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1 Introduction

Deep neural networks (DNNs) are currently the dominant technology in artificial
intelligence (AI) and have shown impressive performance in diverse applications
including autonomous driving [9], medical diagnosis [2], and text generation [10].
However, their black-box construction [46] and vulnerability against environmen-
tal and adversarial noise [57, 30] have raised concerns about their safety, when
deployed in the real world. Standard training [28] optimizes the model’s accuracy
but does not take into account desirable safety properties such as robustness [48],
fairness [18], and monotonicity [49]. The standard practice of testing and inter-
preting DNN behavior on a finite set of unseen test inputs cannot guarantee safe
and trustworthy DNN behavior on new inputs seen during deployment [59, 66].
This is because the DNN can misbehave if the inputs observed during deploy-
ment deviate even slightly from those in the test set [36, 20, 23].

To address these limitations, there is growing work on checking the safety of
DNN models [5, 52, 51, 53, 44, 70, 58, 68, 3, 27, 50, 65, 31, 62, 11, 61, 25, 43, 17, 42,
45] and interpreting their behavior [7], on an infinite set of unseen inputs using
formal certification. Testing and interpreting with formal methods provide a
more reliable metric for measuring a model’s safety than standard methods [12].
Formal methods can also be used during training [22, 38, 69, 74, 72, 40, 6] to guide
the model to satisfy desirable safety and trustworthy properties.
DNN certification problem. The certification problem consists of two main
components: (i) a trained DNN f , (ii) a property specification in the form of
a tuple (ϕ, ψ) containing symbolic formulas ϕ and ψ. Here the formula ϕ is a
precondition specifying the set of inputs on which, the DNN should not mis-
behave. The formula ψ is a postcondition that determines constraints that the
DNN outputs f(ϕ) [26] or its gradients f ′(ϕ) [33, 34] corresponding to the in-
puts in ϕ should satisfy, for its behaviors to be considered safe and trustworthy.
A DNN certifier tries to check whether f(ϕ) ⊆ ψ (or f ′(ϕ) ⊆ ψ) holds. Both
ϕ, ψ are typically specified as disjunctions of convex polyhedra. The property
specifications are domain dependent and usually designed by DNN developers.
Local vs global properties. The precondition ϕ for local properties defines
a local neighborhood around a sample input from the test set. For example,
given a test image correctly classified as a car by a DNN, the popular local
robustness property specifies that all images generated by rotating the original



Fig. 1: Neural network certification with abstract interpretation involves com-
puting an abstract element (in blue) containing the true network output f(ϕ)
(in white) at each layer using the corresponding abstract transformer.

image within ±5 degrees are also classified as a car [5]. In contrast, ϕ for global
properties does not depend upon a test input. For domains where the input
features have semantic meaning, e.g., air traffic collision avoidance systems [26]
or security classifiers [13], global properties can be specified by defining a valid
range for the input features expected in a real-world deployment. Certifying
global properties yields stronger safety guarantees, however, they are difficult to
formulate for popular domains, such as vision and NLP, where the individual
features processed by the DNN have no semantic meaning. While certifying local
properties is not ideal, the local certification results enable testing the safety of
the model on an infinite set of unseen inputs, not possible with standard methods.

