
Model-Checking Behavioral Specification of

BPEL Applications

Shin NAKAJIMA1

National Institute of Informatics
and

SORST/Japan Science and Technology Agency
Tokyo, Japan

Abstract

To provide a framework to compose lots of specialised services flexibly, BPEL is proposed to
describe Web service flows. Since the Web service flow description is basically a distributed col-
laboration, writing correct programs in BPEL is not easy. Verifying BPEL program prior to its
execution is essential. This paper proposes a method to extract the behavioral specification from a
BPEL appliation program and to analyze it by using the SPIN model checker. With the adequate
abstraction method and support for DPE, the method can analyze all the four example cases in
the BPEL standard document.

Keywords: BPEL, Model-Checking, SPIN, Abstraction, DPE.

1 Introduction

Service-oriented computing [15] is an emerging software technology for busi-
ness networks using the Web technology. Business partners, each acting as a
role of a Web service provider, collaborate with each other for customers to
benefit from them. As a framework to compose more than one Web services,
languages such as WSFL, XLANG, and BPEL4WS are proposed. BPEL4WS
(Business Process Execution Language for Web Service), or BPEL for short,
is meant to supersede both WSFL and XLANG. And this paper studies BPEL
v1.1 [2] being the basis for the OASIS standard.

1 Email: nkjm@nii.ac.jp

Electronic Notes in Theoretical Computer Science 151 (2006) 89–105

1571-0661/$ – see front matter © 2006 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.07.038

http://www.elsevier.com/locate/entcs

Since the Web flow description is basically a distributed collaboration of in-
dividual service providers executing concurrently, writing correct programs in
BPEL is not easy. Concurrency in BPEL is based on a net-oriented work-flow
model [8], and faulty behaviors such as deadlocks and violation of properties
specific to the application can often sneak in the descriptions. Verifying BPEL
program prior to its execution is essential. Actually various methods on the
analysis of the behavioral specification are proposed [3][6][7][13][14].

This paper proposes a method to extract behavioral specification from
BPEL application program to represent it in a variant of EFA (Extended
Finite-state Automaton). The EFA model is then translated into Promela
source program and is automatically analyzed by using the SPIN model checker
[5]. Although it is possible in principle to translate a BPEL program directly
to Promela, using the EFA as the intermediate represenation helps under-
stand what the behavioral specification is and define the verification problem
in a concise manner. The proposed method further employs an abstraction of
variables having effects on the control aspects of the behavior, and provides
an adequate support for DPE (Dead-Path Elimination). It can analyze all the
four example cases in the BPEL standard document [2].

2 Formal Analysis of BPEL

2.1 Overview of BPEL

receive

assign

invoke

receive

invoke invoke

invoke

invokereceive

reply

flow

process

port

Fig. 1. Purchase Order

BPEL is a behavioral extension of WSDL (Web Service Description Lan-
guage). The latter is basically an interface description language for Web ser-
vice providers, which contains information enough for the clients to access.
The client invokes a Web service provider using WSDL. The invocation is
one-shot; WSDL does not describe global states of the provider.

BPEL is a language for expressing behavioral compositions of Web service
providers. It can express a causal relationship between multiple invocations by
means of control and data flow links. BPEL employs a distributed concurrent

S. Nakajima / Electronic Notes in Theoretical Computer Science 151 (2006) 89–10590

computation model with variables.

Figure 1 illustrates a typical BPEL process, Purchase Order example in
[2]. The concurrency in BPEL is based on the idea of the net-oriented concur-
rent computation model in that a flow graph, described by flow activity and
control links (link), represent concurrency. The example BPEL program first
waits for an invocation requests from the outside with the receive activity,
and then initiates three concurrent activities enclosed in the flow. After all
the concurrent executions terminate, the control goes to the reply activity
which returns some value to the original outside initiator as the result of the
computation process. The schematic diagram also shows by using the solid
lines (Link’s) that some control dependencies exist between some of the basic
activities.

