Service Selection Algorithms for Web Services
with End-to-end QoS Constraints®

Tao Yu and Kwei-Jay Lin
Dept. of Electrical Engineering and Computer Science
University of California, Irvine

Irvine, California 92697-2625, USA

Abstract

Web services are new forms of Internet software that
can be universally deployed and invoked using standard
protocol. Services from different providers can be inte-
grated to provide composite services. In this paper, we
study the end-to-end QoS issues of composite service by
utilizing a QoS broker that is responsible for coordinat-
ing the individual service component to meet the qual-
ity constraint. We design the service selection algorithms
used by QoS brokers to meet end-to-end QoS constraints.
The objective of the algorithms is to maximize the user-
defined utility while meeting the end-to-end delay con-
straint. We model the problem as the Multiple Choice
Knapsack Problem (MCKP) and provide efficient solu-
tions. The algorithms are tested for their performance.

1 Introduction

The Web services framework has evolved to become the
software foundation for next generation enterprise and
Web-based systems. By adopting standard-based proto-
cols (such as SOAP, WSDL and UDDI), service compo-
nents from different providers can be conveniently inte-
grated into a composite service regardless of their loca-
tions, platforms and/or speed. As more and more com-
posite Weh services are deploved, many of them may
share common services that are offered by some major
service providers, such as stock services, search engines,
etc. With growing and competing demands, popular ser-
vice providers have started to offer different service levels
so as to meet the needs of different user bases, by offering
different service qualities based on user qualification or
service cost. One example of such projects is the Oceano
project at IBM |10].

The quality of a composite service is measured by its
end-to-end quality, rather than the quality of any indi-

*This research was supported in part by NSF CCR-9901697.

Proceedings of the IEEE International Conference on E-Commerce Technology

0-7695-2098-7/04 $20.00 © 2004 IEEE

1

vidual service component. A mechanism is needed to
ensure that the end-to-end quality of a composite Web
service is acceptable. QOur research on the end-to-end
QoS problem of composite service is based on the QoS-
Capable Web Service architecture, QCWS|9], that defines
a QoS broker between Web service clients and providers.
In QCWS, every service provider is assumed to offer many
service levels for the same service functionality. The QoS
broker collects the QoS information of service providers
(servers), makes service (and service level) selection de-
cisions for clients, and then negotiates with servers to
acquire QQoS service commitments.

In this paper, we study the service selection algorithms
used by QoS brokers. A broker receives service requests
from clients and identifies services that may meet the
functional needs of those requests as well as their QoS
requirements. The service selection algorithm considers
service cost, service response time, server load, and net-
work delay to make the best selection that meets the
end-to-end delay constraint. We model the problem as a
Multiple Choice Knapsack Problem (MCKP) and show
algorithms that can solve the problem efficiently. The
algorithms may be adopted by QoS brokers to make dy-
namic run-time decisions.

The contribution of our research is as follows:

1. We define the QoS broker service for managing end-
to-end QoS in composite Web services. The QoS
broker service is different from, but may be inte-
grated with, the process service in the BPEL pro-
cess composition [11], the coordinator service in
WS-Transaction [12], and for the registry service for
UDDI registries [13]. The QoS broker is designed to
make service selection for client requests, based on
their QoS constraints and requirements.

o

The objective function (called wtilities) and con-
straint used by the algorithms are based on a rich set
of system parameters, including static server infor-
mation (service level), client QoS requirement (QoS

mk@

COMPUTER
SOCIETY



constraint), dynamic server capacity (service bene-
fit)., and network delay. They could also consider
service reliability, availability, ete.

3. We present several service selection algorithms. For
composite service that is structured as a pipeline or
a DAG (Directed Acyclic Graph) and with only one
QoS constraint (end-to-end delay in our study), we
model the problem as a MCKP and identify a very
efficient algorithm to solve it. To our knowledge, our
work is among the first to model the end-to-end QoS
problem as MCKP and preseunts efficient algorithms.