2 Certification for Testing Model Safety

DNN certification can be seen as an instance of program verification (DNNs
can be written as programs) making it undecidable. State-of-the-art certifiers
are therefore incomplete in general. These certifiers can be formulated using the
elegant framework of abstract interpretation [15]. While abstract interpretation-
based certifiers can certify both local and global properties, for the remainder of
this paper, we focus on the certification of local properties as they are more com-
mon in real-world applications. Figure 1 shows the high-level idea behind DNN
certification with abstract interpretation. Here, the certifier is parameterized by
the choice of an abstract domain. The certifier first computes an abstract ele-
ment α(ϕ) ⊇ ϕ that includes the input region ϕ. Next, the analyzer symbolically
propagates α(ϕ) through the different layers of the network. At each layer, the
analyzer computes an abstract element (in blue) overapproximating the exact
layer output (in white) corresponding to ϕ. The element is computed by apply-
ing an abstract transformer that approximates the effect of the operations (e.g.,
ReLU, affine) applied at the layer. Propagation through all the layers yields an
abstract element g(α(ϕ)) ⊇ f(ϕ) at the output layer. Next, the certifier checks
if g(α(ϕ)) ⊆ ψ holds for the bigger region g(α(ϕ)). If the answer is yes, then
f(ϕ) ⊆ ψ also holds for the smaller region f(ϕ). Because of the overapproxima-
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Fig. 2: Development pipeline for building fast, accurate, and trustworthy DNNs.
Certification is used for testing model trustworthiness (green diamond).

tion, it can be the case that g(α(ϕ)) ⊆ ψ does not hold while f(ϕ) ⊆ ψ holds.
To reduce the amount of overapproximation, refinements [62, 53, 41, 47, 63, 68,
71] can be applied.

To obtain an effective certifier, it is essential to design an abstract domain
and corresponding abstract transformers such that g(α(ϕ)) is as close as pos-
sible to the true output f(ϕ) while g can also be computed in a reasonable
amount of time for practical networks. The classical domains, such as Poly-
hedra [16, 55] and Octagons [37, 54], used for analyzing programs are not well
suited for DNN certification. This is because the DNNs have a different struc-
ture compared to traditional programs. For example, DNNs have a large number
of non-linear assignments but typically do not have infinite loops. For efficient
certification, new abstract domains and transformers tailored for DNN certifi-
cation have been developed. Examples include DeepPoly [52], DeepZ [51], Star
sets [58], and DeepJ [33]. These custom solutions can scale to realistic DNNs with
upto a million neurons [39], or more than 100 layers [68], certifying diverse safety
properties in different real-world applications including autonomous driving [72],
job-scheduling [68], data center management [12], and financial modeling [32].

Incremental certification. By leveraging formal certification to check DNN
safety and trust, the development pipeline shown in Figure 2 can be employed [61]
to obtain fast, accurate, and trustworthy DNNs. First, a DNN is trained to maxi-
mize its test accuracy. Next, a domain expert designs a set of safety specifications
(e.g., robustness, fairness) defining the expected network behavior in different
real-world scenarios. If the model satisfies the desired specifications, then the
DNN is considered fit for deployment. Otherwise, it is iteratively repaired (e.g.,
by fine-tuning [1] or LP-solving [56]) till we obtain a fast, accurate, and trust-
worthy DNN. We note that repair is preferred over retraining as it is cheaper.
However, if a repair is not possible, then the DNN is retrained from scratch.
After deployment, the DNN is monitored to check for distribution shifts, gener-
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ating inputs not covered by the specifications. If a distribution shift is detected,
then new specifications are designed, and the model is repaired or retrained.

Domain experts usually design a large number of local properties (around
10-100K). Therefore, the certifier needs to be run several thousand times on the
same DNN. Further, as shown in Figure 2, the model repair is applied, before
or after deployment, in case the DNN does not satisfy the desired specifications.
The certifier is needed again to check the safety of the repaired model. Existing
certifiers do not scale in such a deployment setting: they can precisely certify
individual specifications in a few seconds or minutes, however, the certification
of a large and diverse set of specifications on a single DNN can take multiple
days to years or the certifier can run out of memory. Given multiple DNNs are
generated due to repair or retraining, it makes using existing certifiers for safe
and trustworthy development infeasible. The inefficiency is because the certifier
needs to be run from scratch for every new pair of specifications and DNNs.
A straightforward approach to overcome this limitation is to run the certifier
on several machines. However, such an approach is not sustainable due to its
huge environmental cost [67, 8]. Further, in many cases, large computational
resources are not available. For example, to preserve privacy, reduce latency, and
increase battery lifetime, DNNs are increasingly employed on edge devices with
limited computational power [64, 14]. Therefore, for sustainable, democratic, and
trustworthy DNN development, it is essential to develop new general approaches
for incremental certification to improve the certifier scalability, when certifying
multiple specifications and networks.

