
Abstract Interpretation in Industry – Experience
and Lessons Learned

Daniel Kästner1, Reinhard Wilhelm2, and Christian Ferdinand1

1 AbsInt GmbH, Science Park 1, 66123 Saarbrücken, Germany
kaestner@absint.com

2 Saarland University, Stuhlsatzenhausweg 69, 66123 Saarbrücken, Germany

Abstract. In this article we will give an overview of the development
and commercialization of two industry-strength Abstract Interpretation-
based static analyzers, aiT WCET Analyzer and Astrée. We focus on
development steps, adaptations to meet industry requirements and dis-
cuss criteria for a successful transfer of formal verification methods to
industrial usage.

Keywords: abstract interpretation, WCET analysis, runtime error anal-
ysis, functional safety, cybersecurity.

1 Introduction

Abstract interpretation is a formal method for sound semantics-based static pro-
gram analysis [8]. It supports formal correctness proofs: it can be proved that an
analysis will terminate and that it is sound in the sense that it computes an over-
approximation of the concrete program semantics. Abstract interpretation-based
static analyzers provide full control and data coverage and allow conclusions to
be drawn that are valid for all program runs with all inputs.

As of today, abstract interpretation-based static analyzers are most widely
used to determine non-functional software quality properties [23, 22]. On the
one hand that includes source code properties, such as compliance to coding
guidelines, compliance to software architectural requirements, as well as absence
of runtime errors and data races [34]. On the other hand also low-level code
properties are covered, such as absence of stack overflows and violation of timing
constraints [24, 25].

Violations of non-functional software quality requirements often either di-
rectly represent safety hazards and cybersecurity vulnerabilities in safety- or
security-relevant code, or they can indirectly trigger them. Corresponding veri-
fication obligations can be found in all current safety and security norms, such
as DO-178C [48], IEC-61508 [15], ISO-26262 [17], and EN-50128 [6].

Many formal verification tools, including abstract interpretation-based static
analyzers, originate from academic research projects. However, the transition
from academia into industry is far from straightforward. In this article we will
give an overview of our experience in development and commercialization of two

2 D. Kästner et al.

industry-strength sound analyzers, aiT WCET analyzer and Astrée. We will dis-
cuss the lessons learned, and present recommendations to improve dissemination
and acceptance in industrial practice.

2 Sound Worst-Case Execution Time Analysis

Time-critical embedded systems have deadlines derived from the physical envi-
ronment. They need assurance that their execution time does not exceed these
deadlines. Essential input to a response-time analysis are the safe upper bounds
of all execution times of tasks to be executed on the same execution platform.
These are commonly called Worst-case Execution times, WCET. The WCET-
analysis problem had a solution for architectures with constant execution times
for instructions, so-called Timing Schemata [54]. These described how WCETs
could be computed by structural induction over programs. However, in the 1990s
industry started using microprocessors employing performance-enhancing archi-
tectural components and features such as caches, pipelines, and speculation.
These made methods based on timing schemata obsolete. The execution-time
of an instruction now depended on the execution state in which the instruction
were executed. The variability of execution times grew with several architectural
parameters, e.g. the cache-miss penalty and the costs for pipeline stalls and for
control-flow mis-predictions.

2.1 Our View of and our Solution to the WCET-Analysis Problem

We developed the following view of the WCET-analysis problem for architec-
tures with state-dependent execution times: Any architectural effect that lets an
instruction execute longer than its fastest execution time is a Timing Accident.
Some of such timing accidents are cache misses, pipeline stalls, bus-access con-
flicts, and branch mis-predictions. Each such timing accident has to be paid for,
in terms of execution-time cycles, by an associated Timing Penalty. The size of a
timing penalty can be constant, but may also depend on the execution state. We
consider the property that an instruction in the program will not cause a par-
ticular timing accident as a safety property. The occurrence of a timing accident
thus violates a corresponding safety property.

The essence of our WCET-analysis method then consists in the attempt to
verify for each instruction in the program as many safety properties as possible,
namely that some of the potential timing accidents will never happen. The proof
of such safety properties reduces the worst-case execution-time bound for the
instruction by the penalties for the excluded timing accidents. This so-called
Microarchitectural Analysis, embedded within a complex tool architecture, is
the central innovation that made our WCET analysis work and scale. We use
Abstract Interpretation to compute certain invariants at each program point,
namely an upper approximation of the set of execution states that are possible
when execution reaches this program point and then derive safety properties,
that certain timing accidents will not happen, from these invariants.

Abstract Interpretation in Industry – Experience and Lessons Learned 3

2.2 The Development of our WCET-Analysis Technique

We started with a classifying cache analysis [1, 12], an analysis that attempts to
classify memory accesses in programs as either always hitting or always missing
the caches, i.e. instruction and data caches. Our Must analysis, used to identify
cache hits, computes an under-approximation of the set of cache states that may
occur when execution reaches a program point. Our May analysis determines
an over-approximation of this set of cache states. Both can be represented by
compact, efficiently updatable abstract cache states. At the start of the devel-
opment, the caches we, and everybody else, considered used LRU replacement.
This made our life easy, but application to real-life processors difficult since the
hardware logic for implementing LRU replacement is expensive, and therefore
LRU replacement is rarely used in real-life processors.

Involved in the European project Daedalus with Airbus we were confronted
with two processors using very different cache-replacement strategies. The first
processor, flying the Airbus A340 plane, was a Motorola Coldfire processor which
used a cheap emulation of a random-replacement cache. The second projected
to fly the A380 plane was a Motorola PowerPC 755. It used a Pseudo-LRU re-
placement strategy. We noticed that our cache analysis for the Coldfire processor
could only track the last loads into the cache, and that our cache analysis for
the PowerPC 755 could only track 4 out of the 8 ways in each cache set. This
inspired us to very fruitful research about Timing Predictability [60] and in par-
ticular to the first formal notion of timing predictability, namely that for caches
[50].

Next Stephan Thesing developed our pipeline analysis [39]. Unfortunately,
pipelines in real-life processors do not admit compact abstract pipeline states.
Therefore, expensive powerset domains are used. The pipeline analysis turned
out to be the most expensive part of the WCET analysis. A basic block could
easily generate a million pipeline states and correspondingly many transitions for
analysis. There was a tempting idea to follow only local worst-case transitions
and ignore all others. However, real-life processors exhibit Timing Anomalies
[51]. These entail that a local non-worst-case may contribute to a global worst
case.