The rest of this paper is organized as follows. Section 2
provides a quick overview of Web service QoS parameters.
Section 3 presents the end-to-end QoS system model.
Various algorithms for the service selection problem are
shown in Section 4. The review of some related work is
given in Section 5. The paper is concluded in Section 6.

2 Web Service QoS Parameters

In our study, we consider the following QoS attributes as
part of the Web service parameters.

e Response time: the amount of time to get a service
request responded at the client side. This includes
the total time for service and round-trip communi-
cation delay.

e Service cost: Some Web services are resource inten-
sive. A Web service may bear different costs depend-
ing on the quality of the service requested.

o Network delay: the network transmission time re-
quired to receive the service. This is especially im-
portant for services with multimedia content such as
video or graphics. The bandwidth attribute will also
be important for Web service brokers to decide if a
service should be invoked if the client is using a low
bandwidth network such as wireless connection.

e Service availability: the probability that the service
is available. This only measures the server availabil-
ity in terms of responding to a request, not the result
quality.

Since our goal is to build automated brokers for Web
services, the QoS attributes that we consider are both
easy to understand and to measure. These attributes
can be collected on an automated system without any
user intervention,

2

3 System Model

The main purpose of QoS broker is to help clients (1)
finding qualified services and service levels: (2) selecting
the most suitable one(s) in all candidates to fulfill its
functional and QoS requirements. The service selection
algorithm used by the QoS broker is very important in the
QoS broker design. In this section, we present the system
model of our proposed service selection algorithm.

3.1 Assumptions and definitions

Our system model and notations are defined as follows:

1. S: service class. A service class is a collection of
individual Web services with a common functionality
bur different non-functional properties (e.g. costs,
quality levels. etc.);

2. s: individual Web service in a service class, which re-
sides on a specific server somewhere on the network;

3. I one of the service levels provided by an individual
Web service;
4. R: the end-to-end delay constraint.

Also we make the following definitions about a service:

1. For a service s, the number of service levels it pro-
vides is L(s);

2. Each service level guarantees a service time e(s, ),
ie., e(s,1) is the maximum delay a client may expe-
rierice by selecting service s at service level [;

3. Each service level has a maximum capacity
Chnar(s,1), the maximum number of clients it can
accept;

4. Each service level has a current capacity Coyp(s,1).
the current number of clients receiving service at this
level;

5. Each service level has a fixed cost (s, ).

In our study, we define a benefit function based
on the unused server capacity which is defined as
L"“"’éfr::_r_l‘:"}')"f'“'”. The benefit function b(s. 1) is the ben-
efit a client receives when selecting service s at level [.
By sending new service requests to a server that has a
lighter load, a client may get a faster response than run-
ning it on a busy server. Moreover, such decisions will
distribute workloads more evenly among all servers and
create a more globally balanced service svstem. The ben-
efit function has the following properties:

un@

COMPUTER
SOCIETY

Proceedings of the IEEE International Conference on E-Commerce Technology
0-7695-2098-7/04 $20.00 © 2004 IEEE



1. b(s.l) is a conrinuous and increasing funetion of un-
used server capacity;

2. byan(5.1) = 1, when Cf:'.l'”'(sj [y =0
3. bmin(s: ") =0, when cf-m'{";-: I = C-mrl.:c(su ”

The specific benefit function can be defined freely as long
as it satisfies the above characteristics. For example, a
benefit function may be a linear function or exponential
function of server capacity.

Since services may be provided by different providers,
they communicate by passing requests and data on the
network. Transferring results from one service to another
or to the user incurs some delay. In this paper. we as-
sunie that the transmission delay and cost between any
two services and between a service and a client are prede-
fined and fixed. The transmission delay and cost between
two services s; and s; are denoted as d;; and ¢;; . The
transmission delay and cost from the last service s; to
the client are denoted as d,;, and ¢;, . We include the
network delay and cost in our algorithm.