BPEL, as its full name suggests, is characterized as a business process
description language in the Web service architecture, and shares many of
features with the work-flow schema languages [16]. The concurrent aspect
of BPEL (flow activity) inherits from WSFL, which in turn borrows its core
ideas from PM-Graph [8], that is a model of work-flow systems.

2.2 Two Aspects of Formal Analysis

A BPEL process exchanges messages with the partner Web service providers,
and each message confirms to a particular WSDL message type. In BPEL,
<define> tag introduces the definitions for the messages, and <process> tag
defines how the message data are manipulated and how the control flow pro-
ceeds, i.e. the behavioral specification. The correctness of BPEL programs
also has two kinds of distinctive characteristics: message type conformance
and behavioral specification.

The message type conformance is a check to see whether the type of a
exchanged message does not contradict with the message type expected by
the port through which the message is sent or received. And the problem
can be considered as a variant of type-checking seen in typed programming
languages. This paper does not go further into this direction.

Alternatively, this paper focuses on the behavioral aspect of the system. It
is because the behavioral specification plays a crucial role in distributed con-
current systems such as BPEL programs. Concurrent systems may sometimes
have potential deadlocks. Such a faulty behavior is not easy to uncover once
a system starts its executions because it occurs non-deterministically. The
system shows such a faulty behavior only in some situations, and appears to
execute correctly in most of the times.

S. Nakajima / Electronic Notes in Theoretical Computer Science 151 (2006) 89–105 91

2.3 Related Work

The earliest work on the formal verification of Web service flow can be traced
back to the paper by S. Narayanan and S.A. Mcllraith who employs Petri-net
for the automatic analysis [13]. They, however, do not study the languages
relating to the Web service standard.

First proposals that aim to the standard technology are WSFL and XLANG
announced in May 2001. And S. Nakajima mentions a basic idea to use the
model-checking techniques for the analysis of WSFL [9][10]. Although WSFL
is obsolete, the basic technique to deal with concurrency including DPE is
still applicable to BPEL. And the detailed technique to use the SPIN model-
checker is found in [11]. This paper employs the same technique to handle
DPE for the case of BPEL, and studies what techniques would be needed to
analyze the BPEL application programs by using the model-checker. And the
abstraction technique is turned out essential.

Most of the work for the formal analysis of BPEL employs the formalism
based on the process algebra. H. Foster et al use FSP and the LTSA model-
checker for modeling and analysis of BPEL programs [3]. M. Koshkina and
F. van Breugel use CCS and Concurrency Workbench (CWB-NC) in their
work[7]. G. Salaun et al also use CWB-NC for the behavioral analysis of
BPEL [14]. As for DPE, F. van Breugel and M. Koshkina [1] give an interesting
analysis that execution results may be different depending on whether DPE
is introduced or not, leaving un-intentional side-effects. Last, X. Fu et al deal
with the data-aspect of BPEL by using the abstraction technique as well as the
behavioral specification and use the SPIN model-checker [6]. The abstraction
technique, however, is not always sound.

3 Behavioral Specification in BPEL

3.1 BPEL Behavioral Specification

3.1.1 Basic Process Description

Basic computation elements in BPEL are activities to represent atomic ac-
tions. BPEL provides three kinds of activities to exchange information with
the outside Web service providers: invoke, receive, and reply. The invoke

activity represents an atomic action for invoking a Web service provider via a
specific partner link, and waits for the result.

<invoke partnerLink="assessor" portType="riskAssessmentPT"
operation="check" inputVariable="request" outputVariable="risk">

In addition to the communication primitive activities, BPEL provides an
assign activity for accessing variables. It also has other activities concerning

S. Nakajima / Electronic Notes in Theoretical Computer Science 151 (2006) 89–10592

receive

invoke(1)

assign
invoke(2)

reply

flow

process

p11

p21

p12

p22

Fig. 2. Loan Approval

to implement control flows such as sequence (sequential executions), switch
(branch on conditions), while (repetitions), and flow (concurrency).