In the Daedalus project, Airbus also asked for a modeling of their system
controller. So far, all WCET research had concentrated on processors. However,
a system controller contributes heavily to overall system timing and therefore
needs an accurate model and precise analysis [59].

The Micro-architectural analysis was applied to basic blocks, i.e. maximally
long straight-line code sequences that can only be entered at the beginning and
only be left at the end. The control flow, which had been extracted from the
binary executable [57], was translated into an Integer Linear Program (ILP)
[58]. The solution of this ILP presented a longest path through the program and
the associated execution time. This approach, termed Implicit Path Enumeration
Technique (IPET), had been adopted from [40].

At EMSOFT 2001 we presented our breakthrough paper [11]. In summary,
a generic tool architecture has emerged which consists of the following stages:

4 D. Kästner et al.

Decoding: The instruction decoder identifies the machine instructions and re-
constructs the call and control-flow graph.

Value analysis: Value analysis aims at statically determining enclosing inter-
vals for the contents of the registers and memory cells at each program point
and for each execution context. The results of the value analysis are used
to predict the addresses of data accesses, the targets of computed calls and
branches, and to find infeasible paths.

Micro-architectural analysis: The execution of a program is statically sim-
ulated by feeding instruction sequences from the control-flow graph to a
micro-architectural timing model which is centered around the cache and
pipeline architecture. It computes the system state changes induced by the
instruction sequence at cycle granularity and keeps track of the elapsing
clock cycles.

Path analysis: Based on the results of the combined cache/pipeline analysis
the worst-case path of the analyzed code is computed with respect to the
execution timing. The execution time of the computed worst-case path is the
worst-case execution time for the task.

We had shown that our sound WCET-analysis method not only solved the single-
core WCET-analysis problem, but was even more accurate than the unsound,
measurement-based method Airbus had previously used. This meant that their
worst-case execution times they had presented in certification had been reliable.
Consequently we collaborated with Airbus to satisfy their needs for a sound,
industrially viable WCET analysis.

2.3 Improvements

Although the results of our our analysis were already quite accurate, over-
estimating the ever observed worst-case execution times by roughly 25%, Airbus
wanted more accurate results. Also the integration into industrial development
processes needed consideration and some effort.

Increasing Precision Programs are known to spend most of their time in
(recursive) procedures and in loops. The IPET approach using worst-case ex-
ecution times of basic blocks as input was theoretically pleasing, but lost too
much accuracy at the border between basic block and between loop iterations.
Controlled loop unrolling increased the accuracy by the necessary extent. How-
ever, until today we confuse the competition by using the IPET approach in our
explanations.

Often, the software developers knew what they were doing, i.e., they knew
properties of their software that influenced execution time, but which were not
explicit in the software. Our tool offered to be instructed by adding annotations
to the software. Some annotations were even absolutely necessary, like loop and
recursion bounds if those could not be automatically derived by our Value Anal-
ysis, essentially an interval analysis [9], modified to work on binary programs.
We will later see that annotations could be automatically inserted if the WCET-
analysis tool had been integrated with a model-based design tool.

Abstract Interpretation in Industry – Experience and Lessons Learned 5

Integration with Model-Based Design and Schedulability Tools Much
of the safety-critical embedded software is developed using Model-based Design
(MBD) tools. These automatically generate code from models specified by the
software developer. When our WCET tool aiT is integrated with such a MBD
tool, model information can be automatically inserted as annotations. Also ap-
proximate timing information can be provided on the model level to the devel-
oper by back annotation during the development process.

The determined WCETs are typically input into a schedulability analysis.
Consequently, aiT has been integrated with several such tools.

2.4 Tool Qualification

Whenever the output of a tool is either part of a safety-critical system to be
certified or the tool output is used to eliminate or reduce any development or
verification effort for such a system, that tool needs to qualified [22]. Safety norms
like DO-178C and ISO 26262 impose binding regulations for tool qualification;
they mandate to demonstrate that the tool works correctly in the operational
context of its users and/or that the tool is developed in accordance to a safety
standard. To address this, a Qualification Support Kit has been developed, which
consists of several parts.

The Tool Operational Requirements (TOR) document lists the tool functions
and technical features which are stated as low-level requirements to the tool
behavior under normal operating conditions. Additionally, the TOR describes
the tool operational context and conditions in which the tool computes valid
results. A second document (Tool Operational Verification and Validation Cases
and Procedures, TOVVCP) defines a set of test cases demonstrating the correct
functioning of all specified requirements from the TOR. Test case definitions
include the overall test setup as well as a detailed structural and functional
description of each test case. The test part contains an extensible set of test
cases with a scripting system to automatically execute them and generate reports
about the results. These tests also include model validation tests, in fact, a
significant part of the development effort for aiT is to validate the abstract
hardware model; [25] gives an overview.

In addition, the QSK provides a set of documents that give details about
the AbsInt tool development and verification processes and demonstrate their
suitability for safety-critical software.

2.5 Impact in Industry and Academia

A painful insight was that hardly any two WCET customers of AbsInt used
the same hardware configuration in his systems. The costs for an instantiation
of our WCET-analysis technology for a new processor can take quite an effort,
making the resulting tool by necessity quite expensive. Still, aiT has been suc-
cessfully employed in industry and is available for a variety of microprocessors
ranging from simple processors like ARM7 to complex superscalar processors
with timing anomalies and domino effects like Freescale MPC755, or MPC7448,

6 D. Kästner et al.

and multi-core processors like Infineon AURIX TC27x. Our development of a
sound method that actually solved a real problem of real industry was considered
a major success story for the often disputed formal-methods domain. AbsInt be-
came the favorite partner for the industrialization of academic prototypes. First,
Patrick Cousot and his team offered their prototype of Astrée, which in co-
operation with some of the developers has been largely extended by AbsInt –
more about this in Sec. 3. Then, we entered a cooperation with Xavier Leroy on
the result of his much acclaimed research project, CompCert, the first formally
verified optimizing C compiler [30, 29]. The CompCert front-end and back-end
compilation passes, and their compositions, are all formally proved to be free
of miscompilation errors. The property that is formally verified, using machine-
assisted mathematical proofs, is semantic preservation between the input code
and output code of every pass. Hence, the executable code CompCert produces
is proved to behave exactly as specified by the formal semantics of the source C
program. Both Astrée and CompCert are now available as AbsInt products.

