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Abstract. The interpretative approach to compilation allows compiling pro-
grams by partially evaluating an interpreter w.r.t. a source program. This
approach, though very attractive in principle, has not been widely applied
in practice mainly because of the difficulty in finding a partial evaluation
strategy which always obtain “quality” compiled programs. In spite of this,
in recent work we have performed a proof of concept of that, at least for
some examples, this approach can be applied to decompile Java bytecode
into Prolog. This allows applying existing advanced tools for analysis of logic
programs in order to verify Java bytecode. However, successful partial eval-
uation of an interpreter for (a realistic subset of) Java bytecode is a rather
challenging problem. The aim of this work is to improve the performance of
the decompilation process above in two respects. First, we would like to ob-
tain quality decompiled programs, i.e., simple and small. We refer to this as
the effectiveness of the decompilation. Second, we would like the decompila-
tion process to be as efficient as possible, both in terms of time and memory
usage, in order to scale up in practice. We refer to this as the efficiency of the
decompilation. With this aim, we propose several techniques for improving
the partial evaluation strategy. We argue that the experimental results we
present show that our techniques greatly improve the efficiency and effective-
ness of the decompilation process.

1 Introduction

Partial evaluation [8] is a semantics-based program transformation technique whose
main purpose is to optimize programs by specializing them w.r.t. part of their input
(the static data)—hence it is also known as program specialization. Essentially, given
a program P and a static data s, a partial evaluator returns a residual program Ps

which is a specialized version of P w.r.t. the static data s such that P (s, d) = Ps(d)
for all dynamic (i.e., not static) data d. The development of partial evaluation tech-
niques [8] has led to the so-called “interpretative approach” to compilation, also
known as first Futamura projection [4]. In this approach, compilation of a source
program P from a source language LS to a target language LO can in principle
be performed by specializing an interpreter Int for LS written in LO w.r.t. P . The
program IntP thus obtained can be akin to the result CompO

S (P ) of direct com-
pilation of P using a compiler CompO

S from LS to LO. When LS is Java bytecode
and LO is Prolog, we theoretically obtain a “decompilation” from (low-level) Java
bytecode to (high-level) Prolog programs [1]. The motivation for obtaining a high
level logic representation of the Java bytecode is clear: we can apply advanced tools
developed for high level languages to the resulting programs without having to deal
with the complicated unstructured control flow of the bytecode, the use of the stack,
the exception handling, its object-oriented features, etc. The motivations for using



the interpretative approach to decompilation rather than implementing a compiler
from Java bytecode to LP include: 1) flexibility, in the sense that it is easy to modify
the interpreter in order to observe new properties of interest, 2) easier to trust, in
the sense that it is rather difficult to prove (or trust) that the compiler preserves the
program semantics and, it is also complicated to explicitly specify what the seman-
tics used is, 3) easier to maintain, new changes in the JVM semantics can be easily
reflected in the interpreter, and 4) easier to implement, provided a powerful partial
evaluator for LP is available.

The success of the interpretative approach highly depends on eliminating the
overhead of parsing the program, fetching instructions, etc., thus obtaining programs
which are akin to those obtained by a traditional compiler. When both the LS and
LO languages are the same, fully getting rid of the layer of interpretation is known
as “Jones optimality” [7, 8] and intuitively means that the result of specializing an
interpreter Int w.r.t a program P should be basically the same as P , i.e., IntP ≈ P .
Specializing interpreters has been a subject of research for many years, especially
in the logic programming community (see, e.g., [10, 19, 20, 12] and their references).
However, despite these efforts, achieving Jones optimality in a systematic way is not
straightforward since, given a program P , there are an infinite number of residual
programs IntP which can be obtained, and only a small fraction of them are akin to
the results of direct compilation. As a result, only partial success has been achieved
to date, such as in the specialization of a simple Vanilla interpreter, of the same
interpreter extended with a debugger, and of a lambda interpreter [12].

The first requirement for achieving effective decompilation is to have a partial
evaluator which is “aggressive” enough so as to remove the overhead of the inter-
pretation level from the residual program. In a sense, the work in [1] shows that our
partial evaluator [17, 2] is aggressive enough for being used in the interpretative ap-
proach. The next two questions we need to answer, and which are addressed in this
work are: is the control strategy used too aggressive in some cases? If so, it is possible
to fix this problem? Note that the consequences of the strategy being too aggres-
sive can be rather negative: it can introduce non-termination in the decompilation
process and, even if the process terminates, it can result in inefficient decompilation
(both in terms of time and memory) and in unnecessarily large residual programs.
It should be noted that memory efficiency of the decompilation process is quite im-
portant since it can happen that the decompiler fails to generate a residual program
because the partial evaluator runs out of memory.

2 An Overview of the Decompilation Process

Figure 1 shows an overview of the interpretative decompilation process originally
proposed in [1] and followed in this paper. Initially, given a set of .class files
{class 1,. . ., class n}, a program called class reader, returns a representation of
them in Ciao Prolog [3]. We use a slightly modified JVML language where some
bytecode instructions are factorized and which contains some other minor simpli-
fications (see [1]). Then, we have a JVML interpreter written in Ciao which cap-
tures the JVM semantics. The decompilation process consists in specializing the
JVML interpreter w.r.t. the LP representation of the classes. In this work, we will
improve the decompilation by introducing two new elements (which appear within
a dashed box in the figure): an improved multi-variance control within the partial
evaluator and filter annotations to refine the control of the partial evaluator .
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Fig. 1. Decompilation of Java Bytecode into Prolog by online PE w/ offline annotations

2.1 The LP Representation of the Bytecode

The LP (Ciao) program generated by the class reader contains the bytecode instruc-
tions for all methods in {class 1,. . ., class n}. They are represented as a set of facts
bytecode; and also, a single fact class obtained by putting together all the other
information available in the .class files (class name, methods and fields signatures,
etc.). Each bytecode fact is of the form bytecode(PC,MethodID,Class,Inst,Size),
where Class and MethodID, respectively, identify the class and the method to which
the instruction Inst belongs. PC corresponds to the program counter and Size to
the number of bytes of the instruction in order to be able to compute the next value
of the program counter. The form of the fact class is not relevant to this work but
it can be observed in [1].