The main challenge in developing incremental certifiers is determining in-
formation that (i) can be reused across multiple specifications and DNNs to
improve scalability, and (ii) is efficient to compute and store. Recent works [19,
61] have developed general mechanisms to enable incremental certification by
reusing proofs across multiple specifications and DNNs. These methods can be
plugged into state-of-the-art certifiers based on abstract interpretation [52, 51]
to improve their scalability inside the development pipeline of Figure 2. [19] in-
troduced the concept of proof sharing across multiple specifications on the same
DNN. Proof sharing is based on the key insight that it is possible to construct a
small number of abstract elements as proof templates at an intermediate DNN
layer, that capture the intermediate proofs of a large number of specifications.
To certify a new specification, we run the certifier partially till the layer at which
the templates are available. If the intermediate proof is subsumed by an exist-
ing template, then the specification is proved without running the certifier till
the end, saving time and memory. The work of [61] introduced the concept of
proof transfer across similar networks obtained after incremental changes to an
original network (e.g., after fine-tuning [1]). The key insight behind this con-
cept is that it is possible to efficiently transfer the proof templates generated
on the original network to multiple similar networks, such that the transformed
templates capture the proofs of a large number of specifications on similar net-
works. The transferred templates can improve certifier precision and scalability
when certifying multiple specifications on similar networks. [60] considers incre-
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Fig. 3: Certified training involves computing the point z ∈ g(α(ϕ)) where the ro-
bust loss if maximum. The resulting loss is backpropagated through the certifier
code to update the model parameters.

mental certification for certifiers combining abstract interpretation with branch
and bound (BaB) [11] and uses the trace of BaB as proof templates to improve
certification speed across multiple similar DNNs.

3 Certification for Training Safe DNNs

DNNs trained to only maximize accuracy with standard training [28] are often
unsafe [36]. Next, we describe how certifiers can be leveraged during training to
obtain safe DNNs. While the description here applies to different safety proper-
ties, we focus on robustness as it is the most common property for safe training
considered in the literature. Robust training involves defining a robust loss func-
tion LR for each point x ∈ ϕ with the property that LR at x is ≤ 0 iff in the
DNN output z = f(x), the score zc for the correct class c is higher than all other
classes zi, i.e., zc > zi. The DNN is robust iff LR ≤ 0 for all x ∈ ϕ. The DNN
parameters can be updated during training to minimize the maximum value
of LR. This min-max formulation makes robust training a harder optimization
problem than standard training. Computing the worst-case robust loss exactly
requires computing f(ϕ) which is infeasible. Therefore an approximation of LR is
computed in practice. Adversarial training methods [36] compute a lower bound
on the worst-case robust loss by heuristically computing a point x ∈ ϕ at which
the robust loss is high. x is then added to the training dataset. On the other
hand, certified training [72, 38, 69, 74, 21, 6] methods compute an upper bound
on the worst-case robust loss using abstract interpretation-based DNN certifiers.
Figure 3 shows the high-level idea behind certified training which leverages the
output g(α(ϕ)) computed by the DNN certifier. Here one computes z ∈ g(α(ϕ))
where the robust loss is maximum and then updates the model with respect
to the resulting loss value. State-of-the-art certified training methods employ
differentiable certifiers [38, 51], which makes the computation of the worst-case
robust loss differentiable. As a result, the parameter updates are performed by
differentiating through the certifier code directly.

Since certified training computes an upper bound on the worst-case robust
loss when this loss is ≤ 0, the actual loss is also ≤ 0. This is not the case with
the lower bound computed by adversarial training. As a result, DNNs trained
with certified training achieve higher robustness guarantees than those trained
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with adversarial training [38]. They are also easier to certify than those trained
with adversarial and standard training. Even imprecise abstract domains such as
intervals give precise certification results for DNNs trained with certified train-
ing. The work of [4] theoretically shows the existence of two DNNs f, f ′ such
that (i) they have the same accuracy, and (ii) interval analysis achieves the same
certification results on f ′ as a more precise certifier on f .