BPEL introduces a lexical context with scope activity. The lexical context
defines an effective scope of variables and various handlers such as exception.
However, in view of determining control flows, a serializable scope is impor-
tant. A scope activity can have a serializable attribute, which specifies
multiple concurrent accesses to the shared resources are serialized. And the
semantics is very similar to the standard isolation level serializable used in
the database transaction [2]. It is defined in terms of strict two-phase locking

protocol.

3.1.2 Concurrency in BPEL

The flow activity introduces a flow graph, consisting of the activity’s as
nodes and link’s as edges representing control links. This paper adapts the
semantics from the book [8] 2 , that is based on the PM-flow proposed as a
work-flow schema language. The operational semantics of BPEL is essentially
a set of rules to select activities to fire.

Figure 2 is an example from [2], Loan Approval, to use a flow activity and
link’s. The flow has five atomic activities, that are executed concurrently,
but have causal dependencies specified with the link’s. The receive has two
outgoing control links, each of which is set true depending on the values of
some other variables. Figure 2 uses variables such as p11 and p12 to denote
the condition schematically. The invoke(1) on its left downward similarly
has two links and their values determined by p21 and p22. Two variables are

2 According to an informal conversation with the author of [2], their implementation of
BPEL system has been adapted the semantics in [8].

S. Nakajima / Electronic Notes in Theoretical Computer Science 151 (2006) 89–105 93

introduced because the two links are distinctive in BPEL text, although they
are logically related.

Once the execution control is passed to the flow activity, its inside ac-
tivities start their execution concurrently. The receive, among others, can
be fired since no condition is posed on it. It sets the values of its outgoing
links depending on the values of some variables. Although Figure 2 compactly
illustrates that the condition is p11, p11 refers to the transitionCondition

(tC for short) attribute of the following code fragment.

<source linkName="receive-to-assess"
tC="bpws:getVariableData(’request’,’amount’) < 10000" />

When p11 is true, the invoke(1) is then chosen and the values of its two
outgoing links are determined similarly. Another variable p12 is supposed to
be false when p11 is true. Further, when p21 becomes true, the assign is
selected and the control finally goes to the reply at the bottom.

3.1.3 Dead-Path Elimination

The operational semantics of the flow is somewhat complicated due to DPE
(Dead-Path Elimination). Figure 3, extracted from the book [8], explains why
DPE is needed.

In Figure 3, the activity A has its result p to be true and the r of the activity
B false. Since r is false, the activity C will never be executed. Therefore, the
join condition of the activity D will also never be evaluated. The activity D,
however, can in principle be executed because its join condition is OR and one
of its input control link p is already known to be true. In a word, the activity
D can be executed logically, but its join condition will never be evaluated in
the naive semantics.

The DPE provides a means to resolve such pseudo faulty situations. DPE
starts its execution when a join condition becomes false, or when there is an
activity having a single input control link with false only. DPE traverses the
flow model downward to eliminate the pseudo faulty situations by forcing the
related join condition to be evaluated. DPE uses false values when it involves
logical calculation. DPE terminates the propagation process when it reaches
either an activity having a join condition or an ultimate end.

The example in Figure 2 requires DPE for executing correctly. When both
p12 and p22 turn out to be false, the join condition of the invoke(2) activity
becomes false and the activity is never executed. Then the join condition of
the reply activity, actually a logical or (∨) of the two incoming links, is not
evaluated because one of them comes from the invoke(2) activity. On the
other hand, since the outgoing link from the assign activity becomes true,
the reply activity will logically be executable.