Example 1 (LP representation). Our running example consists of the single Java
class LinearSearch, which appears in Fig 2. To the right, we show the bytecode

facts corresponding to the method search identified with number “0” (second ar-
gument) of class number “1” (third argument). Bytecodes labeled from 0 to 6 (first
argument) correspond to the first three initialization instructions in the Java pro-
gram. Then, if the first conjunct in the while condition does not hold (bytecodes
8-11), the PC moves 26 positions downwards (i.e., to bytecode 37). Otherwise, the
second conjunct is checked and similarly the PC can be increased in 22 positions
(i.e., to bytecode 37). The condition in the if instruction corresponds to bytecodes
18-23, the then branch to 26-28 and the else branch to 31-34. Finally, bytecodes
37-39 represent the return.

2.2 The JVML Interpreter

The JVML interpreter expresses the JVM semantics in Ciao following the formal
specification in Bicolano [16]. In our specification, a state is modeled by a term of the
form st(Heap, Frame, StackFrame) which represents the machine’s state where:

– Heap represents the contents of the heap,
– Frame represents the execution state of the current Method,
– StackFrame is a list of frames corresponding to the call stack.

Each frame is of the form fr(Method, PC,OperandStack, LocalV ar) and contains
the stack of operands OperandStack and the values of the local variables LocalV ar
at the program point PC of the method Method. Note that, whenever we are at an
exception state, the state and the frames will be represented accordingly as stE and
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class LinearSearch{

static int search(int[] xs,int x){

int size = xs.length;

boolean found = false;

int i = 0;

while ((i<size)&&(!found)){

if (xs[i] == x) found = true;

else i++;

}

return i;

}

bytecode(0,’0’,1,aload(0),1).
bytecode(1,’0’,1,arraylength,1).
bytecode(2,’0’,1,istore(2),1).
bytecode(3,’0’,1,const(

primitiveType(int),0),1).
bytecode(4,’0’,1,istore(3),1).
bytecode(5,’0’,1,const(

primitiveType(int),0),1).
bytecode(6,’0’,1,istore(4),2).
bytecode(8,’0’,1,iload(4),2).
bytecode(10,’0’,1,iload(2),1).
bytecode(11,’0’,1,if_icmp(geInt,26),3).
bytecode(14,’0’,1,iload(3),1).
bytecode(15,’0’,1,if0(neInt,22),3).
bytecode(18,’0’,1,aload(0),1).
bytecode(19,’0’,1,iload(4),2).
bytecode(21,’0’,1,iaload,1).
bytecode(22,’0’,1,iload(1),1).
bytecode(23,’0’,1,if_icmp(neInt,8),3).
bytecode(26,’0’,1,const(

primitiveType(int),1),1).
bytecode(27,’0’,1,istore(3),1).
bytecode(28,’0’,1,goto(-20),3).
bytecode(31,’0’,1,iinc(4,1),3).
bytecode(34,’0’,1,goto(-26),3).
bytecode(37,’0’,1,iload(4),2).
bytecode(39,’0’,1,ireturn,1).

Fig. 2. Java code and LP representation of Running Example

frE terms resp., with the same arguments as their homologous st and fr, except
for the OperandStack which will be a location number (instead of a list) referencing
the corresponding exception object in the heap.

Fig. 3 shows a fragment of the Ciao JVML interpreter. Given the program and the
current state, its main predicate execute first calls predicate step, which produces
the state after executing the corresponding bytecode. The process iterates with a
recursive call to predicate execute with the new state until one of the following
conditions holds: 1) we reach a return instruction (i.e. return, ireturn or areturn),
with the JVM call stack being empty, 2) we are in an exception state for which no
suitable exception handler has been found, with the JVM call stack being empty, 3)
there is no bytecode instruction at the current PC. The latter should never occur for
a valid bytecode program.

The whole interpreter, together with a collection of examples, are available at:
http://cliplab.org/Systems/jvm-by-pe.

3 Basics of Online Partial Evaluation of Logic Programs

We assume familiarity with basic notions of logic programming [15]. Executing a logic
program P for an atom A consists in building a so-called SLD tree for P ∪ {A} and
then extracting the computed answer substitutions from every non-failing branch
of the tree. Online partial evaluation builds upon the execution approach of logic
programs with two main differences:

– In order to guarantee termination of the unfolding process, when building the
SLD-trees, it is possible to choose not to further unfold a goal, and rather leave
a leaf in the tree with a non-empty, possibly non-failing, goal. The resulting
SLD is called a partial SLD tree. Note that even if the SLD trees for all possible
queries are finite, the SLD to be built during partial evaluation may be infinite.
The reason for this is that since dynamic values are not known at specialization
time, the specialization SLD tree can have more branches (in particular, infinite
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execute(Program,State,FinalState) :-

step(_,Program,State,NextState),

execute(Program,NextState,FinalState).

execute(_P,State,State) :-

check_return(State).

execute(Program,State,NextState) :-

State=stE(Heap,frE(Method,PC,Loc,_),[]),

NextState=st(Heap,fr(Method,PC,[ref(Loc)],_),[]),

not_handled_exception(Program,State).

check_return(st(_H,fr(Method,PC,_Stack,_L),[])) :-

instructionAt(Method,PC,return).

check_return(st(_H,fr(Method,PC,[num(int(_I))|_Stack],_L),[])) :-

instructionAt(Method,PC,ireturn).

check_return(st(_H,fr(Method,PC,[ref(loc(_I))|_Stack],_L),[])) :-

instructionAt(Method,PC,areturn).

step(goto_step_ok,_P,st(H,fr(M,PC,S,L),SF),st(H,fr(M,PCb,S,L),SF)):-

instructionAt(M,PC,goto(O)),

PCb is PC+O.