2.6 Application to Non-Timing-Predictable Architectures

Multi-core processors with shared resources pose a severe problem for sound
and precise WCET analysis. To interconnect the several cores, buses, meshes,
crossbars, and also dynamically routed communication structures are used. In
that case, the interference delays due to conflicting, simultaneous accesses to
shared resources (e.g. main memory) can cause significant imprecision. Multi-
core processors which can be configured in a timing-predictable way to avoid
or bound inter-core interferences are amenable to static WCET analysis [27, 63,
64]. Examples are the Infineon AURIX TC275 [16], or the Freescale MPC 5777.

The Freescale P4080 [13] is one example of a multi-core platform where the in-
terference delays have a huge impact on the memory access latencies and cannot
be satisfactorily predicted by purely static techniques. In addition, no public
documentation of the interconnect is available. Nowotsch et al. [46] measured
maximal write latencies of 39 cycles when only one core was active, and max-
imal write latencies of 1007 cycles when all eight cores were running. This is
more than 25 times longer than the observed single-core worst case. Like mea-
suring task execution on one core with interference generators running on all
other cores, statically computed WCET bounds will significantly overestimate
the timing delays of the system in the intended final configuration.

In some cases, robust partitioning [64] can be achieved with approaches ap-
proaches like [53] or [46]. For systems which do not implement such rigorous
software architectures or where the information needed to develop a static tim-
ing model is not available, hybrid WCET approaches are the only solution.

For hybrid WCET analysis, the same generic tool architecture as described
in Sec. 2.2 can be used, as done in the tool TimeWeaver [37]. It performs Ab-
stract Interpretation-based context-sensitive path and value analysis analysis,
but replaces the Microarchitectural Analysis stage by non-intrusive real-time
instruction-level tracing to provide worst-case execution time estimates. The
trace information covers interference effects, e.g., by accesses to shared resources

Abstract Interpretation in Industry – Experience and Lessons Learned 7

from different cores, without being distorted by probe effects since no instrumen-
tation code is needed. The computed estimates are upper bounds with respect to
the given input traces, i.e., TimeWeaver derives an overall upper timing bound
from the execution time observed in the given traces. This approach is compliant
to the recommendations of CAST-32a and AMC 20-193 [7, 10].

2.7 Spin-off: Worst-case Stack Usage Analysis

In embedded systems, the run-time stack (often just called ”the stack”) typi-
cally is the only dynamically allocated memory area. It is used during program
execution to keep track of the currently active procedures and facilitate the
evaluation of expressions. Each active procedure is represented by an activation
record, also called stack frame or procedure frame, which holds all the state
information needed for execution.

Precisely determining the maximum stack usage before deploying the sys-
tem is important for economical reasons and for system safety. Overestimating
the maximum stack usage means wasting memory resources. Underestimation
leads to stack overflows: memory cells from the stacks of different tasks or other
memory areas are overwritten. This can cause crashes due to memory protection
violations and can trigger arbitrary erroneous program behavior, if return ad-
dresses or other parts of the execution state are modified. In consequence stack
overflows are typically hard to diagnose and hard to reproduce, but they are a
potential cause of catastrophic failure. The accidents caused by the unintended
acceleration of the 2005 Toyota Camry illustrate the potential consequences of
stack overflows: the expert witness’ report commissioned by the Oklahoma court
in 2013 identifies a stack overflow as probable failure cause [3, 61].

The generic tool architecture of Sec. 2.2 can be easily adapted to perform
an analysis of the worst-case stack usage, by exchanging the Microarchitectural
analysis step with a dedicated value analysis for the stack pointer register(s)
[24]. In 2001, the resulting tool, called StackAnalyzer, was released, which was
the first commercial tool to safely prove the absence of stack overflows in safety-
critical systems, and since then has been widely adopted in industry.

3 Sound Runtime Error Analysis

The purpose of the Astrée analyzer is to detect source-level runtime errors due to
undefined or unspecified behaviors of C programs. Examples are faulty pointer
manipulations, numerical errors such as arithmetic overflows and division by
zero, data races, and synchronization errors in concurrent software. Such errors
can cause software crashes, invalidate separation mechanisms in mixed-criticality
software, and are a frequent cause of errors in concurrent and multi-core appli-
cations. At the same time, these defects also constitute security vulnerabilities,
and have been at the root of a multitude of cybersecurity attacks, in particular
buffer overflows, dangling pointers, or race conditions [31].

8 D. Kästner et al.

3.1 The Origins

Astrée stands for Analyseur statique de logiciels temps-réel embarqués (real-time
embedded software static analyzer). The development of Astrée started from
scratch in Nov. 2001 at the Laboratoire d’Informatique of the École Normale
Supérieure (LIENS), initially supported by the ASTRÉE project, the Centre
National de la Recherche Scientifique, the École Normale Supérieure and, since
September 2007, by INRIA (Paris—Rocquencourt).

First industrial applications of Astrée appeared two years after starting the
project. Astrée has achieved the following unprecedented results on the static
analysis of synchronous, time-triggered, real-time, safety critical, embedded soft-
ware written or automatically generated in the C programming language:

– In Nov. 2003, Astrée was able to prove completely automatically the absence
of any RTE in the primary flight control software of the Airbus A340 fly-by-
wire system.

– From Jan. 2004 on, Astrée was extended to analyze the electric flight control
codes then in development and test for the A380 series.

– In April 2008, Astrée was able to prove completely automatically the ab-
sence of any RTE in a C version of the automatic docking software of the
Jules Vernes Automated Transfer Vehicle (ATV) enabling ESA to transport
payloads to the International Space Station [4].

In Dec. 2009, AbsInt started the commercialization of Astrée in cooperation
with LIENS, in particular Patrick Cousot, Jérôme Feret, Laurent Mauborgne,
Antoine Miné, and Xavier Rival.

