.1 Implementation

We have implemented BREWasm with over 4.3K LOC of Python3 code from
scratch. To avoid reinventing the wheel, some relied modules are based on open-
source GitHub projects. For example, integer literals in Wasm are encoded by
LEB128 algorithm [1]. To accelerate the encoding and decoding process, we
utilize the highly efficient cyleb128 library [39] implemented by Cython. We
have packaged BREWasm into a standard Python library, which can be easily
accessed and used by developers.

5.2 Research Questions & Experimental Setup

Our evaluation is driven by the following three research questions:

– RQ1 Is it efficient to conduct Wasm binaries rewriting through APIs exposed
by BREWasm?

– RQ2 Whether the APIs provided by BREWasm are implemented correctly
and effectively?

– RQ3 Can BREWasm be easily applied to real-world scenarios?

To answer these questions, we first selected 10 Wasm binaries from Wasm-
Bench [21], a well-known micro benchmark that collects tens of thousands of
Wasm binaries. The basic information for them is shown in Table 2. We believe
that these 10 binaries are representative. Specifically, they are compiled from
various mainstream programming languages, and cover two typical domains of
applying Wasm binaries, i.e., web scripts and standalone applications. Moreover,
they range in size from 3KB to 4MB, which can effectively reflect the ability of
BREWasm to handle Wasm binaries with different sizes. Though we can add
more Wasm binaries as candidates for the following evaluations, some APIs (e.g.,
insertHookFunction) require our manual effort to determine concrete param-
eters. Thus, considering such a trade-off, we argue that these 10 Wasm binaries
are representative for the whole ecosystem.

All experiments were performed on a server running Ubuntu 22.04 with a
64-core AMD EPYC 7713 CPU and 256GB RAM.

5.3 RQ1: Efficiency

As we mentioned in §4.3, to make it easier for users to conduct rewriting Wasm
binaries, the semantics rewriter exposes a total of 31 APIs, which cover all the
legal sections of Wasm. Therefore, a thorough evaluation on their efficiency is
essential to evaluate BREWasm’s usability. Based on each Wasm binary in
Table 2, we invoke each of 31 APIs with proper arguments 1,000 times. For
example, we call insertGlobalVariable to deliberately insert a global value at
the beginning of the global section. Then, we record how long it will take to finish

Table 2. Representative Wasm binaries.

Name Language Type Size (KB)

zigdom (B1) [6] C web 3
stat (B2) [55] C standalone 45
kindling (B3) [40] zig web 3,373
rustexp (B4) [38] Rust web 935
wasmnes (B5) [46] Rust web 82
base64-cli (B6) [53] Rust standalone 2,415
basic-triangle (B7) [45] Go web 1,394
clock (B8) [49] Go web 1,445
go-app (B9) [11] Go web 4,302
audio (B10) [50] Go web 8

the designated behavior, including all necessary stages, i.e., parsing, processing,
fix-up, and encoding. The timing results are listed in Table 3. It is worth noting
that in this experiment each API call requires a parsing process and an encoding
process. However, under real scenarios, they are one-shot overhead to complete
a given task through calling a series of APIs. Therefore, we list the parsing and
encoding times in the second and the third row, respectively.

On average, it takes around 1.3s and 0.5s to parse and encode a Wasm bi-
nary, respectively. Although we can see that it takes 6.6s to parse B9. However,
this is because the Wasm binary consists of more than one million instructions,
which will take up more than 100MB of space when converted to WAT format.
Therefore, under normal scenarios, we can conclude that the parsing and en-
coding time will not exceed 2 to 3 seconds in total, which is acceptable as a
one-shot overhead. Moreover, we can easily observe that each API takes only
milliseconds or even less than a millisecond. Interestingly, among all these APIs,
the operations related to insertion consume more time than other types of op-
erations. This is because inserting an entry into a section requires fixing indices
of subsequent entries to ensure continuity between indices. Also, the fixer under
the semantics rewriter will have to enumerate all sections to identify if there are
mismatched reference relations. Fortunately, these two fixing processes require
no manual intervention.

Such a high efficiency is due to our engineering implementation as well as
the time complexity. Specifically, four basic operations are defined in the sec-
tion rewriter. As the select requires iterating on the given section, its time
complexity is O(n), where n refers to the length of the corresponding section.
For the other three operations, their complexity are O(1) because we adopt the
hash table to store elements in sections. As for the semantics rewriter, the time
complexity of APIs varies and depends on the implementation. Take the most
extreme one, insertHookFunction, as an example. As we can see from Table 1,
the nested loop causes its time complexity to be O(n·m), where n and m are pro-
portional to the number of functions and their instructions. The time complexity
of other APIs are typically O(n).

Table 3. Consumed time (ms) of invoking APIs provided by the semantics rewriter,
as well as the parsing and the encoding time on each Wasm binary.