One requirement of the service selection is that the ser-
vice selection for a new request should not disturb the ac-
tivities of existing clients. So the service and service level
(8,1} selected by a broker must be among those currently
available candidates Le. Chaz(s,l) — Coppr(s.0) > 0.

3.2 Utility Function

From the above definitions, we now present the objective
function of the service selection problem. We call it the
utality function F(s,l). For convenience, F(s,l) is also
denoted as Fy in this paper. Since a client wants to
maximize the benefit it receives and minimize the cost
it pays, we combine the benefit function b(s,!) and cost
function e(s.!) together as the utility function Fy:

(s, ) — avgh

c(s,l) — avge
qu =y, * ( thb {jig

stde

) 4w = (1 — ) (1)
where

wy : Weight of the benefit. 0 < wy, < 1

w, : Weight of the cost, 0 < w. < 1 and w. = 1 — wy
b(s.1): benefit of using service s ar level [

c(s,1) : cost of using service s at level [

avgb : average benefit for all services and levels

avge: average cost for all services and levels

stdb : standard deviation of all benefits

stde : standard deviation of all costs

3.3 Single service vs. composite service

The Web services requested by a client can be divided
into two categories. One is the single service, when a

3

O—O—O—---0—0

(a) Simple pipeline Structure

(b) DAG Structure

Figure 1: Composite Service

request can be accomplished by an individual service (e.g.
when a user requests for a stock price). The other is the
composite service, for which a request must be completed
by a set of individual services together (e.g. when a user
wants to make a travel plan that includes Hight selection,
hotel reservation, car rental, ticket purchase. ete.). In this
paper, we consider the composite service with sequential
execution only.

There are two types of composite service depending
on how many execution paths a composite service has:
Simple pipeline and DAG structure {Figure 1). Simple
pipeline is the simplest composite service structure with
only one execution path. All that a broker needs to do
is to find a service (and its service level) in cach service
class along the execution path. DAG composite service
has several execution paths (e.g. Figure 1(b) contains 5
possible paths). Each path can be considered as a sim-
ple pipeline composite service. Broker has to select an
optimal execution path among the 3 paths.

4 Service Selection Algorithms

4.1 Single service

If only a single service is needed, the selection will choose
the service with the lasrgest utility value. However, as
mentioned before, we also need to consider the network
delay in our model. After identifving the service class
that can fulfill the user’s request. we add the network
transmission delay and cost between the user and a ser-
vice to all service levels of that service. Thar is. ¢(s;.1) =
e(si,l) + cipand the response time r(s;, 1) = e(s;,[) +d;,,.
After the parameters are updated. a broker calculates the
utility Fy according to Eq. 1 for each candidate (service
level and service) and selects the one that has the highest
utility value.

un@

COMPUTER
SOCIETY

Proceedings of the IEEE International Conference on E-Commerce Technology
0-7695-2098-7/04 $20.00 © 2004 IEEE



4.2 Pipeline composite service

For requests that must be fulfilled by a composite service,
the QoS broker needs to decide how many single services
are needed for this composite service. Then it needs to
find the suitable service and service levels for each single
service from the service class.

Again we must include the network delay in service
sclections. In this problem formulation, we assume the
network connection overheads between any two services
in the consecutive steps are the same. That is, if the
data flow direction is §, < Sp, we assume the network
overhead between any service s; in S, and any service s;
in 5, are all the same. The transmission delay and cost
between any two services are then added to the sending
service. That is, the transmission overhead from s; to s
will be added to s; 1 e(s;,1) = ¢(si.1) + ¢ij and r(s;,1) =
e{s;,l) + d;;. The transmission delay and cost between
the last service and the client will be added to the last
service.