S. Nakajima / Electronic Notes in Theoretical Computer Science 151 (2006) 89–10594

A

B

C

D

r

p q

OR-join

Fig. 3. Dead-Path Elimination

3.2 Formal Analysis and Abstraction

Abstraction is essential for the analysis of the behavioral specification. Since
the analysis is done in the environment that does not have actual service
providers, no concrete value or message is available. The actual values coming
from the external service provider may have effect on the control flow of the
BPEL program to be analyzed. Further, the analysis is a process to perform
without knowing actual values. All the values that might potentially be pos-
sible would be checked in the analysis. It, however, is not feasible in most
cases because the number of combinations of all the values would be huge.

As explained for the example in Figure 2, the tC attribute in <source>

tag should be appropriately evaluated in order to have valid executions. The
example condition involves a value stored in the variable request, which is
assigned in the receive activity. Since the actual value is not determined
at the analysis time, the best to say is that the tC would be either true or
false in an equal probability. In other word, the link takes either value in a
non-deterministic manner.

If such non-determinism is applied to all the tC’s independently, the two
outgoing links of the receive activity can be either true or false, and both
take true at the same time in some cases. For example, it is the case, in Figure
2, that both p11 and p12 take true, which is not what is meant in the original
BPEL application. Therefore, in order that the flow executes correctly, the
two outgoing links should take distinctive values. Namely, when p11 is true,
p12 should be false.

The approach employed in the paper is to introduce auxiliary predicate
variables; a predicate variable for each conditional expression. The value of
the predicate variable, however, is dependent on the BPEL variables since
they constitute the concrete expression in the BPEL program.

As for the example in Figure 2, two predicate variables, pred1 and pred2,
are introduced to represent the conditions on the two outgoing links from the
receive activity.

S. Nakajima / Electronic Notes in Theoretical Computer Science 151 (2006) 89–105 95

pred1
�
= request.amount < 10000

pred2
�
= request.amount >= 10000

where request.amount is an abbreviation of

getVariableData(’request’,’amount’).

And the two definitions has the logical relationship of pred2 = ¬ pred1.

Further, although the value of the BPEL variable request is assigned in
the receive activity, the actual value is not determined at the analysis time.
Thus, receive activity should be considered as being accompanied with an
assignment that pred1 takes either true or false in a non-deterministic man-
ner. Another predicate variable pred2 is appropriately assigned by consulting
the above logical relationship.

Introducing predicate variable is an idea relating to the predicate abstrac-

tion [4]. And the approach in this paper is meant to be structure-preserving.
Namely, the description after the abstraction has the same structure of the
original BPEL program.

4 Modeling and Analysis with EFA

This paper adapts the automaton-theoretic techniques for the behavioral anal-
ysis of BPEL programs. The intermediate representation is meant to introduce
for the two purposes: (1) to define what the behavioral specification of BPEL
programs is, and (2) to clearly state the verification problem at hand.

4.1 Modeling with EFA

4.1.1 Extended Finite-state Automaton

Behavioral specification is essentially an abstract view of the system in terms
of the control flow, and thus automaton is a good tool for the representa-
tion and analysis. BPEL, however, has language constructs relating to the
data flow aspects: some activities exchange messages with the partner ser-
vice providers via partner links, and the incoming messages are stored in the
variables. Further, variables and links may have effect on the control flow:
variables may appear in expressions of the condition in switch and while,
and also may be used in the condition to fire particular links in <source> tag.
Taking into account some notion of variables is essential and EFA would be a
basis for the representation.

Formally, an EFA (Extended Finite-state Automaton) M is a 7-tuple.

M = 〈Q, Σ,V, ρ, δ, q0,F〉

Q : Finite Set of Location Points
Σ : Alphabet including Symbols below

S. Nakajima / Electronic Notes in Theoretical Computer Science 151 (2006) 89–10596

P ! X : Output Action Designator
P ? X : Input Action Designator
ε : Internal Action Designator

V : Finite Set of Variables.
ρ : Variable Map Q → 2V

δ : Transition Relation Q × A × Q
A : Transition Action Σ × θ × G

θ : Variable Update Functions
G : Guard Condition

q0 ∈ Q : Initial Location
F ⊆ Q : Finite Set of Final Locations

An EFA M is basically a finite state automaton, but has variables V which
are assigned by the update functions (θ) and used in the expressions for the
input/output action designators (Σ) and the guard conditions (G). The set of
variables at a particular location point is obtained by the variable map ρ.