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

parsing 6.46 55.66 173.71 1,023.41 119.09 725.94 2,174.82 1,794.90 6,651.99 2.94
encoding 2.58 21.28 79.29 408.89 42.32 332.95 617.66 586.59 3,294.77 2.00

Global Variable
appendGlobalVariable 0.01 0.03 0.38 0.02 0.01 0.02 0.02 0.02 0.02 0.01
modifyGlobalVariable 0.06 1.08 1.34 24.14 1.83 48.43 37.07 37.57 123.13 0.04
deleteGlobalVariable 0.06 1.18 0.99 23.64 1.83 42.78 22.98 43.85 121.51 0.04
insertGlobalVariable 0.39 6.84 7.72 176.34 12.26 149.25 71.87 158.33 470.11 0.20

Import & Export
insertImportFunction 0.31 4.61 4.99 76.62 9.67 101.00 48.13 102.51 300.64 0.16

appendImportFunction 0.08 1.30 1.59 29.48 2.11 38.29 15.62 38.51 118.36 0.05
modifyImportFunction 0.07 1.35 1.10 23.30 1.79 36.41 16.58 37.37 124.53 0.05
deleteImportFunction 0.07 2.52 1.58 36.25 1.77 36.98 16.21 36.67 120.52 0.04
insertExportFunction 0.07 1.64 1.12 23.31 1.85 37.22 16.51 36.84 119.84 0.04

appendExportFunction 0.07 1.89 2.20 23.93 1.91 34.72 16.56 42.74 113.94 0.04
modifyExportFunction 0.07 1.16 0.91 22.11 1.79 34.43 15.88 36.44 132.07 0.04
deleteExportFunction 0.07 1.29 1.85 26.81 2.13 35.22 14.97 33.75 120.78 0.04

Linear Memory
appendLinearMemory 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01
modifyLinearMemory 0.01 0.02 0.01 0.03 0.02 0.02 0.03 0.02 0.02 0.01

Function
insertInternalFunction 0.33 4.48 4.49 65.43 8.16 100.77 47.59 99.82 318.12 0.17
insertIndirectFunction 0.38 4.64 5.87 89.97 10.11 131.80 63.39 132.27 429.44 0.21

insertHookFunction 0.74 9.88 10.87 176.79 20.58 260.23 119.99 261.16 833.86 0.40
deleteFuncInstr 0.09 0.92 2.30 23.25 1.94 32.90 17.11 33.74 121.37 0.05

appendFuncInstrs 0.07 0.86 1.32 23.55 1.81 35.42 17.90 35.13 122.17 0.04
insertFuncInstrs 0.08 0.94 1.95 24.39 1.99 33.39 16.26 33.91 126.50 0.06
modifyFuncInstr 0.08 0.88 2.04 22.69 2.23 34.58 16.80 34.50 121.72 0.05
appendFuncLocal 0.08 0.91 1.23 23.50 2.87 33.95 23.15 33.66 118.26 0.06

Custom Content
modifyFuncName 0.01 0.02 0.02 0.12 0.04 0.12 0.12 0.12 0.40 0.01
deleteFuncName 0.08 0.91 1.55 23.21 1.96 34.81 15.64 33.60 121.61 0.06
insertFuncName 0.07 0.84 1.77 23.66 1.98 33.73 15.75 34.73 115.16 0.05

modifyGlobalName 0.08 0.91 1.54 22.97 2.07 34.50 15.63 34.56 120.61 0.06
deleteGlobalName 0.07 0.84 1.14 25.27 1.84 34.71 16.14 33.63 114.15 0.05
insertGlobalName 0.08 0.94 1.05 23.53 2.81 36.37 16.06 33.16 120.71 0.06
insertDataName 0.07 0.92 1.20 26.87 1.98 70.41 14.94 35.27 119.47 0.05

modifyDataName 0.08 0.89 1.39 23.40 2.45 35.04 16.10 33.45 119.95 0.05
deleteDataName 0.07 0.86 3.44 23.03 2.21 35.92 15.63 34.45 126.69 0.05

RQ-1 Answer: BREWasm exposes 31 semantics APIs that can efficiently
achieve the corresponding goals. Though the parsing and the encoding processes
on aWasm binary take around 1.8 seconds, it is acceptable as a one-shot overhead
compared to the negligible time it takes to execute semantics APIs.

5.4 RQ2: Correctness & Effectiveness

Correctly and effectively achieving the corresponding goals through APIs plays
a vital role for BREWasm. However, it is insufficient to require only the cor-
rectness of the implementation of APIs in the section rewriter, which is due to
the section coupling problem (see C3 in §3.2). To evaluate the effectiveness of
APIs of the semantics rewriter, we pass each Wasm binary after invoking an
API shown in the first column of Table 3 to wasm-validate, an official syntax
validator. Then, we manually double checked all 310 (31 APIs * 10 Binaries)
cases to make sure the results are inline with the original intents.