...

Fig. 3. Fragment of the JVML interpreter

branches) than the actual SLD tree at run-time. Which atom to select from each
resolvent and when to stop unfolding is determined by the unfolding rule.

– The partial evaluator may have to build several SLD-trees in order to ensure
that all atoms left in the leafs are “covered” by the root of some tree (this
is known as the closedness condition of partial evaluation [14]). The so-called
abstraction operator performs “generalizations” on the atoms that have to be
partially evaluated in order to avoid computing partial SLD trees for an infinite
number of atoms. When all atoms are covered, then there is no need to build
more trees and the process finishes. Details on abstraction operators appear in
Section 4.

The essence of most algorithms for on-line partial evaluation of logic programs (see
e.g. [6]) can be viewed in the algorithm shown in Figure 4, which is parametric
w.r.t. the unfolding rule, unfold, and the abstraction operator, abstract. It starts
from a program P and an initial set of atoms S. At each iteration, the local control
is performed by the unfold rule which takes the current set of atoms Si and the
program and constructs partial SLD trees for the atoms in Si. In the global control,
when some calls in the leaves of the trees (named Tcalls in the algorithm) are not
properly covered, the operator abstract adds them to the new set of atoms to be
partially evaluated in a proper “generalized” form such that termination is ensured
(i.e., the condition Si = Si−1 is reached). Thus, basically, the algorithm iteratively
constructs partial SLD trees until all their leaves are covered by the root nodes.

A partial evaluation of P w.r.t. S can then be systematically extracted from the
resulting set of atoms T . The notion of resultant is used to generate a program rule
associated to each root-to-leaf derivation of the SLD-trees for the final set of atoms
T . In particular, given an SLD derivation of P ∪ {A} with A ∈ T ending in B and θ
the composition of the mgus in the derivation step, then the rule θ(A) : −B is called
the resultant of the derivation. A partial evaluation is then defined as the sequence

5



Input: a program P and a set of atoms S

Output: a set of atoms T

Initialization: i := 0; S0 := S

Repeat
1. T := unfold(Si, P );
2. Si+1 := abstract(Si, Tcalls);
3. i := i + 1;

Until Si = Si−1 (modulo renaming)
Return T := Si

Fig. 4. Partial Evaluation Algorithm

of resultants associated to the derivations of the constructed partial SLD trees for
all P ∪ {A} with A ∈ T .

4 Challenges in Specialization of JVM Interpreter

In order to achieve an effective decompilation, one of the crucial requirements is
to have available control strategies which are powerful enough to remove the in-
terpreter overhead. For this reason, the experiments in [1] have been performed by
using “aggressive” control strategies based on homeomorphic embedding [9, 11]. In
local control, by aggressivity we mean unfolding rules which compute derivations
as long as possible provided there are no termination problems. In global control,
it denotes abstraction operators which generalize in as few situations as possible
without endangering termination.

4.1 Control Strategies based on Embedding

The interested reader is referred to Leuschel’s work [13] where a detailed descrip-
tion of the embedding relation can be found. Informally, atom t1 embeds atom
t2, written t2Et1, if t2 can be obtained from t1 by deleting some operators, e.g.,
s(s(U+ W)×(U+s(V))) embeds s(U× (U+ V)). By relying on the embedding relation,
the following strategies can be defined (they correspond to the ones used in [1]):

Local Control Unfolding operators based on the homeomorphic embedding E, de-
noted unfoldE, allow the expansion of derivations until reaching an atom which em-
beds some of the previous atoms in its sequence of covering ancestors (see e.g., [17]).
The intuition is that reaching larger (or equal) atoms in the same derivation can
endanger termination and hence the computation has to be stopped. Furthermore,
in order to achieve the required level of aggresivity it is also required to be able
to accurately handle builtin predicates and to safely perform non-leftmost unfold-
ing [2]. However, in the presence of an infinite signature (e.g., integers) as we have in
the JVM interpreter, this unfolding rule can lead to non-terminating computations.
Consider, for example, a sequence of atoms of the form: execute(8, [ref, , , 0, 0]),
execute(8, [ref, , , 0, 1]), execute(8, [ref, , , 0, 2]) . . . , which can grow infinitely
and which the homeomorphic embedding does not flag as potentially dangerous.
As a result, by considering the usual homeomorphic embedding relation, the sec-
ond branch of the partial SLD in Figure 5 is not flagged as dangerous and un-
folding does not terminate. This is indicated in the figure by the ∞ symbol as
continuation of the second branch. A possible relatively straightforward solution for
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avoiding this nonterminating behaviour of unfolding is to use a slight adaptation of
the original homeomorphic relation in which any number embeds any other num-
ber, denoted Enum. Under this relation the atom execute(8, [ref, , , 0, 1]) embeds
execute(8, [ref, , , 0, 0]) (and vice-versa). Unfortunately, this modification to the
homeomorphic embedding relation, though guarantees termination of the partial
evaluation process is a too coarse approximation and leads to excessive precision
loss. It turns out not to be an acceptable alternative for specialization of our inter-
preter since in virtually all cases the residual program contains the full interpreter,
i.e., we have not been able to eliminate the interpretation layer.