The transition relation δ is a triple relating a source and a target location
point (Q) with a transition action A. It is also a triple consisting of an
alphabet (Σ), a variable updating function (θ) and a guard (G). Operational
meaning of a transition relation is that the current location of the source is
changed to the target when the specified action is taken on the condition that
the accompanied guard condition is true. And the variable updating function
is executed in the course of the transition, which assign a new value to the
specified variable in the target location point. A variable updating function
is actually a set of simultaneour assignments.

Each alphabet in Σ may take one of the three forms. The two forms, P ! X
and P ? X, are in relation to communication with the external environment or
automaton, while ε is an internal action. Specifically, P ! X is an output action
designator while P ? X is an input one. Operationally, the output action is a
message send that the value X is sent to the communication channel P. The
input action is a message receive that a message coming from the channel P is
received and its value is set to the variable X. Last, an asynchronous product
of two EFA’s is defined in a standard way.

4.1.2 EFA for BPEL

In order to take into account the features specific to BPEL language con-
structs, below introduces a customized version of EFA, MBPEL. First, the
communication channels appeared in the input/output designators represent
partnerLink’s connected to the external service providers. Second, the vari-
ables V are partitioned into three non-overlapping sets.

V : Finite Set of Variables. VB + VL + VP

VB : Finite Set of BPEL Variables
VL : Finite Set of Link Variables
VP : Finite Set of Predicate Variables

S. Nakajima / Electronic Notes in Theoretical Computer Science 151 (2006) 89–105 97

GPL : Guard Condition

VB denotes a set of variables appeared explicitly in the source BPEL program.
They are extracted from <variables> tag in <process> description. VL is
a set of link variables, each of which corresponds to a <link> introduced in
<links> tag of <flow> activity. The <link> is employed to specify control
flow among the concurrently executing activities in a <flow>, and each link
can be regarded as a boolean variable. It is set true when the control flow does
exist. VP is a set of boolean-valued predicate variables, but does not appear
explicitly in the BPEL program. Each variable corresponds to a predicate
that represents the conditional expression appeared in switch, while, or tC

of source tag. For the example in Section 3.2, pred1 and pred2 are the
predicate variables.

Variables in either VL or VP are boolean-valued, but BPEL variables in
VB are application-specific and may take values in an infinite domain. When
the domain is infinite, or is huge if not infinite, taking into account all the
potential values in the analysis process is not feasible. This paper assumes
that a BPEL variable in VB takes a value from a finite set consisting only of
the two elements, definite and undefined. This implies that the analysis on
the data apsect is very limited; data value is ignored and how a data token is
flowed down along the data-flow is a concern here.

The guard condition is customized to be GPL, which is actually a predicate
involving variables only from either VL or VP , none from VB. The guard
condition expression g is either a simple boolean-valued expression or equality
(non-equality) of two. The EFA for BPEL is data-independent [17].

4.2 Verifications

The analysis technique is based on a state explosion search for verifying behav-
ioral specification of BPEL programs, actually expressed in terms of EFA’s.
Some definitions are necessary to define the verification problem.

The informal notion of how a BPEL program execution proceeds can be
captured by run. A run is an infinite sequence of location points that an EFA
generates, and is represented as

σω = q0q1q2. . .

where ∀qi ∈ Q, and the stutter extension rule is assumed to represent a finite
run as an infinite one. And an accepting run is also defined by following a
standard definition as

∃qf • qf∈F ∧ qf∈σω

An accepting run is an successful execution path of the BPEL program.