For a pipeline composite service that has & steps (& ser-
vice classes in an execution path) (51, Sa, ..., .Sk ), suppose
the total response time < 7. The problem can be mod-
cled as a MCUKDP. Given a set of items in several classes
and a knapsack, where each item has a weight and profit,
and the knapsack has a capacity. MCKP is to select one
item from each class to be placed in the knapsack within
the capacity yet has the highest total profit. We model
the composite service selection problem as a MCKDP in
the following way:

1. The steps of the composite service represent the
classes in MCRKP;

2. Singe each service in a service class has many service
levels, each service level is a candidate for service
selection; thus every candidate represents an item in
that class in MCKP:

3. The response time of each candidate represents the
weight of the item in MCKD:

4. The utility a candidate produces represents the profit
of the item in MCKDP;

5. The objective is to maximize the overall utility pro-
duced by the composite service under the constraint
that the total response time < R;

The problem is thus formulated as:

4

k
.-JJGI Z ZF"“;I,'}'
i=1 jES,
ﬂ-
Subject to Z Z rijxi; < R
i=1 j&Ss;

S ay=Li=1l..kjes

oy €{0,1}, i=1,.,k, j €S, (2)

Fyj Utility value at step i for candidate j
g Response time of candidate j at step 1
R Total response tirne

The MCKP problem is NP-hard. In the following we
present three algorithms that can be used: exhaustive
search, dynamic programming and a minimal algorithm
for MCKP.

Before using any algorithm to do the service selection,
some preprocessing on the candidates of each class may
reduce the number of candidates in each class. The fol-
lowing criteria is presented in [1]:

If two items a and b in the same class S;, satisfy

Fia < Tib and Fip > Fy (3)
then an optimal solution to MCKP with x5 = 0 exists.
We thus cen delete item b from the candidate list in S;.

Exhaustive search algorithm

This algorithm is a straightforward one by constructing
all service comnbinations and compares their utilities. It
can always produce the optimal solution but is time and
memory consuming. So it is only suitable for when the
number of classes and the items of each class are all small.
For a composite service contains & steps and step i has
L) (¢ = 1,2....,k) candidates, the time complexity of
the exhaustive search algorithm is O(l_[f:] L{i)).

Dynamic programming algorithm

The MCKP problem can be solved in pseudo-polynomial
time through dynamic programming. Given a pair of in-
tegers [(1 < 1 < k) and é¢(0 < é < R), consider the
sub-instance of MCKP consisting of subsets S,,.5,,....9;
and capacity ¢ Let fi(¢) denotes its optimal solution
value. The problem can be solved by the following dy-
namic programming formulation:

un@

COMPUTER
SOCIETY

Proceedings of the IEEE International Conference on E-Commerce Technology
0-7695-2098-7/04 $20.00 © 2004 IEEE



Let F=min{r;, j€ &} i=12,.,k

—oc G=0,1,..7 —1
file) = ; 2 A S
marc{Fy;: j€ Si,rj<c¢} é=7...R
—o0 o= 011,...,2121 L — 1
; (2<1<k)
file) = 1 ) ;
max{fi_1(¢ —=r;) + Fj : j € S,r; <c}

o= Zi-:l Tl R
(4)

The optimal solution is the state corresponding to
fi(R). For a composite service contains & steps and
step i has L(i) (i = 1.2,...,k) candidates, the time
complexity of the dynamic programning algorithm is

O(Y 5, L(i) = R).

Pisinger’s Algorithm

In [1]. David Pisinger introduces an algorithm for effi-
ciently solving the MCKP problem. This algorithm first
solves the linecar MCKP (LMCKP) problem by using
a partitioning algorithm and derives an initial feasible
solution (initial core) to MCKP. It then uses dynamic
programming to expand the initial core by adding new
classes as needed. In this algorithm, a minimum number
of classes are considered to solve MCKP and it uses the
mininuim effort for sorting and reduction.

1. Solving Linear Multiple-Choice Knapsack Problem
(LMCKP)

In Eq. {2), if we relax the integrity constraint z;; €
{0.1} to 0 <z < 1, the problem becomes LMCKP.
In |2] and {3], Zemel and Dyer each developed linear
time algorithms for LMCKP. Both algorithms are
based on the convexity of the LP-dual problem to
Eq. (2). For the dual problem, we can pair the
dual line segments and delete the unpromising ones
according to some dominance eriteria.