Global Control The homeomorphic embedding ordering E can also be used at the
global control level within the abstract operator abstractE in order to decide when
to generalize (i.e., to apply the most specific generalization) before proceeding to
build possibly partial SLD trees. Basically, for each new atom A, it checks whether
it is larger than (i.e., it embeds) any of the atoms in the set Si (which contains the
atoms in the roots of the partial trees which have already been built). If A does not
embed any atom in Si, it is added to the set; otherwise, the two atoms are general-
ized by using the msg operator. For instance, if we have execute(8, [ref, , , 0, 0])
in Si and we want to add the atom execute(8, [ref, , , 1, 0]), by using the original
homeomorphic embedding relation, no danger is flagged. Thus, in order to guar-
antee termination at the global control level we also need to modify the relation
to be used when infinite signatures (numbers) are considered. By using the mod-
ified embedding relation with numbers Enum, the latter atom is generalized into
execute(8, [ref, , , X, 0]) before being introduced in Si.

Regarding the efficiency of the PE process, it should be noted that the use of
control strategies based on embedding introduces a significant overhead, as we need
to keep track of the ancestors (see, e.g., [17]) and to perform expensive embedding
checks for each of the atom arguments.

4.2 A Challenging Example

The example in Fig. 5 is instrumental to show the challenges which appear in the
specialization of the JVM interpreter in Section 2.2 when the above control strategies
are used. The specialization process starts by running the PE algorithm of Section 3
for the initial program P being the JVM interpreter of Sect. 2.2 and the following
initial atom:

execute(Prog,st(heap([array(locationArray(_,primitiveType(int)),_)]),

fr(method(’int LinearSearch.search(int[],int)’),

0,[],[ref(1),_,0,0,0]),

[]),

_)

where “Prog” would be instantiated to the constant term representing the corre-
sponding JVM program of Sect. 2.1, and a “ ” represents a logical variable. Let us
note, that this initial state has been built from a “method invocation specification”
(MIS), i.e. a high level description specifying the method we want to decompile and
its arguments values. In our case, we want to decompile a method for computing a
linear search for any array of integers and any value as argument. Thus, we use “int
LinearSearch.search(int[] ,int )”as MIS.

In the figure, we depict (a reduced version of) of one of the SLD trees that lead
to an effective decompilation of our running example. In order to focus the attention
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Fig. 5. Partial SLD Tree of Specialization of JVM Interpreter

to the relevant arguments only, each atom of the form execute(Program, st(Heap,
fr(Method, PC, Stack, LocalVar), CallStack), FinalState) is represented in the fig-
ure as execute(PC, LocalVar) to show only its two key arguments. Indeed, the argu-
ment Program and Method are always constants, the Stack is not relevant and the
Heap is not used in this example. The CallStack is always the empty list since the
considered method does not invoke any other method (nor itself) and FinalState

is always a fresh variable. Another simplification in the figure is that each arrow
involves the application of several unfolding steps. In particular, the execution of
the step predicate can be considered as a black box during unfolding, in the sense
that it performs all the operations (i.e., a number of unfolding steps) and returns
the corresponding state. Therefore, we can ignore the intermediate steps produced in
order to unfold the calls to step and view each of the derivations as a sequence of the
form execute, step, execute, step, . . . (in the figure actually we only show one
step). Some of the statements within the body of each step operation can stay as
residual when they involve data which is not known at specialization time. The com-
putation rule during unfolding is able to residualize calls which are not-sufficiently
instantiated and select non-leftmost atoms in a safe way [2], in particular, further
calls to execute.

5 Partial Evaluation Types

As we have seen in the previous section, in the presence of an infinite signature, like
the integers, neither E nor Enum alone can achieve effective and efficient decom-
pilations. In particular, the use of “E” can be too aggressive in the sense that it
leads to too long derivations (even endangering termination), which prevents from
a quality decompilation. In contrast, the use of “Enum” is definitely too conserva-
tive in the sense that stops derivations too early, which causes the loss of essential
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information to get a quality decompiled program. In this section, we propose new
mechanisms which allow providing additional information to the PE process in order
to improve the results achieved by using previous techniques based on the above em-
bedding orderings. Such additional information is program-dependent and thus, it
makes sense to compute it when we are interested in repeatedly partially evaluating
a program. This is obviously the case in our approach to decompilation, since we
are repeatedly specializing the interpreter w.r.t. different bytecode programs. This
information is provided by means of optional partial evaluation types, pe type, which
allow us to give a selective, context-dependent treatment to arguments at PE time.
In particular, we distinguish the following basic types:

– dyn: which stands for dynamic. This type is used to avoid too aggressive strate-
gies. It denotes that the user thinks it is a better idea to lose the information
stored in the corresponding argument as soon as a discrepancy is found w.r.t. an-
other “similar” atom than maintaining such information at the price of a higher
specialization cost. This is the case, for instance, of the argument Loc (local
variables) in our running example.

– f sig: which stands for finite signature. Literally, this means that the number of
functors and constant names which may appear is finite. Thus, for arguments of
this type, E guarantees termination. The motivation for considering this type
is that it avoids the need for using Enum for arguments which may contain
numbers. The user can use this type for those arguments which are guaranteed
to contain a finite set of numbers only. This is the case, for instance, of the
argument PC in our example. Though it is natural to use numbers to represent
program counters, given a fixed program, the set of instructions is fixed and
finite. This is a key observation which is required to obtain the results presented
in this paper.