3.2 Further Development

From a technical perspective, the ensuing development activities can be grouped
into several categories:

Usability The original version of Astrée was a command-line tool, however,
to facilitate commercial use, a graphical user interface was developed. The pur-
pose is not merely to make the tool more intuitive to use, but – even more
importantly – to help users understand the results. Astrée targets corner cases
of the C semantics which requires a good understanding of the language, and it
shows defects due to behavior unexpected by the programmer. To facilitate un-
derstanding the unexpected behavior, we have developed a large set of graphical
and interactive exploration views. To give some examples, all parents in the call
stack, relevant loop iterations or conditional statements that lead to the alarm
can be accessed by mouse click, tool tips show the values of values, the call
graph can be interactively explored, etc. [28]. In all of this, there is one crucial
requirement: all views and graphs have to be efficiently computable and suitable
for large-scale software consisting of millions of lines of code [20].

Further usability enhancements were the integration of a preprocessor into
Astrée (the original version read preprocessed C code), automated preprocessor

Abstract Interpretation in Industry – Experience and Lessons Learned 9

configuration based on JSON compilation files, Windows support, and the ability
to classify and comment findings from the GUI.

Apart from easy usability, an important requirement of contemporary de-
velopment processes is the ability to integrate a tool in a CD/CI (continu-
ous development / continuous integration) platform. To support this, Astrée
can be started from the command line with full functionality, the configura-
tion is given as an XML file which can be automatically created, results can
be exported in machine-readable formats (xml, csv, html) that support post-
processing. Furthermore, there is a large number of plugins and tool couplings
which have been developed, e.g., to model-based development tools like Mat-
lab/Simulink/TargetLink [26, 38], as well as CI tools and IDEs such as Jenkins,
Eclipse, and Keil µVision.

Formal Requirements The primary use-case of Astrée is to find defects in
safety-critical or security-relevant software, hence the same tool qualification re-
quirements apply as described in Sec. 2.3. So, the development of a Qualification
Support Kit for Astrée was a mandatory; its structure is similar to the aiT QSK
as described above.

Another constraint is that in certain safety processes, no code modifications
are allowed which cannot be traced to functional software requirements. Also, in
the case of model-based software development, where the code is automatically
generated, it is infeasible to modify the source code to interact with a static
analyzer.

Astrée provides numerous analysis directives that allow users to interact with
the tool, e.g., to pass certain preconditions such as constraints on input value
ranges or volatile variable ranges to the analyzer. Alarms can be classified (e.g.,
as true defect or false alarms) via source code comments or analysis directives.
Finally Astrée’s domains have been specifically developed to support fine-grained
precision tuning to eliminate false alarms. One example is the trace partitioning
domain, a generic framework that allows the partitioning of traces based on the
history of the control flow [52]. By inserting analysis directives into the code,
users can influence the partitioning strategy of the analyzer for limited parts of
the code.

To also support use cases where code modifications are infeasible, a formal
language AAL has been developed [36] which provides a robust way to locate
analyzer directives in the abstract syntax tree without modifying the source
code. It is also possible to automatically generate such annotations from the
build environment or an interface specification.

New Capabilities

Interleaving Semantics and Integration Analysis While the first versions of As-
trée targeted sequential code, most of today’s industry applications are multi-
threaded. In such software systems, it is highly desirable to be able to do runtime

10 D. Kästner et al.

error analysis at the integration verification stage, i.e., to analyze the entire soft-
ware stack in order to capture the interactions between all components of the
system, determine their effect on data and control flow and detect runtime errors
triggered by them.

To support this, Antoine Miné has developed a low-level concurrent se-
mantics [42] which provides a scalable sound abstraction covering all possible
thread interleavings. The interleaving semantics enables Astrée, in addition to
the classes of runtime errors found in sequential programs, to report data races
and lock/unlock problems, i.e., inconsistent synchronization. The set of shared
variables does not need to be specified by the user: Astrée assumes that every
global variable can be shared, and discovers which ones are effectively shared,
and on which ones there is a data race. To implement its interleaving semantics,
Astrée provides primitives which expose OS functionality to the analyzer, such
as mutex un-/locks, interrupt dis-/enabling, thread creation, etc. Since Astrée
is aware of all locks held for every program point in each concurrent thread, As-
trée can also report all potential deadlocks. Astrée also supports several stages
of concurrent execution so that initialization tasks can be separated from peri-
odic/acyclic tasks. Each thread can be associated to one or several concurrent
execution stages.

Using the Astrée concurrency primitives, abstract OS libraries have been de-
veloped, which currently support the OSEK/AUTOSAR and ARINC 653 norms
[2, 43]. A particularity of OSEK/AUTOSAR is that system resources, including
tasks, mutexes and spin-locks, are not created dynamically at program startup;
instead they are hardcoded in the system: a specific tool reads a configuration
file in OIL (OSEK Implementation Language) or ARXML (AutosaR XML) for-
mat describing these resources and generates a specialized version of the system
to be linked against the application. A dedicated ARXML converter has been
developed for Astrée which automatically generates the appropriate data struc-
tures and access functions for the Astrée analysis, and enables a fully automatic
integration analysis of AUTOSAR projects [20].

Code Guideline Checking Coding guidelines aim at improving code quality and
can be considered a prerequisite for developing safety- or security-relevant soft-
ware. In particular, obeying coding guidelines is strongly recommended by all
current safety standards. Their purpose is to reduce the risk of programming
errors by enforcing low complexity, enforcing usage of a language subset, using
well-trusted design principles, etc. According to ISO 26262, the language sub-
set to be enforced should exclude, e.g., ambiguously defined language constructs,
language constructs that could result in unhandled runtime errors, and language
constructs known to be error-prone. Since the Astrée architecture is well suited
for sound and precise code guideline checking, over the years, the analyzer has
been extended to support all major coding guidelines, such as MISRA C/C++
[44, 45, 41], SEI CERT C/C++ [55], CWE [56], etc.