S. Nakajima / Electronic Notes in Theoretical Computer Science 151 (2006) 89–10598

The first verification problem is concerned with the reachability and often
refereed to as a check for the deadlock freedom. It is a test whether a BPEL
program does not stop its execution in an accidental manner, which can be
stated as a test whether there is a run that is not an accepting one.

Other interesting properties are expressed in terms of LTL (Linear Tempo-
ral Logic), and the standard model-checking algorithm can be applied. LTL
formula can have the temporal operators [] (always), <> (eventually), and U

(strong until), in addition to the standard logical connectives (∧, ∨, ¬, →).
And the semantics of the temporal operator is given in terms of the run in a
standard manner.

LTL formula takes an atomic proposition, which is a boolean expression to
be formed by using information at each location point. The expression may
refer to values of BPEL variables since the EFA has a variable map ρB in its
definition making it possible to obtain BPEL variables in each location point.

Another property of interest is to specify to which location point the ex-
ecution goes through. It can be expressed by using an atomic proposition
asking whether a run contains a specified qi defined for each location point.

4.3 BPEL to EFA

This section presents an overview of the translation scheme from BPEL ac-
tivity to EFA fragment. The translations of atomic activities are mostly
straight forward. Since EFA already has the notions of send-receive com-
munications and variables, activities involving communications with exter-
nal service providers (reply, receive, and invoke) and variable assignments
(assign) are easily translated into an appropriate EFA fragment. Since the
invoke activity is roughly said to be a combination of a message send and
receive, the EFA fragment consists of two consecutive transitions.

Complex activities forming control sequences may make use of the guard
condition of EFA. The switch activity is a multi-way conditional branching
control and has a otherwise branch. The while activity introduces an itera-
tion control and requires a loop structure to represent the repetition.

The translation of a flow activity consists of two steps. First, the top
flow activity becomes a part of a main EFA and each sub-activity appearing
directly in the flow is translated into a sub EFA. The main EFA transfers
execution control to all the sub EFA’s executing concurrently, and waits for
their completions. Second, all the EFA’s are composed to be an EFA by taking
their asynchronous product.

In order to synchronize the executions, the control variables are introduced.
For each sub EFA, two boolean variables startX and endX are implicitly

S. Nakajima / Electronic Notes in Theoretical Computer Science 151 (2006) 89–105 99

introduced in VL. The startX is set to true when the execution control is
entered into the flow, and thus the sub EFA starts its execution since the
guard condition on the transition becomes true. Upon its completion, the sub

EFA sets the endX variables true. The main ensures that all the sub-activities
are terminated by using the appropriate guard condition.

An atomic activity enclosed in flow may have synchronization in regard
to its incoming links. The enclosed activity has a particular synchronization
condition as its joinCondition attribute. The condition is represented as a
guard condition using the appropriate link variables.

An activity may also have <source> tags with tC. The <source> tag sets
its attribute linkName true when the tC is true, and false otherwise. It
means that the linkName is always set to the value of tC, and thus it can be
taken care of with the variable update function.

5 Implementation with SPIN

5.1 EFA to Promela

This section presents a method to use the SPIN model-checker for the rep-
resentation of the EFA model and the analysis. The basic idea is just to
translate an EFA into a Promela source program. Promela is the specification
language for the SPIN, and adapts a computational model of communicating
finite-state automaton with variables.

5.1.1 Translation of Basic Features

The translation is mostly straight forward since Promela is expressive enough
to represent control structures, channel communications, and variables as well
as an automaton.

• An EFA automaton M becomes a Promela process.

• A communication channel P appeared in the input and output action des-
ignators is translated to a Promela channel. Since the channel P denotes
partnerLink in BPEL, the name of the Promela channel name is taken

from the name attribute. And the Promela channel declaration takes into
account the type of the message exchanged.

chan name = [0] of { mtype, short };

where mtype is a enumeration type describing the operation (Op) and the
second argument carries the data value, actually a data token.