– const: which stands for constant. The motivation for introducing this type is just
efficiency of the specialization process. Of course, it should only be applied to
arguments which we know will always be instantiated to the same value during
specialization time. Its usage does not affect the control strategy at all, but it
allows avoiding testing the embedding relation over and over again on arguments
which never change. This is the case, for instance, of the argument Program which
remains constant all over the decompilation process.

– term: which stands for term. This the the most general type which includes all
possible terms, including partially instantiated terms. This is the default type
which is assumed unless the user explicitly provides a more precise partial eval-
uation type. For programs containing arithmetic (such as our JVM interpreter),
the default embedding relation we use is Enum since otherwise termination is
not guaranteed.

We want to allow the use of the above basic types at any depth within arguments.
Also, we want to allow the possibility of having disjunctive types with distinctive
functors for which we can declare different types. Therefore, we define now the notion
of partial evaluation types, pe type, as a regular type [5] combined with the above
basic types.

Definition 1 (pe type). Let p/n be a predicate, we specify the following pe type

declaration for p/n by means of an assertion “:- trust pe type p/n : rtype1 × . . . ×
rtypen.” where a regular type is defined as rtype ≡ const | dyn | term | f sig | (f1(
rtype11× . . .× rtype1n1

); . . . ; fm(rtypem1× . . .× rtypemnm
)) such that fi is a program

functor, i = 1, . . . ,m, and const, dyn, term and f sig are basic types.
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For convenience, if t = f(t1, . . . , tn), we say that f1(rtype11× . . .× rtype1n1
), . . . ,

fm(rtypem1 × . . . × rtypemnm
) ∈ type(t).

The above definition of pe type is related to the notion of binding type used in
offline partial evaluation (see, e.g., [12]). However, while binding types are intended
to declare the instantiation state of arguments, our pe type’s are used to indicate
finite signatures and also to speed up the PE process. Moreover, our pe type’s are
intended to be used in combination with embedding strategies, which are inherently
online techniques.

In our Ciao implementation, regular types are specified by means of regular unary
logic programs (RUL). The particular partial evaluation type for the main predicate
execute of our JVML interpreter is the following RUL:

:- trust pe type execute/3 : const × state× term.

state(st(Heap, Frame, CallStack)) : −
dyn(Heap), frame(Frame), dyn(CallStack).

state(stE(Heap, Frame, CallStack)) : −
dyn(Heap), frame(Frame), dyn(CallStack).

frame(fr(PC, Method, Loc, Stack)) : −
f sig(PC), f sig(Method), dyn(Loc), dyn(Stack).

frame(frE(PC, Method, Loc, Stack)) : −
f sig(PC), f sig(Method), dyn(Loc), dyn(Stack).

Let us explain the intuition behind the above pe type’s. The first argument of
execute is Program, which is clearly constant because during each partial evalu-
ation there is exactly one fixed program and there is no need to ever generalize this
argument. The third argument is the final (output) State which is always a variable
before the call and thus it can be given the type term. The type of the current State
in the second argument is disjunctive and we declare it by means of two rules, one
for each functor. The first one corresponds to a normal state st and the second one
to an exception state stE. The most relevant points to note are: 1) The types of the
heap and the call stack are declared as dyn as we do not mind “losing” all informa-
tion about them during partial evaluation when decompiling a method if needed.
Intuitively, this is to say that we do not want to generate multiple decompiled ver-
sions of a method depending on the state of the heap or the call stack. Instead,
as it happens in standard compilation, the decompilation of the method should be
independent from the context from which it is called (and hence this information
should be ignored). 2) Again, we distinguish two types of Frames for normal (fr)
and exception behaviour (frE). The important point here is that both the PC and
Method number can be instantiated only to a finite number of values, since given a
fixed program, the number of methods and the number of different program coun-
ters is finite. Therefore, they can be safely declared as f sig, which prevents from
important information loss. Finally, we declare the set of local variables Loc and
stack positions Stack as dyn as they threaten termination as we have seen in the
example.

The importance of pe type declarations is that they can be used at PE time to
disregard, to filter or to keep the information available in each argument.

Definition 2 (filter). Let A ≡ p(t1, . . . , tn) be an atom. Consider the following
pe type declaration for p/n:
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pe typep= “:- trust pe type p/n : rtype1 × . . . × rtypen.”

We define filter(A, pe typep) = p(filter args(t1, rtype1), . . . , filter args(tn, rtypen)) where
function filter args is defined as follows:

filter args(t, rtype) =































new var if rtype ≡ const or dyn

filter nums(t) if rtype ≡ term

t if rtype ≡ f sig or var(t)

f(filter args(s1, rtype′1), . . . , if t = f(s1, . . . , sm) and
filter args(sm, rtype′m)) ∃f(rtype′1, . . . , rtype′m) ∈ type(t)

where the function filter nums is defined as:

filter nums(t) =







new var if number(t)
t if var(t)
f(filter nums(s1), . . . , filter nums(sn)) if t = f(s1, . . . , sm)

The above filter operation is used to define a refinement of the embedding relation
that we call embedding relation with pe type’s, written as Ept, and that can be
used to steer the PE process both at the local and global control by means of the
corresponding unfoldEpt

and abstractEpt
operators, respectively.

Definition 3 (Ept). Consider two atoms A = p(t1, . . . , tn) and B = p(s1, . . . , sn).