According to the results, on the one hand, all rewritten Wasm binaries pass
the validation of wasm-validate, indicating valid syntax; on the other hand,
all 31 APIs perform correctly in their corresponding functionalities. Moreover,
all 31 APIs resolve the C2 and C3 correctly. For example, when the API
insertImportFunction is invoked, BREWasm not only rewrites the type sec-
tion (if necessary) and the import section according to the import function, but
also identifies if any instructions are affected, e.g., indices of the callee of call
instructions and the indirect function table in the element section. BREWasm
will automatically fix them to keep original semantics intact. Of course, all these
evaluated APIs are passed with valid arguments. If invalid arguments are passed,
e.g., inserting a function with a nonexistent index, the underlying select will re-
turn an empty list, leading to returning false by the following insert operation
(see the formal definitions of select and insert in §4.2).

RQ-2 Answer: Based on the results of the automated verification tool and
manual checks, we can conclude that these semantic APIs perform correctly in
both syntax and functionalities.

5.5 RQ3: Practicability

We next demonstrate the practicability of BREWasm by illustrating some real
scenarios that require rewriting Wasm binaries to achieve designated goals.

Case I: Binary Instrumentation. Binary instrumentation can be used to
collect various runtime information of a program. D. Lehmann et al. [25] have
implemented a dynamic analysis framework, named Wasabi, whose core is a
Wasm binary instrumentation module. It specifies instrumentation rules for in-
structions to obtain runtime information during execution. For example, against
a call, Wasabi inserts two functions (imported through the import section) be-
fore and after it, respectively, to record necessary information. Through APIs
provided by BREWasm, the equivalent functionality can be implemented easily,
as shown in Listing 1.3.

As we can see, L1 defines an instruction, i32.const 5, and L2 and L3 retrieve
the type of the callee, i.e., the function indexed by 5. Then, L5 and L6 construct
two function signatures according to the callee’s type. L8 invokes an API, named
appendImportFunction, to introduce a function, whose name is call pre be-
longing to a module named hooks, into import section. The same operation is

done in L10. Then, at L13, we construct a series of instructions, where the orig-
inal call is wrapped by the newly declared call pre and call post. At L16,
through another API, the original instruction will be replaced. Consequently,
BREWasm achieves equivalent binary instrumentation like what Wasabi does.

Due to the fixed pattern of instrumentation used in Wasabi, modifying the
underlying code is unavoidable to achieve other specific binary instrumentation
functionalities. In contrast, BREWasm provides a large number of instruction-
related general rewriting APIs, making it more flexible and convenient to im-
plement the required instrumentation functionalities. In addition, in §4.2, our
abstraction reduces the complexity of Wasm binaries, lowering the bars and the
learning costs of using BREWasm.

1 instrs = [Instruction ("i32.const", 5)]

2 calleeTypeidx = select(Function(5, _)).typeIdx

3 calleeType = select(Type(calleeTypeidx , _, _))

4 # construct call_pre and call_post

5 callPreFunctype = Type(_, ["i32"] + calleeType.typeArg ,

calleeType.typeRet)

6 callPostFunctype = Type(_, calleeType.typeArg , calleeType.

typeRet)

7 # insert declaration to import section

8 appendImportFunction ("hooks", "call_pre", callPreFunctype)

9 callPreFuncidx = select(Import(_, _, _, _))[-1]. funcIdx

10 appendImportFunction ("hooks", "call_post",

callPostFunctype)

11 callPostFuncidx = select(Import(_, _, _, _))[-1]. funcIdx

12 # replace the original call instruction

13 instrs.extend ([Instruction ("call", callPreFuncidx),

14 Instruction ("call", 5),

15 Instruction ("call", callPostFuncidx)])

16 modifyFuncInstr(Instruction ("call", 5), instrs)

Listing 1.3. Achieve binary instrumentation through APIs provided by BREWasm.

Case II: Software Hardening. Software hardening is to enhance the security
and stability of a program by updating it or implementing additional security
measures [44]. In Wasm, unmanaged data, like strings, is stored in the linear
memory, organized as a stack, and managed by a global variable representing
the stack pointer. Because little protection measures are designed and adopted,
traditional attacks, e.g., stack overflow, can exploit Wasm binaries leading to
out-of-bound read and write [43]. However, through BREWasm, developers can
easily conduct software hardening. For example, callee is originally potential for
buffer overflow. After the hardening, it is wrapped by hook, which inserts a stack
canary and validates its integrity around the invocation to callee. Listing 1.4
illustrates how to implement this goal via BREWasm.

As we can see, at L4, we randomly generate a canary number. Instructions
from L5 to L11, responsible for validating the integrity of canary, are proposed
by Fuzzm [27]. Similarly, the funcbody, the body of the function hook, defined

from L12 to L30 is also proposed by Fuzzm. To be specific, L12 to L18 deploys
the generated canary into the linear memory. From L19 to L22, it dynamically
generates the correct number of local.get according to the signature of the
callee, which is retrieved by the API getFuncFunctype. After the instruction
call $callee (L24), we insert the already defined canary validation piece as
the operand of a block instruction (L25). If the value of canary is unchanged,
indicating no buffer overflow, the instructions from L26 to L30 will restore the
stack and give the control back to caller.