Training with only the robust loss deteriorates model accuracy, therefore in
practice, robust loss is combined with standard accuracy loss during training us-
ing custom mechanisms [21]. While one would expect that training with precise
certifiers yields more accurate and robust DNNs than imprecise ones, as they
reduce the approximation error in computing the robust loss, in practice, the
highly imprecise interval domain performs the best for certified training. This is
because the optimization problem for training becomes harder with more com-
plex abstract domains [24]. Most certified training methods target robustness
with respect to norm-based changes to pixel intensities in images. Even with all
the progress in this direction, DNNs trained with state-of-the-art certified train-
ing methods [40, 6, 74] suffer significant loss of accuracy on popular datasets such
as CIFAR10 [29]. There have been conflicting hypotheses in the literature about
whether accuracy conflicts with norm-based robustness [59] or not [73]. The work
of [72] is the first to build a certified training method for challenging geometric
robustness by developing a fast geometric certifier that can be efficiently paral-
lelized on GPUs. Interestingly, the work shows that it is possible to achieve both
high accuracy and robustness on the autonomous driving dataset [9]. Therefore,
in certain practical scenarios, both high accuracy and safety may be achievable.

4 Certification for Interpreting DNNs

Abstract interpretation-based DNN certifiers [52, 51, 70] generate high-dimensional
abstract elements at different layers capturing complex relationships between
neurons and DNN inputs to prove DNN safety. However, the individual neurons
and inputs in the DNN do not have any semantic meaning, unlike the variables
in programs, therefore it is not clear whether the safety proofs are based on any
meaningful features learned by the DNN. If the DNN is proven to be safe but the
proof is based on meaningless features not aligned with human intuition, then
the DNN behavior cannot be considered trustworthy. While there has been a lot
of work on interpreting black-box DNNs, standard methods [46, 66] can only ex-
plain the DNN behavior on individual inputs and cannot interpret the complex
invariants encoded by the abstract elements capturing DNN behavior on an infi-
nite set of inputs. The main challenge in interpreting DNN proofs is in mapping
the complex abstract elements to human understandable interpretations.

The work of [7] is the first to develop a method for interpreting robustness
proofs computed by DNN certifiers. The method can interpret proofs computed
by different certifiers. It builds upon the novel concept of proof features that are
computed by projecting the high-dimensional abstract elements onto individual
neurons. The proof features can be analyzed independently by generating the
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corresponding interpretations. Since certain proof features can be more impor-
tant for the proof than others, a priority function over the proof features that
signify the importance of each individual proof feature in the complete proof is
defined. The method extracts a set of proof features by retaining only the more
important parts of the proof that preserve the property.

A comparison of proof interpretations for DNNs trained with standard and
robust training methods [36, 74, 6] on the popular MNIST [35] and CIFAR10
datasets [29] shows that the proof features corresponding to the standard net-
works rely on meaningless input features while the proofs of adversarially trained
DNNs [36] filter out some of these spurious features. In contrast, the networks
trained with certifiable training [74] produce proofs that do not rely on any spu-
rious features but they also miss out on some meaningful features. Proofs for
training methods that combine both empirical and certified robustness [6] not
only preserve meaningful features but also selectively filter out spurious ones.
These observations are empirically shown to be not contingent on any specific
DNN certifier. These insights suggest that DNNs can satisfy safety properties
but their behavior can still be untrustworthy.
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37. Miné, A.: The octagon abstract domain. High. Order Symb. Comput. 19(1), 31–100
(2006)

38. Mirman, M., Gehr, T., Vechev, M.: Differentiable abstract interpretation for prov-
ably robust neural networks. In: Proc. International Conference on Machine Learn-
ing (ICML). pp. 3578–3586 (2018)
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