– If there exists a partial evaluation type pe typep for predicate p, the embedding
relation with pe type filter, written Ept, is defined as AEptB iff filter(A, pe typep)
E filter(B, pe typep).

– Otherwise, Ept ≡ Enum.

Note that when no partial evaluation type is available for a predicate, we use Enum.
This is because we assume we are handling full Prolog programs containing arith-
metic. If we can determine that the program does not perform arithmetic opera-
tions, we can use E instead. Termination of the partial evaluation requires that the
pe type’s provided are safe. For this it is required that any sub(argument) marked
as f sig actually has a finite signature.

6 Reducing Polyvariance in Global Control

In the previous section we have seen how the use of suitable partial evaluation types
allows keeping the termination guarantees of Enum, both at the local and global
control levels, while at the same time being aggressive enough so as to get rid of the
interpretation layer.

However, though the residual programs thus obtained are acceptable, careful in-
spection of such residual programs shows that relatively often, useless specialization
has been performed. At the local control level, performing more unfolding than nec-
essary often results in residual predicates defined by many clauses. At the global
control level, trying to be too precise results in producing too many predicates in
the residual program.

The question is whether there is any way to take the previous generalization
history into account when abstracting an atom at the global control. The intuition
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is to keep track of the information which we have been forced to forgetting during the
partial evaluation process and proceed to forget it straight away for all new atoms
which are similar to the previously handled ones under some criteria. The motivation
for doing so is that since it seems likely that we will end up being forced to forgetting
such info, the sooner we forget such info, the better, both in terms of specialization
times and size of the residual program. We now propose a technique based on the
ideas above, which can be included inside the standard partial evaluation algorithm,
by means of an improved abstraction operator. In order to do that, first, we need to
give some preliminary definitions.

A term T is a generalization of S (or S is an instance of T ), denoted by T ≤
S, if ∃σ. Tσ = S. Two terms T and T ′ are variants, denoted T ≡ T ′, if both
T ≤ T ′ and T ′ ≤ T . If T and T ′ are variants then there exists a renaming ρ such
that Tρ = T ′. A generalization of a set of terms {T1, . . . , Tn} is another term T
such that ∃σ1, . . . , σn with Ti = Tσi, i = 1, . . . , n. A generalization T is the most
specific generalization (msg) of {T1, . . . , Tn} if for every other term T ′ s.t. T ′ is a
generalization of {T1, . . . , Tn}, T ′ ≤ T . We also say that two atoms are homologous,
written as A ≈ B, if filter(A, pe typeA) ≡ filter(B, pe typeB).

Definition 4 (HintsTable). We define a HintsTable as a set of pairs of atoms
〈A,G〉, s.t. G ≤ A (i.e. G is a generalization of A).

We refer to these pairs of atoms as hints because they provide suggestions on how
to forget useless information during the abstraction performed at the global control
level. Next, we need to define a set of operations over the HintsTable, which will
be used later throughout the partial evaluation algorithm both to add and to recover
information from the table.

– addHint : HintsTable × 〈Atom,Atom〉 → HintsTable

addHint(HT, 〈A,G〉) = HT ∪ 〈A,G〉

– applyHint≡: HintsTable × Atom → Atom

applyHint
≡

(HT,A) = msg(Gs ∪ A)
where Gs = {G | 〈B,G〉 ∈ HintsTable, A ≡ B}

– applyHint≈: HintsTable × Atom → Atom

applyHint
≈

(HT,A) = msg(Gs ∪ A)
where Gs = {G | 〈B,G〉 ∈ HintsTable, A ≈ B}

Now, we can define the abstractEpt+gen}
operator by relying on the definitions

and operators given above.

Definition 5 (abstractEpt+gen}
). The abstraction operator abstractEpt+gen}

is de-
fined in terms of the abstractEpt

operator as follows:

abstractEpt+gen}
(Si, Tcalls, HT ) = abstractEpt

(Si,AT calls)

where AT calls = {H |H = applyHint}(HT,A), ∀A ∈ Tcalls, } ∈ {≡,≈}}

Let us note that the abstractEpt+gen}
operator definition is parametric w.r.t.

“}”, and it represents two different abstraction operators, namely abstractEpt+gen≡

and abstractEpt+gen≈
, depending on which applyHint operator to use.
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After discussing how hints-tables can be exploited during global control, the
main question is how exactly we populate such table with the required entries. We
propose to simply instrument the Ept test during partial evaluation in such a way
that whenever it flags possible problems between two atoms A and B, i.e. if the
relation AEptB holds, in addition to returning the value true, it also stores the pair
〈A,msg(A,B)〉 into the hints-table.

Example 2. Now, let us consider again the SLD tree in Fig. 5. We start with an
empty table of hints HT = {}. First, in the middle branch, once we reach the
embedded atom execute(8, [ref, , , 0, 1]), a new hint will be added to the table by
making a call to the addHint operator. Similarly, another hint will be added in the
right branch. Thus, after building the first unfolding tree, the table has the following
two entries:

HT =

{

〈execute(8, [ref, , , 0, 1]), execute(8, [ref, , , 0, Y ])〉,
〈execute(8, [ref, , , 1, 0]), execute(8, [ref, , ,X, 0])〉

}

Once the unfolding process has finished (see the partial evaluation algorithm in
section 3) the following call to the abstract operator will be made:

abstractEpt+gen}
({}, {execute(8, [ref, , , 0, 1]), execute(8, [ref, , , 1, 0])}, HT )

Now, let us explain the effects of the application of each of the different abstract

operators:

– Using abstractEpt+gen≡
. The applyHint≡ operator simply returns the corre-

sponding generalized version for each of the atoms. Thus, the standard ab-

stract operator will be called with abstractEpt
({}, {execute(8, [ref, , , 0, Y ]),

execute(8, [ref, , ,X, 0])}). Note that, although we keep the same number of
different atoms, polyvariance has been potentially reduced as we have gener-
alized a numeric argument, avoiding the possibility of appearing new different
versions of the same atom with different numeric values in the corresponding
argument.