1 # suppose calleeFuncIdx is given by the user

2 # the first global is a stack pointer

3 stackPointerIdx = 0

4 canary = random.randint(1, 10000)

5 canaryValidateInstrs = [

6 Instruction (" global.get", stackPointerIdx),

7 Instruction ("i64.load"),

8 Instruction ("i64.const", canary),

9 Instruction ("i64.eq"),

10 Instruction ("br_if", 0),

11 Instruction (" unreachable ")]

12 funcbody = [Instruction (" global.get", stackPointerIdx),

13 Instruction ("i32.const", 16),

14 Instruction ("i32.sub"),

15 Instruction (" global.set", stackPointerIdx),

16 Instruction (" global.get", stackPointerIdx),

17 Instruction ("i64.const", canary),

18 Instruction ("i64.store", canary)]

19 calleeTypeidx = select(Function(calleeFuncIdx , _)).typeIdx

20 calleeType = select(Type(calleeTypeidx , _, _))

21 for idx , _ in enumerate(calleeType.paramsType):

22 funcbody.append(Instruction ("local.get", idx))

23 funcbody.extend ([

24 Instruction ("call", calleeFuncIdx),

25 Instruction ("block", canaryValidateInstrs),

26 Instruction (" global.get", stackPointerIdx),

27 Instruction ("i32.const", 16),

28 Instruction ("i32.add"),

29 Instruction (" global.set", stackPointerIdx),

30 Instruction (" return ")])

31 insert HookFunction(calleeFuncIdx , calleeType.paramsType ,

calleeType.resultsType , funcbody , locals = [])

Listing 1.4. Achieve software hardening through APIs provided by BREWasm.

In Fuzzm, the stack canary protection is implemented in a similar way. How-
ever, since a function may have multiple exit points, Fuzzm modifies the control
flow of the function to have only one exit point. This might disrupt the original
semantics of the function. In contrast, BREWasm’s insertHookFunction pro-
vides a better solution for this issue, as it minimizes the modifications made to
the original function’s instructions in the Wasm binary.

Case III: Fuzzing. Fuzzing is an automated software testing technique that
can discover security and stability issues by using random files as input [34].
One of the widely adopted approaches to generate random files is mutation-
based, i.e., generating new files by mutating existing files. Wasm-mutate can
mutate the given Wasm binary while keeping semantic equivalence. One of its
mutation strategies is module structure mutation, e.g., introducing an isolated
function. This can also be easily done by BREWasm, as shown in Listing 1.5.

1 typeSecLen = len(select(Type(_, _, _)))

2 functype = select(Type(random.randint(0, typeSecLen), _, _

))

3 # construct a function according to a random signature

4 funcbody = []

5 for retType in functype.resultsType:

6 if retType == "i32":

7 funcbody.append(Instruction ("i32.const", 0))

8 elif retType == "i64":

9 funcbody.append(Instruction ("i64.const", 0))

10 elif retType == "f32":

11 funcbody.append(Instruction ("f32.const", 0.0))

12 elif retType == "f64":

13 funcbody.append(Instruction ("f64.const", 0.0))

14 # randomly insert the function

15 importFuncNum = len(select(Import(_, _, _, _)))

16 internalFuncNum = len(select(Function(_, _)))

17 funcNum = importFuncNum + internalFuncNum

18 insert InternalFunction(random.randint(importFuncNum ,

funcNum), functype.paramType , functype.resultType ,

funcbody , locals = [])

Listing 1.5. Achieve add function mutation through APIs provided by BREWasm.

As we can see, L1 and L2 randomly select a type serving as a function
signature. According to the designated signature, L4 to L13 construct the body
of the function by inserting meaningless instructions to ensure stack balance.
Finally, at L18, the generated function will be randomly inserted into the Wasm
binary, and the original semantic keeps intact.

There is no rewriting component in Wasm-mutate, thus achieving this goal
needs to decode and encode the relevant sections. In contrast, BREWasm parses
the entire Wasm binary into an object, which simplifies many extra operations.
Additionally, since BREWasm implements the semantics rewriter, inserting a
function only requires invoking a single API, without the need to rewrite the
relevant sections in turn as in Wasm-mutate.

Other Application Scenarios of BREWasm. Except for the three con-
crete applications we mentioned above, BREWasm can also be applied in other
scenarios, as summarized in Table 4.
Code Obfuscation. Some traditional code obfuscation methods can be imple-
mented. For instance, users can insert global variables or internal functions as

Table 4. Other application scenarios of BREWasm.

Scenario Applications Related Semantics APIs

Code Obfuscation
Opaque predicates obfuscation;
Memory encryption;
Debug info obfuscation