Cybersecurity Vulnerability Scanning Many security attacks can be traced back
to behaviors undefined or unspecified according to the C semantics. By applying

Abstract Interpretation in Industry – Experience and Lessons Learned 11

sound static runtime error analyzers, a high degree of security can be achieved for
safety-critical software since the absence of such defects can be proven. In addi-
tion, security hyperproperties require additional analyses to be performed which,
by nature, have a high complexity. To support this, Astrée has been extended
by a generic abstract domain for taint analysis that can be freely instantiated
by the users [33]. It augments Astrée’s process-interleaving interprocedural code
analysis by carrying and computing taint information at the byte level. Any
number of taint hues can be tracked by Astrée, and their combinations will be
soundly abstracted. Tainted input is specified through directives attached to
program locations. Such directives can precisely describe which variables, and
which part of those variables is to be tainted, with the given taint hues, each
time this program location is reached. Any assignment is interpreted as prop-
agating the join of all taint hues from its right-hand side to the targets of its
left-hand side. In addition, specific directives may be introduced to explicitly
modify the taint hues of some variable parts. This is particularly useful to model
cleansing function effects or to emulate changes of security levels in the code.
The result of the analysis with tainting can be explored in the Astrée GUI, or
explicitly dumped using dedicated directives. Finally, the taint sink directives
may be used to declare that some parts of some variables must be considered as
taint sinks for a given set of taint hues. When a tainted value is assigned to a
taint sink, then Astrée will emit a dedicated alarm, and remove the sinked hues,
so that only the first occurrence has to be examined to fix potential issues with
the security data flow.

The main intended use of taint analysis in Astrée is to expose potential
vulnerabilities with respect to security policies or resilience mechanisms. Thanks
to the intrinsic soundness of the approach, no tainting can be forgotten, and that
without any bound on the number of iterations of loops, size of data or length of
the call stack. Based on its taint analysis, Astrée provides an automatic detection
of Spectre-PHT vulnerabilities [32].

Data and Control Flow All current safety norms require determining the data
and control flow in the source code and making sure that it is compliant to
the intended control and data flow as defined in the software architecture. To
meet this requirement, Astrée has been extended by a data and control flow
analysis module, which tracks accesses to global, static, and local variables. The
soundness of the analysis ensures that all potential targets of data and function
pointers are discovered. Data and control flow reports show the number of read
and write accesses for every global, static, and out-of-frame local variable, lists
the location of each access and shows the function from which the access is
made. All variables are classified as being thread-local, effectively shared between
different threads, or subject to a data race.

To further support integration verification, a recent extension of Astrée pro-
vides a generic concept for specifying software components, enabling the analyzer
to lift the data and control flow analysis to report data and control flow inter-
actions between software components. This is complemented by an automatic
taint analysis that efficiently tracks the flow of values between components, and

12 D. Kästner et al.

automatically reports undesired data flow and undesired control dependencies.
The combination of augmented data and control analysis and the taint analysis
for software components provides a sound interference analysis [35].

C++ To respond to the increasing interest in C++ even in the domain of safety-
critical software, since 2020 Astrée also provides a dedicated analysis mode for
C++ and mixed C/C++. It uses the same analysis technology as Astrée’s se-
mantic C code analysis and has similar capabilities. At the same time it is also
subject to the same restrictions. The analyzer is designed to meet the character-
istics of safety-critical embedded software. Typical properties of such software
include a static execution model that uses a fixed number of threads, no or lim-
ited usage of dynamic memory allocation and dynamic data structures. Astrée
provides an abstract standard template library, that models the behavior of STL
containers in an abstract way suitable for analysis with Astrée. Astrée does not
attempt to analyze the control flow of exceptions; it only reports if an exception
could be raised.

Precision and Efficiency Constant development effort is required to work at
precision and scalability of the analyzer. Over the years, various additional ab-
stract domains have been developed to avoid false alarms on common embedded
software elements. Examples are domains for finite integer sets, gauges [62, 21],
domains for precise analysis of interpolation functions, finite state machines, etc.
Astrée’s state machine domain heuristically detects state variables and disam-
biguates them by state partitioning in the relevant program scope [14]. In conse-
quence the analyzer becomes aware of the exact transitions of the state machine
and the false alarms due to control flow over-approximation can be avoided.
Over the past years, the size of embedded software has grown significantly; typ-
ical automotive AUTOSAR projects span 5-50 million lines of (preprocessed)
code. One prerequisite to enable an efficient analysis of such large-scale projects
is an efficient strategy to heuristically control the context-sensitivity of the ana-
lyzer and distinguish critical call chains where full flow- and context-sensitivity
is needed from less critical ones where building a summary context is enough
[20].

4 The User Perspective

Whereas from an academic perspective, software verification can be fun and is
a topic of great merit, this is not necessarily a view shared by every software
developer working in the field. In fact, the ISO 26262 norm puts en emphasis on
the need to embrace functional safety in the company organization and establish
a safety culture [18]. Verification activities should not be – as they often are –
perceived as a burden that drains on development cost, delays delivery and does
not provide an added value to the end product. Introducing new verification
steps should not be perceived as admitting a mistake. The capability of defect

Abstract Interpretation in Industry – Experience and Lessons Learned 13

prevention, the efficiency in defect detection, and the degree of automation is
crucial for user acceptance.

Advanced program analysis requires significant technical insights, including
knowledge about the programming language semantics, microprocessor design,
and system configuration. Without the necessary understanding, program anal-
ysis tools are hard to use. On the other hand, it is necessary for tools to expose
the information users need to understand the results as intuitively as possible.

Finally, users expect tools to solve real problems, e.g., the worst-case ex-
ecution time on a particular microcontroller in the configuration given, or the
occurrence of runtime errors in the tasks as they are deployed in the real system.
When providing partial solutions to a problem, it is necessary to explain how to
use them to help dealing with the full problem.

5 The Role of Safety Norms

Functional safety and security are aspects of dependability, in addition to relia-
bility and availability. Functional safety is usually defined as the absence of un-
reasonable risk to life and property caused by malfunctioning behavior of the sys-
tem. Correspondingly, cybersecurity can be defined as absence of unreasonable
risk caused by malicious misusage of the system. Functional safety norms aim at
formalizing the minimal obligations for developers of safety-critical systems to
make sure that unreasonable safety risks are avoided. In addition, advances in
system development and verification since the publication date of a given norm
have to be taken into account. In other words, safety norms define the mini-
mal requirements to develop safety-relevant software with due diligence. Safety
standards typically are domain-specific; examples DO-178B/DO-178C [47, 48]
(aerospace), ISO 26262 [17] (automotive), CENELEC EN 50128/EN 50657 [6,
5] (railway), IEC 61508 [15] (general electrical and/or electronic systems), IEC
62304 (medical products), etc.