– Using abstractEpt+gen≈
. In this case, polyvariance will be immediately re-

duced since, as we will see, both atoms will collapse into the same gener-
alized version. This is due to the generalizations between homologous atoms
performed inside the applyHint≈ operator, which will give rise to the following
call to the standard abstract operator abstractEpt

({}, {execute(8, [ref, , ,X, Y ]),
execute(8, [ref, , ,X, Y ])})

In Fig. 6 we can see the residual code we have obtained taking advantage of the
newly introduced techniques, by partial evaluating the JVML interpreter w.r.t. to
the bytecode program of our running example (see Fig. 2). Thus, we have used the
Efilter as embedding relation (instrumented to add hints when embedding is flagged)
and the abstractEpt+gen≈

operator. Note that, the entry call is main(In,Out), where
In will be instatiated to the list of argument values specified for the method, together
with the input heap, and Out will be instatiated to the top of the stack at the end of
the execution. This main predicate is responsible for, first obtaining the initial state
and the JVML program, and then calling for the first time to the execute predicate
of the interpreter (represented in the SLD tree in Fig. 5).

In the residual code, we see four rules for predicate main, three of them correspond
to the three branches represented in the SLD tree, and the fourth one represents the
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main([[ref(loc(1)),num(int(_))],heap([array(B,A)])],[num(int(0))]) :- 0>=B.

main([[ref(loc(1)),num(int(A))],heap([array(B,[num(int(D))|C])])],[E]) :-

0<B, D\=A, execute([num(int(D))|C],B,A,0,1,F,E).

main([[ref(loc(1)),num(int(A))],heap([array(B,[num(int(A))|C])])],[D]) :-

0<B, execute([num(int(A))|C],B,A,1,0,E,D).

main([[null,num(int(_))],heap([])],[ref(loc(1))]).

execute(A,B,C,D,E,heap([array(B,A)]),num(int(E))) :- E>=B.

execute(A,B,C,D,E,heap([array(B,A)]),num(int(E))) :- E<B, D\=0.
execute(A,B,C,0,D,E,J) :-

D<B, 0=<D, L is D+1, nth(L,A,num(int(M))), M\=C,
N is D+1, execute(A,B,C,0,N,E,J).

execute(A,B,C,0,D,E,J) :-

D<B, 0=<D, L is D+1, nth(L,A,num(int(C))),

execute(A,B,C,1,D,E,J).

Fig. 6. Decompiled version of the linear search program

Benchmark / /pt Gains

Name Size Tm Mem Unf/Eval Size Tm Mem Unf/Eval Size Tm Size

exp 0.33 1.56 712 1393/227 0.96 0.63 547 1092/187 0.78 2.49 1.23

gcd 0.27 1.19 566 1118/144 0.79 0.48 329 837/110 0.62 2.48 1.26

lcm 0.61 4.15 969 3211/367 2.50 1.39 471 2509/297 2.28 2.98 1.09

combNR 0.33 3.34 1332 2179/287 2.00 0.92 729 1623/216 1.47 3.64 1.36

combR 0.39 5.82 1733 2750/285 2.45 1.47 1203 2131/227 1.78 3.95 1.38

perm 0.28 1.52 562 1099/148 0.85 0.60 321 818/114 0.68 2.53 1.25

add 0.80 29.75 5980 9083/1115 23.15 7.03 3823 6757/830 18.18 4.23 1.27

exp 0.41 8.44 2027 3570/559 4.57 1.22 1079 2444/382 3.16 6.92 1.45

simplify 0.70 14.60 3076 6205/897 8.70 2.87 1917 4774/697 7.26 5.08 1.20

binarySrch 0.42 38.80 9867 10740/1571 29.91 6.00 3361 4837/727 11.53 6.46 2.59

forward 0.60 62.87 4106 14714/2256 16.30 9.20 4108 14714/2256 16.30 6.83 1.00

fib 0.28 — — –/– — 0.64 338 1421/191 1.10 ∞ ∞

linearSrch 0.32 — — –/– — 1.80 478 2610/394 16.09 ∞ ∞

signs 0.33 — — –/– — 3.98 1052 4401/702 11.40 ∞ ∞

Table 1. Measuring the effects of the pe types

trivial case where the input array is null (which, for simplicity, is not represented in
the SLD tree). As can be seen, we have succesfully got rid of the interpretation layer
as we only have calls to: 1) arithmetic builtins, 2) list builtins (nth in this case for
accessing the contents of the array) and 3) recursive calls to the execute predicate,
which represents, in essence, recursive calls to the basic blocks in the control flow
graph of the bytecode program.