insertGlobalVariable

insertInternalFunction

modifyLinearMemory

modifyFuncName

Software Testing
Runtime testing;
WASI function testing

modifyFuncInstr

appendImportFunction

Program Repair Bug fixing
modifyFuncInstr

appendFuncLocal

Software optimization Instruction optimization
modifyFuncInstr

appendFuncLocal

opaque predicates [12] into a Wasm binary. Moreover, users can change the debug
information in the custom section, like obfuscating readable names of functions,
to make the Wasm binary unreadable for attackers.
Software Testing. The exposed APIs can also be used in software testing.
For example, Y. Zhang et al. [62] have proposed a method to mutate an instruc-
tion’s operands constantly to examine if the instruction follows the specification.
Through modifyFuncInstr, users can easily achieve operands rewriting. Users
can even call appendExportFunc to export the result of the instruction to alle-
viate the workload of results comparing. The same approach can be applied in
testing imported functions as well.
Program Repairing. BREWasm can be used to fix bugs in Wasm binaries
without source code. For example, BREWasm can insert a wrapper function
around addition instructions. Within the wrapper, as integer overflow can be
detected easily, users can choose to either correct results or raise an exception.
Software Optimization. Instructions optimization can be easily achieved. For
example, a piece of Wasm bytecode can be optimized with a higher-level opti-
mization during the compilation, which, however, requires accessing the source
code. In contrast, through the APIs offered by BREWasm, users can easily
match a piece of code with a pre-defined pattern. Then, through modifyFuncInstr
and appendFuncLocal, the code snippet can be updated to an optimized one.

RQ-3 Answer: Our exploration suggests that it is practical to achieve var-
ious kinds of complicated Wasm binary rewriting tasks by combing the APIs
provided by BREWasm. Comparing with the cumbersome implementation of
the specific tasks, the work built on BREWasm is effortless and user-friendly.

6 Related Work

Wasm Binary Analysis. As an emerging stack-based language, WebAssembly
can be applied inside or outside the browser [2]. Lots of work focused on Wasm
binary analysis [24,21,26,35,42,19,20]. For example, Lehmann and Pradel [24,21]
pay attention to the memory issues in Wasm, e.g., exploitable buffer overflow.

They found that some memory issues in the source code will still be exploitable in
compiled Wasm binaries. In addition, Quentin Stiévenart et al. [42] overcame the
challenges of dependency analysis at the binary level and presented an approach
to statically slice Wasm programs for the following analysis.
Static Binary Rewriting. Researchers have proposed lots of static rewrit-
ing tools against native programs [33,16,13,59,30]. Some of them, e.g., Alto [33],
SASI [16] and Diablo [13], can only rewrite programs with the assistance of debug
information or the ones compiled by a specific compiler. Recently, E9Patch [14]
proposes a control-flow-agnostic rewriting method that inserts jumps to trampo-
lines without the need to move other instructions, which significantly improves
the scalability and robustness. The Bytecode Alliance provides two tools, wasm-
parser [51] and wasm-encoder [51], for parsing and encoding Wasm binaries,
while using them would face the same challenge of Wasm binary complexity. As
a comparison, our proposed abstraction model in §4.1 could reduce the complex-
ity of Wasm binaries when implementing the section rewriting. To the best of
our knowledge, there is no static binary rewriting framework for Wasm yet.

7 Limitations & Discussion

Structured Control Flow Rewriting. Wasm adopts a special and compli-
cated control flow structure, named structured control flow [3]. Specifically, a
Wasm function is composed of a set of sequential or nested code blocks, each of
which has to be led by a block or loop instruction. Moreover, some instructions
can guide the control flow to the destination code blocks, like end and br. In
other words, by rewriting such instructions, BREWasm can handle the control
flow of Wasm binaries to some extent. However, to guarantee the semantic con-
sistency, users cannot simply change a block into a loop (which turns a normal
code block into a loop structure), but have to implement their own APIs with
four operations in the section rewriter we proposed, which is tedious, error-prone,
and case-specific. No existing work is able to rewrite the structured control flow
in a flexible and general way, which will be one of our future work.
Concerns about Reinventing Wheels. Some existing tools have similar de-
sign purpose or functionalities with BREWasm, thus there may have concerns
about reinventing wheels. We underline that all components in BREWasm are
irreplaceable. Specifically, wasm-parser and wasm-encoder are implemented by
the Bytecode Alliance official, however, directly adopting them will overwhelm
users. Though they can parse and encode the given Wasm binary and fully
support all sections defined in the specification, parsing and encoding require
approximately 1,300 and 800 lines of code, respectively. It is tedious and infea-
sible to compose a script with more than 2K LOC to conduct binary rewriting.
In addition, though Wasabi has implemented a wasabi wasm module, which is
able to conduct static instrumentation, it is insufficient in binary rewriting. On
the one hand, it is designed specifically for binary instrumentation, indicating
that it cannot implement removing or updating vectors in sections, which will
significantly hinder its ability in terms of binary rewriting. On the other hand, it

does not consider the section coupling challenge as we mentioned in C3. More-
over, some sections are not supported by its module, like the elem section. The
lack of ability on rewriting some sections will dramatically impact the flexibil-
ity of rewriting. Consequently, implementing BREWasm instead of combining
existing modules or tools does not indicate reinventing wheels.

8 Conclusion

We present BREWasm, a general binary rewriting framework for WebAssem-
bly. BREWasm can properly handle inherent challenges of Wasm binary rewrit-
ing, including the highly complicated binary structure, strict static syntax ver-
ification, and coupling among sections. Based on representative Wasm bina-
ries, BREWasm illustrates its efficiency and effectiveness in rewriting process.
Through three cases inspired by existing work and real-world scenarios, BRE-
Wasm also proves its practicality and usability.