Based on Dyer and Zemel’s algorithms, [1| presents
a partitioning algorithm to solve the LMCKP. The
optimal solution x*to LMCKP is composed by the
LP-optimal choices b; in each class, where x;, =
1. One of the classes S, mayv contain two non-zero
fractional variables s, and zop (Tab, + Tapr = 1).
If «* has no fractional variables, it is already the
optimal solution to MCKP. Otherwise, the fractional
class S, 18 defined as the initial core for MCKDP. We
then continue the following step.

2. Solving MCKDP

5

Given an initial core and the set of {b;|1 # a} from
step 1, the positive and negative gradient A" and A
for each class S;.i # a are defined as:

F.. — Fy . :
M= max —L—2i=12..,ki#aq,
JES i i, Tij — Fib,
(5)
) Fiy. — F;; . -
A =  max Y =12,k #a,
JES i<, Tib, — Tij
(6)
We then sort the sets LT = {A} in decreasing val-
ues, and L~ = {A]} in increasing values. Starting

from the initial core. we will expand the core by al-
ternately including a new (not yet selected) class S,
that has the largest ] from L™ or the smallest AT
from L—;

Before adding a new class to the core, an upper
bound test (explained in [1]) can be used to fathom
unpromising items from the class. If only one item is
left. the class may be excluded from further selection
in LT and L~. Otherwise the class is added to the
core.

It a core including classes €' = {5, .... Sr,, }. the set
of partial vectors is given by Yo = {{y1. . ym) |y €
{l.np}, 1 = Lom}. Each variable y; determines
Ty, = 1in class S;, while x; = 0. § # y;. More-
over, the vector §; = (¥1,...Um) € Yo will result in
a state (p;, mi,vi), where p;, m; are defined by Eq.
(7) and (8) below, while v; is just a convenient rep-
resentation of y;.

p= Y Tt ) T (7)
Ss:eC S0

mi=y Fuy+ Y Fa, (8)
5.eC Sigc

After adding a new class in the core, some of the
states in the core can be fathomed by another upper
bound test [1]. When all classes have heen selected,
the optimal solution for MCKP can be found.

The computational experiments in [1] show that this al-
gorithm is very efficient and much faster than the dy-
namic programming algorithm. For a composite ser-
vice contains k steps (k classes. S),..,5;) and step i has
(L(i) (i = 1.2,..., k) candidates, each class S; in the core
(" has n; the time complexity of Pisinger's algorithm is :
O(TE, L) + R * X g e L(0)).

In the worst case, the time complexity of Pisinger’s al-
gorithm is the same as dynamic programming for MCKP,
However. as we will show later in this paper, Pisinger’s
algorithm usually converges very fast, allowing its compu-
tation time to be much less than dyvnamic programming,

un@

COMPUTER
SOCIETY

Proceedings of the IEEE International Conference on E-Commerce Technology
0-7695-2098-7/04 $20.00 © 2004 IEEE



4.3 DAG composite service

Composite services that are structured as DAG present
a more challenging service selection problem since there
are many possible execution paths. Two approachies may
be used to find the optimal execution path in a DAG
composite serviee.

1. Find all possible execution paths. For each path,
treat it as a pipeline composite service and find the
highest overall utility (using Pisinger’s algorithm).
Compare the overall utility values produced for all
paths and choose the one with the highest value as
the optimal service selection.