The DO-178C [48] has been published with supplements focusing on techni-
cal advances since release of the predecessor norm DO-178B, in particular the
DO-333 (Formal Methods Supplement to DO-178C and DO-278A) [49], that ad-
dresses the use of formal methods to complement or replace dynamic testing.
It distinguishes three categories of formal analyses: deductive methods such as
theorem proving, model checking, and abstract interpretation. The computation
of worst-case execution time bounds and the maximal stack usage are listed as
reference applications of abstract interpretation. However, the standard does not
mandate the use of formal methods.

Table 7 and Table 10 of ISO 26262 Part 6 [19] give a list of recommended
methods for verification of software unit design and implementation, and inte-
gration verification, respectively. They contain separate entries for formal verifi-
cation, control flow analysis, data flow analysis, static code analysis, and static
analysis by abstract interpretation. Static analysis in general is highly recom-
mended for all criticality levels (ASILs), Abstract Interpretation is recommended

14 D. Kästner et al.

for all ASILs. The current versions of EN 50128 and IEC 62304 lack an explicit
reference to Abstract Interpretation.

Since for industrial system development, functional safety norms are defining
what is considered to be (minimal) state of the art, the availability of mature
development and verification techniques should be reflected in them. To create
the necessary awareness, an exchange between software and safety communities
is essential.

6 Conclusion

The focus of this article is to describe the application of Abstract Interpreta-
tion to two different real-life problems: to compute sound worst-case execution
time bounds, and to perform sound runtime error analysis for C/C++ programs.
We have summarized the development history of aiT WCET Analyzer and As-
trée, discussed design choices, and illustrated the exigencies imposed by com-
mercial users and industrial processes. We also addressed derived research and
applications to other topics, in particular hybrid WCET analysis and worst-case
stack usage analysis. In summary, the tools discussed in this article provide a
formal methods-based ecosystem for verifying resource usage in embedded soft-
ware projects. The three main causes of software-induced memory corruption
in safety-critical systems are runtime errors, stack overflows, and miscompila-
tion. The absence of runtime errors and stack overflows can be proven by ab-
stract interpretation-based static analyzers. With the formally proven compiler
CompCert, miscompilation can be ruled out, hence all main sources of software-
induced memory corruption are addressed. Industrial application of mathemat-
ically rigorous verification methods strongly depends on their representation in
industrial safety norms; the corresponding methods and tools have to become
better known to the safety community and their advantages compared to legacy
methods better explained.

7 Acknowledgment

Many people contributed to aiT and Astrée and their success. We want to thank
them all.

References

1. Alt, M., Ferdinand, C., Martin, F., Wilhelm, R.: Cache behavior prediction by ab-
stract interpretation. In: Cousot, R., Schmidt, D.A. (eds.) Static Analysis, Third
International Symposium, SAS’96, Aachen, Germany, September 24-26, 1996, Pro-
ceedings. Lecture Notes in Computer Science, vol. 1145, pp. 52–66. Springer (1996).
https://doi.org/10.1007/3-540-61739-6, https://doi.org/10.1007/3-540-61739-6

2. AUTOSAR: AUTOSAR (AUTomotive Open System ARchitecture).
http://www.autosar.org

Abstract Interpretation in Industry – Experience and Lessons Learned 15

3. Barr, M.: Bookout v. Toyota, 2005 Camry software Analysis by Michael Barr.
http://www.safetyresearch.net/Library/BarrSlides_FINAL_SCRUBBED.pdf
(2013)

4. Bouissou, O., Conquet, E., Cousot, P., Cousot, R., Feret, J., Ghorbal, K., Goubault,
E., Lesens, D., Mauborgne, L., Miné, A., Putot, S., Rival, X., Turin, M.: Space soft-
ware validation using abstract interpretation. Proc. 13thData Systems in Aerospace
(DASIA 2009) (May 2009)

5. BS EN 50657: Railway applications – Rolling stock applications – Software on
Board Rolling Stock (2017)

6. CENELEC EN 50128: Railway applications – Communication, signalling and pro-
cessing systems – Software for railway control and protection systems (2011)

7. Certification Authorities Software Team (CAST): Position Paper CAST-32A
Multi-core Processors (November 2016)

8. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints. In: Proc. of POPL’77. pp. 238–252. ACM Press (1977),
http://www.di.ens.fr/~cousot/COUSOTpapers/POPL77.shtml [retrieved: Sep.
2017].

9. Cousot, P., Cousot, R.: Static determination of dynamic properties of generalized
type unions. In: Wortman, D.B. (ed.) Proceedings of an ACM Conference on Lan-
guage Design for Reliable Software (LDRS), Raleigh, North Carolina, USA, March
28-30, 1977. pp. 77–94. ACM (1977). https://doi.org/10.1145/800022.808314,
https://doi.org/10.1145/800022.808314

10. EASA: AMC-20 – amendment 23 – AMC 20-193 use of multi-core processors (2022)
11. Ferdinand, C., Heckmann, R., Langenbach, M., Martin, F., Schmidt, M., Theiling,

H., Thesing, S., Wilhelm, R.: Reliable and precise WCET determination for a real-
life processor. In: Proceedings of EMSOFT 2001, First Workshop on Embedded
Software. LNCS, vol. 2211, pp. 469–485. Springer (2001)

12. Ferdinand, C., Wilhelm, R.: Efficient and precise cache behavior prediction for
real-time systems. Real-Time Systems 17(2-3), 131–181 (1999)

13. Freescale Inc.: QorIQTM P4080 Communications Processor Product Brief (Septem-
ber 2008), rev. 1

14. Giet, J., Mauborgne, L., Kästner, D., Ferdinand, C.: Towards zero alarms in sound
static analysis of finite state machines. In: Romanovsky, A., Troubitsyna, E.,
Bitsch, F. (eds.) Computer Safety, Reliability, and Security. pp. 3–18. Springer
International Publishing, Cham (2019)

15. IEC 61508: Functional safety of electrical/electronic/programmable electronic
safety-related systems (2010)

16. Infineon Technologies AG: AURIXTM TC27x D-Step User’s Manual (2014)
17. ISO 26262: Road vehicles – Functional safety (2018)
18. ISO 26262: Road vehicles – Functional safety – Part 2: Management of functional

safety (2018)
19. ISO 26262: Road vehicles – Functional safety – Part 6: Product development at

the software level (2018)
20. Kaestner, D., Wilhelm, S., Mallon, C., Schank, S., Ferdinand, C., Mauborgne,