Acknowledgement

We have great thanks to all anonymous reviewers and our shepherd, Prof. Jin-
gling Xue. This work was supported in part by National Key R&D Program of
China (2021YFB2701000), the National Natural Science Foundation of China
(grants No.62072046 and 62141208), and Xiaomi Young Talents Program.

References

1. Leb128 algorithm (Feb 2023), https://en.wikipedia.org/wiki/LEB128
2. official webpage (Feb 2023), https://webassembly.org/docs/use-cases/
3. structured control flow (Feb 2023), https://tinygo.org/docs/guides/

webassembly/

4. Alliance, B.: Github wasm-tools repository (Feb 2023), https://github.com/

bytecodealliance/wasm-tools/tree/main/crates/wasm-mutate

5. Becker, M., Baldin, D., Kuznik, C., Joy, M.M., Xie, T., Mueller, W.: Xemu: an
efficient qemu based binary mutation testing framework for embedded software.
In: Proceedings of the tenth ACM international conference on Embedded software.
pp. 33–42 (2012)

6. Bhattarai, S.: Github zig-wasm-dom repository (Feb 2023), https://shritesh.
github.io/zig-wasm-dom/

7. Brito, T., Lopes, P., Santos, N., Santos, J.F.: Wasmati: An efficient static vulner-
ability scanner for webassembly. Computers & Security 118, 102745 (2022)

8. Bruening, D., Amarasinghe, S.: Efficient, transparent, and comprehensive runtime
code manipulation. Ph.D. thesis, Massachusetts Institute of Technology, Depart-
ment of Electrical Engineering . . . (2004)

9. Cabrera Arteaga, J., Donde, S., Gu, J., Floros, O., Satabin, L., Baudry, B., Monper-
rus, M.: Superoptimization of webassembly bytecode. In: Companion Proceedings
of the 4th International Conference on Art, Science, and Engineering of Program-
ming. pp. 36–40 (2020)

https://en.wikipedia.org/wiki/LEB128
https://webassembly.org/docs/use-cases/
https://tinygo.org/docs/guides/webassembly/
https://tinygo.org/docs/guides/webassembly/
https://github.com/bytecodealliance/wasm-tools/tree/main/crates/wasm-mutate
https://github.com/bytecodealliance/wasm-tools/tree/main/crates/wasm-mutate
https://shritesh.github.io/zig-wasm-dom/
https://shritesh.github.io/zig-wasm-dom/

10. Cabrera-Arteaga, J., Monperrus, M., Toady, T., Baudry, B.: Webassembly diver-
sification for malware evasion. arXiv preprint arXiv:2212.08427 (2022)

11. Charriere, M.: LOFIMUSIC website (Feb 2023), https://lofimusic.app/

collegemusic-lonely

12. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resilient, and
stealthy opaque constructs. In: Proceedings of the 25th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. pp. 184–196 (1998)

13. De Sutter, B., De Bus, B., De Bosschere, K.: Link-time binary rewriting tech-
niques for program compaction. ACM Transactions on Programming Languages
and Systems (TOPLAS) 27(5), 882–945 (2005)

14. Duck, G.J., Gao, X., Roychoudhury, A.: Binary rewriting without control flow
recovery. In: Proceedings of the 41st ACM SIGPLAN conference on programming
language design and implementation. pp. 151–163 (2020)

15. eosio: eosio official website (Feb 2023), https://eos.io/
16. Erlingsson, U., Schneider, F.B.: Sasi enforcement of security policies: A retrospec-

tive. In: Proceedings of the 1999 workshop on New security paradigms. pp. 87–95
(1999)

17. Haas, A., Rossberg, A., Schuff, D.L., Titzer, B.L., Holman, M., Gohman, D., Wag-
ner, L., Zakai, A., Bastien, J.: Bringing the web up to speed with webassembly. In:
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation. pp. 185–200 (2017)

18. Hall, A., Ramachandran, U.: An execution model for serverless functions at the
edge. In: Proceedings of the International Conference on Internet of Things Design
and Implementation. pp. 225–236 (2019)

19. He, N., Zhang, R., Wang, H., Wu, L., Luo, X., Guo, Y., Yu, T., Jiang, X.: Eosafe:
Security analysis of eosio smart contracts. In: USENIX Security Symposium. pp.
1271–1288 (2021)

20. He, N., Zhao, Z., Wang, J., Hu, Y., Guo, S., Wang, H., Liang, G., Li, D., Chen,
X., Guo, Y.: Eunomia: Enabling user-specified fine-grained search in symbolically
executing webassembly binaries. arXiv preprint arXiv:2304.07204 (2023)

21. Hilbig, A., Lehmann, D., Pradel, M.: An empirical study of real-world webassembly
binaries: Security, languages, use cases. In: Proceedings of the Web Conference
2021. pp. 2696–2708 (2021)