Use Constrained Bellman-Ford(CBF [8]) to find the
optimal path that produces the highest overall util-
ity. In the algorithm, instead of searching for the
shortest path, we search for the highest utility path.
Detailed description of CBF can be found in [8].

to

Due to the space constraint, we will not compare these
two approaches in this paper.
4.4 Composite service example

Now we present an example to show the procedure of
Pisinger's algorithms used for a pipeline composite ser-
vice. The example is defined as follows:

e The benefit funetion d(s.1) 1s defined as:

_(.‘mug.e.q—c-c,“.r 5l
Teparlad;

l—e—1!

b{‘)\.t} w l—e {g
)

0 S C"(‘.U.'."(S'l) S C'JTLUI(S"I)

e Constraint: the end-to-end response time I < 61;

e The composite service containg 4 sequential services
(k = 4d), each has 4 service levels (n = 4). We as-
sume that all levels are available. i.e. C,,,..(5,1) —
Clywr(s5,1) > 0. The response time, cost, maximum
capacity and current capacity of each service and
service level are shown in Tables 1,2 and 3:

According to the definition of the benefit function Eq.
(9) and utility function Eq. (1), we can get the util-
ity of each service level. Then we convert the util-
ity to non-negative integers using the formula F(s.l) =
floor(F(s,1) = 200) + min(F(s.1)). The converted utility
is shown in Table 1. Also, we use the preprocessing crite-
ria 3 to delete some items in each class and produce the
final r(s,1) & F(s,1) shown in Table 5.

When using Pisinger’s algorithm, we first solve the
corresponding LMCKP to get the initial solution to

6

| Response tine r(s, 1) |

| | Zevet s | Level 2 | Lewet 3 | Levet 4 |
Service 1 a3 12 24 g
Sermoe 2 4 10 15 26
Sermes 4 7 15 20 26
Service 4 o 17 ar 39

Table 1: Response time

[ Clost s, 1} l

I || Level 1 Level 2 Lenel 3 Level 4 |
Service a8 28 19 13
Service 2 24 149 Lf 3
Serviee 25 20 15 1
Sernee 2) 21 16 I

Table 2: Cost

[ Response time {cost) ris 1fc(s, 1)) ]

[ [| Levet s | Lewet2 | Lewet s | Level s |
Serpee | 3 (33} 12028} | 21 (19) | 30 (43)
Sermoe 2 4 f24) 10 {19} 18 (14) 26 (8)
Serwvice 3 ¥ i25) 18 (2o} 30 (15) e 10l
Service 4 9 (26) 17 (21) 24 (16) 39(11)

Table 3: Max (Current) capacity

| Utility F(s,1) |

| || Lewvel ! Level 2 Level 7 Leuel |
Seruiee | 1 167 181 T
Serwice 2 id 1o 232 240
Service 3 a2 18 t36 241
Seree § ta 143 143 a5

Table 4: Utility

| Response time ris, 1) [Utility F(s,1]] 1

| ” Lewel 1 | Level 2 i Level 3 t Level 4 1
Seruice ! 210} refrav] | 2rfrar]
Service 2 a0l rafirof 18jz32] 2af240f
Service 3 73/ 18f18) | wofrae] | s6fzif
Service 4 af 16/ rrfg3f -

Table 5: Response time [Utility| after preprocessing

Proceedings of the IEEE International Conference on E-Commerce Technology

0-7695-2098-7/04 $20.00 © 2004 IEEE

un@

COMPUTER

SOCIETY



Lt
Cluss{ Hemsir[Ff)}

Na. er‘fr“ﬂ l

! afa4f Sy {21671, 21[191], 3(10]}
2 slaf Sa{18[232), 26[240}, 4[10]. 10{140]}
9 o} Sa{17[as], 9016]}

Table 6: L7set

I
Class { Items(r[F]) }

N ” dr[dF} |

t sfaz) | s2{18[232],26[240], 4[10]. 10{140]}
2 sft27] Sa{17[143],9(16]}
32 of1a7] Sy{12fie7], 21[1e1]. 3[10}}

Table 7: L~ set

MCKP Eq. (10). The initial core contains items:
{7[3]. 18[18],30[136],36[241]},
S| ¥ I')l - 2, by — I?.._ Fl.l,, = 16?
Q_} i hv_) =3, Faby = 18._ F;;,t,:, = 232; fl[))
Ss o fractional class, initiel core :
Sy by =2, Fap, = 17, Fyp, = 143.