L.: Automatic sound static analysis for integration verification of au-
tosar software. In: WCX SAE World Congress Experience. SAE In-
ternational (apr 2023). https://doi.org/https://doi.org/10.4271/2023-01-0591,
https://doi.org/10.4271/2023-01-0591

21. Karos, T.: The Gauge Domain in Astrée. Master’s thesis, Saarland University
(October 2015)

16 D. Kästner et al.

22. Kästner, D.: Applying Abstract Interpretation to Demonstrate Functional Safety.
In: Boulanger, J.L. (ed.) Formal Methods Applied to Industrial Complex Systems.
ISTE/Wiley, London, UK (2014)

23. Kästner, D., Ferdinand, C.: Efficient Verification of Non-Functional Safety Prop-
erties by Abstract Interpretation: Timing, Stack Consumption, and Absence of
Runtime Errors. In: Proceedings of the 29th International System Safety Confer-
ence ISSC2011. Las Vegas (2011)

24. Kästner, D., Ferdinand, C.: Proving the Absence of Stack Overflows. In: SAFE-
COMP ’14: Proceedings of the 33th International Conference on Computer Safety,
Reliability and Security. LNCS, vol. 8666, pp. 202–213. Springer (September 2014)

25. Kästner, D., Pister, M., Gebhard, G., Schlickling, M., Ferdinand, C.: Confidence
in Timing. Safecomp 2013 Workshop: Next Generation of System Assurance Ap-
proaches for Safety-Critical Systems (SASSUR) (September 2013)

26. Kästner, D., Rustemeier, C., Kiffmeier, U., Fleischer, D., Nenova, S., Heckmann,
R., Schlickling, M., Ferdinand, C.: Model-Driven Code Generation and Analy-
sis. In: SAE World Congress 2014. SAE International (2014). https://doi.org/\url
{http://dx.doi.org/10.4271/2014-01-0217}

27. Kästner, D., Schlickling, M., Pister, M., Cullmann, C., Gebhard, G., Heckmann,
R., Ferdinand, C.: Meeting Real-Time Requirements with Multi-Core Processors.
Safecomp 2012 Workshop: Next Generation of System Assurance Approaches for
Safety-Critical Systems (SASSUR) (September 2012)

28. Kästner, D., Wilhelm, S., Nenova, S., Cousot, P., Cousot, R., Feret, J., Mauborgne,
L., Miné, A., Rival, X.: Astrée: Proving the Absence of Runtime Errors. Embedded
Real Time Software and Systems Congress ERTS 2 (2010)

29. Kästner, D., Barrho, J., Wünsche, U., Schlickling, M., Schommer, B., Schmidt,
M., Ferdinand, C., Leroy, X., Blazy, S.: CompCert: Practical Experience on Inte-
grating and Qualifying a Formally Verified Optimizing Compiler. In: ERTS2 2018
- Embedded Real Time Software and Systems. 3AF, SEE, SIE, Toulouse, France
(Jan 2018), https://hal.inria.fr/hal-01643290, archived in the HAL-INRIA open
archive, https://hal.inria.fr/hal-01643290/file/ERTS_2018_paper_59.pdf

30. Kästner, D., Leroy, X., Blazy, S., Schommer, B., Schmidt, M., Ferdinand, C.: Clos-
ing the gap – the formally verified optimizing compiler CompCert. In: SSS’17: De-
velopments in System Safety Engineering: Proceedings of the Twenty-fifth Safety-
critical Systems Symposium. pp. 163–180. CreateSpace (2017)

31. Kästner, D., Mauborgne, L., Ferdinand, C.: Detecting Safety- and Security-
Relevant Programming Defects by Sound Static Analysis. In: Rainer Falk,
Steve Chan, J.C.B. (ed.) The Second International Conference on Cyber-
Technologies and Cyber-Systems (CYBER 2017). IARIA Conferences, vol. 2, pp.
26–31. IARIA XPS Press (2017)

32. Kästner, D., Mauborgne, L., Ferdinand, C.: Detecting Spectre Vulnerabili-
ties by Sound Static Analysis. In: Anne Coull, Steve Chan, R.F. (ed.) The
Fourth International Conference on Cyber-Technologies and Cyber-Systems (CY-
BER 2019). IARIA Conferences, vol. 4, pp. 29–37. IARIA XPS Press (2019),
http://www.thinkmind.org/download.php?articleid=cyber_2019_3_10_80050

33. Kästner, D., Mauborgne, L., Grafe, N., Ferdinand, C.: Advanced Sound
Static Analysis to Detect Safety- and Security-Relevant Programming De-
fects. In: Rainer Falk, Steve Chan, J.C.B. (ed.) 8th International Jour-
nal on Advances in Security. vol. 1 & 2, pp. 149–159. IARIA (2018),
https://www.iariajournals.org/security/

Abstract Interpretation in Industry – Experience and Lessons Learned 17

34. Kästner, D., Mauborgne, L., Wilhelm, S., Ferdinand, C.: High-Precision Sound
Analysis to Find Safety and Cybersecurity Defects. In: 10th European Congress
on Embedded Real Time Software and Systems (ERTS 2020). Toulouse, France
(Jan 2020), https://hal.archives-ouvertes.fr/hal-02479217

35. Kästner, D., Mauborgne, L., Wilhelm, S., Mallon, C., Ferdinand, C.: Static Data
and Control Coupling Analysis. In: 11th Embedded Real Time Systems Euro-
pean Congress (ERTS2022). Toulouse, France (Jun 2022), https://hal.archives-
ouvertes.fr/hal-03694546

36. Kästner, D., Pohland, J.: Program Analysis on Evolving Software. In: Roy, M.
(ed.) CARS 2015 - Critical Automotive applications: Robustness & Safety. Paris,
France (Sep 2015), https://hal.archives-ouvertes.fr/hal-01192985

37. Kästner, D., Hümbert, C., Gebhard, G., Pister, M., Wegener, S., Ferdinand, C.:
Taming Timing – Combining Static Analysis With Non-intrusive Tracing to Com-
pute WCET Bounds on Multicore Processors. Embedded World Congress (2021)

38. Kästner, D., Salvi, S., Bienmüller, T., Ferdinand, C.: Exploiting syn-
ergies between static analysis and model-based testing (09 2015).
https://doi.org/10.1109/EDCC.2015.20