7 Experimental Results

Table 1 shows the benefits that we can obtain by using pe type’s. We use a set of
classical algorithms as benchmarks. On one hand we have benchmarks belonging
to programs with iterations and static methods but without object-oriented fea-
tures, thus, exp, gcd, lcm and fib compute respectively the exponential, greatest-
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Benchmark abstract/pt+gen≡
abstract/pt+gen≈

Name Tm Mem Unf/Eval Size Tm Mem Unf/Eval Size

lcm 1.38 1.00 1.46/1.43 1.79 1.41 1.00 1.46/1.43 1.79

add 1.50 1.00 1.56/1.56 1.42 1.25 1.00 1.56/1.56 1.42

simplify 1.37 1.00 1.47/1.46 1.44 1.35 1.00 1.47/1.46 1.44

binarySearch 0.99 1.00 1.00/1.00 1.00 1.10 1.00 1.26/1.22 1.24

linearSearch 1.25 0.98 1.28/1.28 1.11 1.49 0.98 1.80/1.81 4.58

signs 1.24 1.00 1.30/1.30 1.28 1.86 1.00 1.88/1.90 2.15

Table 2. Measuring the effects of the abstract/pt+gen

common-divisor, least-common-multiple and Fibonacci; while combNoRep, Com-
bRep and perm are methods for computing different combinatorial functions. Then,
we have some benchmarks using integer arrays, such as linearSearch and binary-
Search which implement the classic linear and binary searchs over an array; and
Signs which given an integer array, computes the number of pairs of numbers with
different sign. Finally, we have used four benchmarks which make extensive use of
object-oriented features such as instance method invocation, field accessing and set-
ting, object creation and initialization, etc. Thus, add, exp and simp computes
different operations over rational numbers (represented as objects), while forward
is invoked over an object representing a date and forward one day.

For each Benchmark, the column Name shows the names of the main method
in the class which has been used as starting point for the decompilation, and the
column Size shows its size. All sizes are in KBytes and execution times in seconds
and have been obtained using the statistics/2 procedure of Ciao with the pa-
rameter runtime. They are computed as the arithmetic mean of five runs. The next
four columns, labeled E, provide information about specialization using the original
homeomorphic embedding. The first three of them show some data about the spe-
cialization process, whereas the fourth one shows the Size of the residual program.
The aspects which have been measured for the specialization process are Tm, which
is the time required by partial evaluation, Mem which is its memory consumption
(again in Kbytes), and Unf/Eval shows the number of derivation steps together
with the number of evaluations steps (i.e., where an eval assertion has been ap-
plied, see[17]) performed during the partial evaluation process. Similarly, the next
four columns provide information about specialization using our proposed combi-
nation of embedding with partial evaluation types. Finally, the last two columns
show the gains (in terms of time and size) we obtain with the new embedding def-
inition Ept based on pe type’s and it is computed as Old-Cost/New-Cost. The last
three benchmarks do not present data for the E columns. This is because the partial
evaluation process does not terminate for them. As can be seen in the table, our
proposed Ept specialization is able to handle them. It can also be seen that for all
other programs, the use of Ept results in important gains both in terms of time
(which ranges from 2.49 to 6.92 in the case of exp). The gains in terms of size range
from obtaining a similar sized program in forward to a program 2.59 times smaller
in the case of binarySearch.

The goal of Table 2 is to study the practical benefits that can be obtained by using
the new abstraction operator abstractEpt+gen}

proposed in Section 6. As in Table 1,
for each specialization approach we show four columns, with the same meaning as
before. However, in this case, rather than the absolute data we show just the gains
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obtained w.r.t. the behaviour of Ept, which is shown in absolute terms in Table 1.
We have two groups of columns, labeled as abstractEpt+gen≡

and abstractEpt+gen≈
,

each of them shows the gains of using respectively such abstraction operator when
compared to using Ept.

It should be noted that in Table 2 there are fewer benchmarks than in Table 1
because we only show those benchmarks where the improved global control based
on hints performs better than using Ept. As it can be seen, the new global control
in now case introduces relevant overhead. Furthermore, in most cases it introduces
relevant speedups, which go as high as 1.5 for the case of abstractEpt+gen≡

and 1.86
in the case of abstractEpt+gen≈

. Another important observation is that, at least in
our experiments, abstractEpt+gen≈

is strictly better than abstractEpt+gen≡
, since it

behaves strictly better in 3 cases, and equivalently in the other 3 cases.

8 Conclusions

In this paper we have proposed new mechanisms for achieving “quality” decompi-
lation from Java Bytecode to Prolog while at the same time ensuring termination
of the partial evaluation process by using a state-of-the-art online partial evaluator.
In addition to improving the quality of the residual programs, the techniques we
propose provide important efficiency gains during partial evaluation. In particular,
we introduce the notion of partial evaluation types to provide safe approximations
of the values which the arguments of predicates can take during partial evaluation
time. Such partial evaluation types are then used by the partial evaluator in order to
steer the specialization process, both at the local and global control levels. Besides,
we present novel techniques to control the polyvariance of the PE process, i.e., to
avoid having too many (redundant) specialized versions of some predicates. As we
have showed in our experiments, both proposals improve not only the effectiveness
but also the efficiency of the decompilation process which, at the same time, widens
the class of programs that can be handled by using our interpretative approach. It
remains as future work to improve the precision of our techniques to achieve effective
decompilation of recursive procedures. To do this, we plan to use more advanced PE
techniques [18] which integrate abstract interpretation.
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(Appendix included for reviewer convenience.)

A Java bytecode for our Running Example

public class LinearSearch extends java.lang.Object

public LinearSearch();

0: aload_0

1: invokespecial #1; //Method java/lang/Object."<init>":()V

4: return

public static int search(int[],int);

0: aload_0

1: arraylength

2: istore_2

3: iconst_0

4: istore_3

5: iconst_0

6: istore 4

8: iload 4

10: iload_2

11: if_icmpge 37

14: iload_3

15: ifne 37

18: aload_0

19: iload 4

21: iaload

22: iload_1

23: if_icmpne 31

26: iconst_1

27: istore_3

28: goto 8

31: iinc 4, 1

34: goto 8

37: iload 4

39: ireturn

}
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