Starting from the initial core S3, we calculate the
positive and negative gradient ATand A for each class
Si. 1 # 3 and sort L™ = {27} in decreasing values (Ta-
ble 6). and L7 = {A] } in increasing values (Table 7).

The set of partial vectors Yoo = {(g,m,v;)} in the
initial core " has 4 states: Yo = {(54, 545, 0),(65. 560, 1),

TT.678.2),(83,783.3)}. After doing the state reduction
according to the upper bound test (see [1]), Yo becomes
Yo = {(54,545,0), (65,560, 1)}. In this Yo . (54,545, 0)
is chosen with item (7[3]) and utility = = 545. In the
following steps, we will add new classes to the core until
all classes have been considered,

1. Add elass S {12[167], 21{191], 3[10]} from L™ 1o the
core, Yo = {(54,545,0), (63,569.1)}: The item cho-
sen in S| is 12[167], the utility z = 545;

2. Add class 5,{18]232]. 26[240], 4[10], 10[140]} from
L~ to the core, Yoo = {(54,543,1), (63,569,3)}; the
itern chosen in S, is 18[232]. the urtility z = 545;

3. Add class Sy {17[143].9[16]} from L~ to the core,
Yoo = {(63.569.3)}; The item chosen in 85 is 17[143],

the utility z = 545;

At this poeint, the core is complete. The optimal solution
includes the chosen item in each class: {12,18.7.17} and
the maximum urility value is 2 = 545,

T

Running iime (jes)
Sermee| Cand. Erhanslive | Dynomic FPisinger’s
3 {n) Senrch Frogramming
5 3 27 B 56
1 atl - 4649 fie
3 E 1131 130 27
1o 10 - 13895 &8
ji 1aag - FI668 217
1 1004 - TTE0H0 1ot
20 1 259071 X4
2 taag T s 6T6LT ps 3240
51 1 1 & 830409 ps (541
50 1000 - 26 5 928142 ps {7TE
10 el 6 5 2THERE ps 1294

Table 8: Running time comparison

4.5 Running Time Experiments

We have conducted many tests using the three algorithms
to compare their running time. Table 8 shows the test
results. Since the exhaustive search algorithm is time and
memory consuming, it is only suitable for the situation
when k (service stages of the composite service) and n
(number of candidates in each stage) are both small (In
our tests, we choose k +n < 253). When &k and n be-
come larger, this algorithin quickly ran out of memory
in our experiments. Between dvnamic programming and
Pisinger's algorithm, Pisinger’s algorithm is much faster
and more efficient than dvnamic programming. For ex-
ample, when & = 10 and n = 100. it takes dynamic
programming 35. 6685 to finish the computation while
Pisinger’s algorithm only needs 217us.

The test result shows that Pisinger's algorithm is the
best algorithm for service selection in composite service,
especially when the number of candidates in each service
is large.

5 Related Work

The end-to-end Web services selection is part of the Web
service composition problem. Many have worked on this
topic. In |7}, authors present a framework SELF-SERY
for declarative Web services composition using state-
charts. The resulting services can be executed in a de-
centralized way in a dynamie environment. Their service
selection approach uses a local selection strategy. The sc-
lection of a service is determined independently to other
tasks of the composite services. Although the service se-
leetion is locally optimal, they may not satisly the global
constraint such as the end-ro-end delay.