39. Langenbach, M., Thesing, S., Heckmann, R.: Pipeline modeling for timing analysis.
In: Proceedings of the 9th International Static Analysis Symposium SAS 2002.
LNCS, vol. 2477, pp. 294–309. Springer (2002)

40. Li, Y.T.S., Malik, S.: Performance analysis of embedded software using implicit
path enumeration. In: Proceedings of the 32nd ACM/IEEE Design Automation
Conference. pp. 456–461 (Jun 1995)

41. Limited, M.: MISRA C++:2008 Guidelines for the use of the C++ language in
critical systems (June 2008)

42. Miné, A.: Static analysis of run-time errors in embedded real-time parallel C pro-
grams. Logical Methods in Computer Science (LMCS) 8(26), 63 (Mar 2012)

43. Miné, A., Delmas, D.: Towards an Industrial Use of Sound Static Analysis for
the Verification of Concurrent Embedded Avionics Software. In: Proc. of the 15th
International Conference on Embedded Software (EMSOFT’15). pp. 65–74. IEEE
CS Press (Oct 2015)

44. MISRA (Motor Industry Software Reliability Association) Working Group:
MISRA-C:2012 Guidelines for the use of the C language in critical systems. MISRA
Limited (Mar 2013)

45. MISRA (Motor Industry Software Reliability Association) Working Group:
MISRA-C:2023 Guidelines for the use of the C language in critical systems. MISRA
Limited (Apr 2023)

46. Nowotsch, J., Paulitsch, M., Bühler, D., Theiling, H., Wegener, S., Schmidt, M.:
Multi-core Interference-Sensitive WCET Analysis Leveraging Runtime Resource
Capacity Enforcement. In: ECRTS’14: Proceedings of the 26th Euromicro Confer-
ence on Real-Time Systems (July 2014)

47. Radio Technical Commission for Aeronautics: RTCA DO-178B. Software Consid-
erations in Airborne Systems and Equipment Certification (1992)

48. Radio Technical Commission for Aeronautics: RTCA DO-178C. Software Consid-
erations in Airborne Systems and Equipment Certification (2011)

49. Radio Technical Commission for Aeronautics: RTCA DO-333. Formal Methods
Supplement to DO-178C and DO-278A (2011)

50. Reineke, J., Grund, D., Berg, C., Wilhelm, R.: Timing predictability of cache
replacement policies. Real-Time Systems 37(2), 99–122 (2007)

18 D. Kästner et al.

51. Reineke, J., Wachter, B., Thesing, S., Wilhelm, R., Polian, I., Eisinger, J., Becker,
B.: A Definition and Classification of Timing Anomalies. In: Mueller, F. (ed.)
International Workshop on Worst-Case Execution Time Analysis (WCET) (July
2006)

52. Rival, X., Mauborgne, L.: The trace partitioning abstract domain. ACM Trans.
Program. Lang. Syst. 29(5), 26 (2007). https://doi.org/10.1145/1275497.1275501,
https://doi.org/10.1145/1275497.1275501

53. Schranzhofer, A., Chen, J.J., Thiele, L.: Timing predictability on multi-processor
systems with shared resources. In: Workshop on Reconciling Performance with
Predictability (RePP), 2010 (October 2009)

54. Shaw, A.C.: Reasoning about time in higher-level language software. IEEE
Trans. Software Eng. 15(7), 875–889 (1989). https://doi.org/10.1109/32.29487,
http://dx.doi.org/10.1109/32.29487

55. Software Engineering Institute SEI – CERT Division: SEI CERT C Coding Stan-
dard – Rules for Developing Safe, Reliable, and Secure Systems. Carnegie Mellon
University (2016)

56. The MITRE Corporation: CWE – Common Weakness Enumeration,
https://cwe.mitre.org [retrieved: Sep. 2017].

57. Theiling, H.: Extracting safe and precise control flow from binaries. In: Proceedings
of the 7th Conference on Real-Time Computing Systems and Applications. Cheju
Island, South Korea (2000)

58. Theiling, H.: ILP-based interprocedural path analysis. In: Sangiovanni-Vincentelli,
A.L., Sifakis, J. (eds.) Proceedings of EMSOFT 2002, Second International Con-
ference on Embedded Software. LNCS, vol. 2491, pp. 349–363. Springer (2002)

59. Thesing, S.: Modeling a system controller for timing analysis. In: Min, S.L.,
Yi, W. (eds.) Proceedings of the 6th ACM & IEEE International confer-
ence on Embedded software, EMSOFT 2006, October 22-25, 2006, Seoul,
Korea. pp. 292–300. ACM (2006). https://doi.org/10.1145/1176887.1176929,
http://doi.acm.org/10.1145/1176887.1176929

60. Thiele, L., Wilhelm, R.: Design for timing predictability. Real-Time Systems
28(2-3), 157–177 (2004). https://doi.org/10.1023/B:TIME.0000045316.66276.6e,
http://dx.doi.org/10.1023/B:TIME.0000045316.66276.6e

61. Transcript of Morning Trial Proceedings had on the 14th day of October, 2013
Before the Honorable Patricia G. Parrish, District Judge, Case No. CJ-2008-7969.
http://www.safetyresearch.net/Library/Bookout_v_Toyota_Barr_REDACTED.pdf
(October 2013)

62. Venet, A.: The gauge domain: Scalable analysis of linear inequality invariants (07
2012). https://doi.org/10.1007/978-3-642-31424-7_15

63. Wegener, S.: Towards Multicore WCET Analysis. In: Reineke, J.
(ed.) 17th International Workshop on Worst-Case Execution Time
Analysis (WCET 2017). OpenAccess Series in Informatics (OASIcs),
vol. 57, pp. 1–12. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany (2017). https://doi.org/10.4230/OASIcs.WCET.2017.7,
http://drops.dagstuhl.de/opus/volltexte/2017/7311

64. Wilhelm, R., Reineke, J., Wegener, S.: Keeping up with real time. In: Durak,
U., Becker, J., Hartmann, S., Voros, N.S. (eds.) Advances in Aeronautical
Informatics, Technologies Towards Flight 4.0., pp. 121–133. Springer (2018).
https://doi.org/10.1007/978-3-319-75058-3_9, https://doi.org/10.1007/978-3-
319-75058-3_9