22. Hundt, R.: Hp caliper: A framework for performance analysis tools. IEEE Concur-
rency 8(4), 64–71 (2000)

23. Kim, T., Kim, C.H., Choi, H., Kwon, Y., Saltaformaggio, B., Zhang, X., Xu, D.:
Revarm: A platform-agnostic arm binary rewriter for security applications. In:
Proceedings of the 33rd Annual Computer Security Applications Conference. pp.
412–424 (2017)

24. Lehmann, D., Kinder, J., Pradel, M.: Everything old is new again: Binary secu-
rity of webassembly. In: Proceedings of the 29th USENIX Conference on Security
Symposium. pp. 217–234 (2020)

25. Lehmann, D., Pradel, M.: Wasabi: A framework for dynamically analyzing we-
bassembly. In: Proceedings of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems. pp. 1045–
1058 (2019)

26. Lehmann, D., Pradel, M.: Finding the dwarf: Recovering pecise types from we-
bassembly binaries. In: Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation. pp. 410–425
(2022)

https://lofimusic.app/collegemusic-lonely
https://lofimusic.app/collegemusic-lonely
https://eos.io/

27. Lehmann, D., Torp, M.T., Pradel, M.: Fuzzm: Finding memory bugs through
binary-only instrumentation and fuzzing of webassembly (10 2021), https://

arxiv.org/pdf/2110.15433.pdf
28. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,

Reddi, V.J., Hazelwood, K.: Pin: building customized program analysis tools with
dynamic instrumentation. Acm sigplan notices 40(6), 190–200 (2005)

29. Mäkitalo, N., Mikkonen, T., Pautasso, C., Bankowski, V., Daubaris, P., Mikkola,
R., Beletski, O.: Webassembly modules as lightweight containers for liquid iot
applications. In: Web Engineering: 21st International Conference, ICWE 2021,
Biarritz, France, May 18–21, 2021, Proceedings. pp. 328–336. Springer (2021)

30. McSema: Github McSema repository (Feb 2023), https://github.com/

lifting-bits/mcsema
31. MDN: MDN web docs website (Feb 2023), https://developer.mozilla.org/

en-US/docs/WebAssembly/Rust_to_wasm
32. Musch, M., Wressnegger, C., Johns, M., Rieck, K.: New kid on the web: A study

on the prevalence of webassembly in the wild. In: Detection of Intrusions and
Malware, and Vulnerability Assessment: 16th International Conference, DIMVA
2019, Gothenburg, Sweden, June 19–20, 2019, Proceedings 16. pp. 23–42. Springer
(2019)

33. Muth, R., Debray, S.K., Watterson, S., De Bosschere, K.: alto: a link-time optimizer
for the compaq alpha. Software: Practice and Experience 31(1), 67–101 (2001)

34. Nagy, S., Nguyen-Tuong, A., Hiser, J.D., Davidson, J.W., Hicks, M.: Breaking
through binaries: Compiler-quality instrumentation for better binary-only fuzzing.
In: 30th USENIX Security Symposium (2021)

35. Naseem, F.N., Aris, A., Babun, L., Tekiner, E., Uluagac, A.S.: Minos: A lightweight
real-time cryptojacking detection system. In: NDSS (2021)

36. Nieke, M., Almstedt, L., Kapitza, R.: Edgedancer: Secure mobile webassembly
services on the edge. In: Proceedings of the 4th International Workshop on Edge
Systems, Analytics and Networking. pp. 13–18 (2021)

37. Payer, M., Barresi, A., Gross, T.R.: Fine-grained control-flow integrity through
binary hardening. In: Detection of Intrusions and Malware, and Vulnerability As-
sessment: 12th International Conference, DIMVA 2015, Milan, Italy, July 9-10,
2015, Proceedings 12. pp. 144–164. Springer (2015)

38. Pilfold, L.: Rustexp website (Feb 2023), https://rustexp.lpil.uk/
39. PyPI: PyPI cyleb128 library (Feb 2023), https://pypi.org/project/cyleb128/
40. Shenton, C.: Github kingling repository (Feb 2023), https://github.com/

cshenton/kindling
41. Srivastava, A., Eustace, A.: Atom: A system for building customized program anal-

ysis tools. In: Proceedings of the ACM SIGPLAN 1994 conference on Programming
language design and implementation. pp. 196–205 (1994)

42. Stiévenart, Q., Binkley, D.W., De Roover, C.: Static stack-preserving intra-
procedural slicing of webassembly binaries. In: Proceedings of the 44th Interna-
tional Conference on Software Engineering. pp. 2031–2042 (2022)

43. Stiévenart, Q., De Roover, C., Ghafari, M.: Security risks of porting c programs to
webassembly. In: Proceedings of the 37th ACM/SIGAPP Symposium on Applied
Computing. pp. 1713–1722 (2022)

44. Strackx, R., Piessens, F.: Fides: Selectively hardening software application com-
ponents against kernel-level or process-level malware. In: Proceedings of the 2012
ACM conference on Computer and communications security. pp. 2–13 (2012)