The closest work to ours is [6] which gives a quality

un@

COMPUTER
SOCIETY

Proceedings of the IEEE International Conference on E-Commerce Technology
0-7695-2098-7/04 $20.00 © 2004 IEEE



driven approach 10 select component services during the
execution of a composite service. They consider mulriple
QoS eriteria such as price, duration, reliability and rake
into account of the global constraint, as the end-ro-end
delay constraint presented in our paper. One difference
hetween our models is that they don’t have the serviee
level concept. In their work, a service can only have one
processing time and one cost. Their solution to the ser-
vice selection problem is to use the lincar programming
technique, which is usually too complex for run-time de-
cisions.

|5} describes a distributed QoS management architec-
ture for a complex distributed real-time system that ac-
commodates and manages different dimensions and mea-
sures of QoS. It is based on a flexible compuration ap-
proach to trade the amount of time and resources used
to produce different qualities of result. Our work is dif-
ferent from theirs becanse the quality provided by each
service is from a third party (service provider). So we can
only select the quality of service among existing service
levels instead of adjusting the system resource for each
service.

6 Conclusions

[u this paper, we study the Web Service end-to-end QoS
constraint issue by utilizing a QoS broker that is respon-
sible for coordinating among individual service compo-
nents to meet the quality constraint for client. We have
presented service selection algorithms. The objective of
the algorithms is to maximize user-defined service utili-
ties while meeting the end-to-end delay coustraint. The
service selection problem is modeled as a MCKP and effi-
cient algorithms are presented to solve it. We have stud-
ied the performance of several algorithms and shown thas
Pisinger’s algoritlim has a very efficient run time even for
problems thar have a fairly large data set. We believe the
proposed model and algorithm present a pracrical solu-
tion to the end-to-end QoS guarantee problem for com-
posite Web services.

References

[1] Pisinger, D.. "A minimal algorithm for the Multiple-
choice Knapsack Problem”, Enropean Journal of Opera-
tional Research, 83, 304-410 .1995.

[2] Zemel, E.. "An O(n) algorithm for the linear multiple
choice knapsack problem and related problems". Infor-
mation Processing Lecters, 18, 123 128, 1984.

[3] Dyer. M.E., “An O(n) algorithm for the multiple-choice
knapsack linear program”, Mathematical Programming,
29, 57-63, 1984,

I-—l] Martello, S., & Toth, P. “Kuapsack Problems, Algo-
rithms and Computer Implementations”, John Wilev &
Sons Led, 1990,

[3] Shankar,M., DeMiguel, M. and Lin, J. W.8., “An end-ro-
end QoS management architecture”, In Proc. 5th Real-
Time Technology and Applications Symposinmn, 1999,

{6] Zeng, L., Benatallah, B., Dmmnas, M., Kalagnanam, J.,
and Sheng, Q. Z.. “Quality Driven Web Service Com-
position”,. In Proc. 12th International World Wide Web
Conference {WWW), 2003.

Benatallah, B., Dumas, M., Sheng, Q.Z., and Ngn, A
“Declarative Composition and Peer-to-Peer Provisioniug
of Dynamic Web Services.” In Proc. of IEEE ICDE02,
pp. 207-308, San Jose, 2002

i

[8

Widyone, R., "The design and evaluation of routing al-
gorithms for real-time channels". Tech. Rep. TR-94-024.
University of California at Berkeley, International Comn-
puter Science Insriture, June 1994,

{9] Chen, H., Yu, T. and Lin, KT, “QCWS: An Implementa-
tion of QoS Capable Multimedia Web Services™. In Proc.
of IEEE 5th Int. Symp. Multimedia Software Eugineer-
ing, Taiwan, Dec 2003.

[10] The Oceano project, 1B M,
http:/ /www.research.ibmi.com/oceanoproject index
[11] Business Process Execution
Language for Web Services,

http:/ /www.ibm.com /developerworks /library . ws-

bpell/.

[12] Web  Services  Transaction  (WS-Transaction)
htep://www.ibm.com /developerworks library / ws-

transpec;

[13] OASIS TUniversal Description,
Integration Specification TC,

open.org,/committees,/ uddi-spec/.

Discovery  and
http:/'www.oasis-

Proceedings of the IEEE International Conference on E-Commerce Technology "

COMPUTER
SOCIETY

0-7695-2098-7/04 $20.00 © 2004 IEEE

Sheml

@



	footer1: 