45. Suedmeier, E.: wasm-basic-triangle website (Feb 2023), https://shritesh.

github.io/zig-wasm-dom/

https://arxiv.org/pdf/2110.15433.pdf
https://arxiv.org/pdf/2110.15433.pdf
https://github.com/lifting-bits/mcsema
https://github.com/lifting-bits/mcsema
https://developer.mozilla.org/en-US/docs/WebAssembly/Rust_to_wasm
https://developer.mozilla.org/en-US/docs/WebAssembly/Rust_to_wasm
https://rustexp.lpil.uk/
https://pypi.org/project/cyleb128/
https://github.com/cshenton/kindling
https://github.com/cshenton/kindling
https://shritesh.github.io/zig-wasm-dom/
https://shritesh.github.io/zig-wasm-dom/

46. Takahiro: nes-rust-ecsy website (Feb 2023), https://takahirox.github.io/

nes-rust-ecsy/index.html

47. Tian, L., Shi, Y., Chen, L., Yang, Y., Shi, G.: Gadgets splicing: dynamic binary
transformation for precise rewriting. In: 2022 IEEE/ACM International Sympo-
sium on Code Generation and Optimization (CGO). pp. 155–167. IEEE (2022)

48. TinyGo: TinyGo official docs webpage (Feb 2023), https://tinygo.org/docs/

guides/webassembly/

49. Ts, J.: Github clockexample-go-webassembly repository (Feb 2023), https://

github.com/Yaoir/ClockExample-Go-WebAssembly

50. Turner, A.: Github wasm-by-example repository (Feb 2023), https:

//github.com/torch2424/wasm-by-example/tree/master/examples/

reading-and-writing-audio/demo/go

51. wabt: wabt tool website (Feb 2023), https://github.com/WebAssembly/wabt
52. Wang, W., Ferrell, B., Xu, X., Hamlen, K.W., Hao, S.: Seismic: Secure in-lined

script monitors for interrupting cryptojacks. In: Computer Security: 23rd European
Symposium on Research in Computer Security, ESORICS 2018, Barcelona, Spain,
September 3-7, 2018, Proceedings, Part II 23. pp. 122–142. Springer (2018)

53. wapm: base64-cli app in wapm (Feb 2023), https://takahirox.github.io/

nes-rust-ecsy/index.html

54. wasabi: Github wasabi repository (Feb 2023), https://github.com/danleh/

wasabi

55. WAVM: Github wavm repository (Feb 2023), https://github.com/WAVM/WAVM/
tree/master/Test/wasi

56. WebAssembly: WebAssembly specification webpage (Feb 2023), https://

webassembly.github.io/spec/core/binary/index.html

57. WebAssembly: WebAssembly static validation algorithm (Feb 2023), https://

webassembly.github.io/spec/core/appendix/algorithm.html

58. WebAssembly: WebAssembly website (Feb 2023), https://webassembly.org/
59. Williams-King, D., Kobayashi, H., Williams-King, K., Patterson, G., Spano, F.,

Wu, Y.J., Yang, J., Kemerlis, V.P.: Egalito: Layout-agnostic binary recompilation.
In: Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems. pp. 133–147 (2020)

60. Xu, Y., Xu, Z., Chen, B., Song, F., Liu, Y., Liu, T.: Patch based vulnerability
matching for binary programs. In: Proceedings of the 29th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis. pp. 376–387 (2020)

61. Zakai, A.: Emscripten: an llvm-to-javascript compiler. In: Proceedings of the ACM
international conference companion on Object oriented programming systems lan-
guages and applications companion. pp. 301–312 (2011)

62. Zhang, Y., Cao, S., Wang, H., Chen, Z., Luo, X., Mu, D., Ma, Y., Huang, G.,
Liu, X.: Characterizing and detecting webassembly runtime bugs. arXiv preprint
arXiv:2301.12102 (2023)

https://takahirox.github.io/nes-rust-ecsy/index.html
https://takahirox.github.io/nes-rust-ecsy/index.html
https://tinygo.org/docs/guides/webassembly/
https://tinygo.org/docs/guides/webassembly/
https://github.com/Yaoir/ClockExample-Go-WebAssembly
https://github.com/Yaoir/ClockExample-Go-WebAssembly
https://github.com/torch2424/wasm-by-example/tree/master/examples/reading-and-writing-audio/demo/go
https://github.com/torch2424/wasm-by-example/tree/master/examples/reading-and-writing-audio/demo/go
https://github.com/torch2424/wasm-by-example/tree/master/examples/reading-and-writing-audio/demo/go
https://github.com/WebAssembly/wabt
https://takahirox.github.io/nes-rust-ecsy/index.html
https://takahirox.github.io/nes-rust-ecsy/index.html
https://github.com/danleh/wasabi
https://github.com/danleh/wasabi
https://github.com/WAVM/WAVM/tree/master/Test/wasi
https://github.com/WAVM/WAVM/tree/master/Test/wasi
https://webassembly.github.io/spec/core/binary/index.html
https://webassembly.github.io/spec/core/binary/index.html
https://webassembly.github.io/spec/core/appendix/algorithm.html
https://webassembly.github.io/spec/core/appendix/algorithm.html
https://webassembly.org/

	BREWasm: A General Static Binary Rewriting Framework for WebAssembly