• Variable V is translated to a (global) variable in Promela. Specifically,
predicate variables VP are boolean Promela variables initialized to be false.

S. Nakajima / Electronic Notes in Theoretical Computer Science 151 (2006) 89–105100

bool name = false;

Link variables VL are also basically boolean, but a slight different encoding
is used in order to deal with DPE.

• Encoding Transition Relation δ is the most interesting part of the transla-
tion. The control aspect is directly encoded with the Promela control lan-
guage constructs. An unconditional transition is represented by a Promela
sequencing (;). Conditional branching in EFA, making use of the guard
condition G, uses Promela multi-way branch (if...fi). Repetition is easy
to represent in Promela since the language provides the looping construct
(do...od).

• Input/Output action designators are Promela channel operations. Both P
? X and P ! X are translated to Promela counter-parts. The channel P is
defined as a Promela channel as discussed above.

channelName ? Op(variableName);
channelName ! Op(variableName);

• A variable update function θ denotes a set of simultaneous assignment of
multiple variables. In its Promela translation, the atomicity (atomic{...})
is introduced.

In order to analyze the behavior, the Promela model should be closed. A
closed model consists of the Promela process to simulate the environment in
which the target BPEL process is supposed to execute. Actually the envi-
ronment contains all the service providers with which the BPEL process has
communication via the appropriate partner links.

5.1.2 Abstraction and Static Analysis

As discussed in Section 3.2, abstraction is necessary to obtain an EFA from a
BPEL program. It requires a static analysis to introduce appropriate predicate
variables (VP). As briefly discussed with a simple example, the analysis is
basically a define-use chain (du-chain) of variables having effects on the control
flow. Further, a single predicate variable is introduced for each conditional
expression.

Although the example in Figure 2 is simple, the translation of the receive
activity might be interesting. It requires two predicate variables logically
related. The fragment relevant to the discussion here follows.

<receive partnerLink="customer" operation="request" variable="request">
<source linkName="receive-to-assess" tC="request.amount < 10000"/>
<source linkName="receive-to-approval" tC="request.amount >=10000"/>

</receive>

And the Promela code fragment looks as below.

S. Nakajima / Electronic Notes in Theoretical Computer Science 151 (2006) 89–105 101

Customer ? Request(request) ; /* receive */
if :: pred1 = true :: pred1 = false fi ; /* non-determinstic */
pred2 = ! pred1 ; /* logical relation */
receiveToAssess = pred1 ; /* source */
receiveToApproval = pred2 ; /* source */

The variable pred1 denotes to the expression request.amount < 10000, which
depends on the variable request. The d-location of pred1 is at the receive

activity where it is assigned a new value to the variable request. Its u-
location is at the first <source> tag, in which the value of pred1 is accessed
to determine the value of the link. Although it is simple, it can be seen that
a du-chain analysis calculates a correct causal relationship between the two
locations.

The next thing is to determine the value. However, the best to say is
that the variable pred1 would be either true or false because the variable
request is not determined at the analysis time. Above is inserted the code
fragment to set the variable pred1 non-deterministically either one. Once the
value of pred1 is assigned, the search algorithm used in the model-checking
method of SPIN can explore all the possible combination of the values.

5.1.3 DPE and Serializable Scope

Most of the translation is presented above, however, some special care should
be taken in regard to the DPE and the <scope> tag with serializable flag
true.

In order to handle DPE properly, the set that the link variable takes as
its value extends to have forced. The forced value is generated and flowed
downward exactly when the DPE starts. If the activity has a join condition,
the forced value is interpreted as false in the evaluation of the condition. If
the activity does not have a join condition, the coming forced value makes
the activity not executed but is further flowed down along the outgoing link(s)
of the activity. Some details can be found elsewhere [11].

The serializable scope specifies multiple concurrent accesses to the variables
inside the scope are serialized. The serializable scope should be considered to
form a critical region. The Promela version introduces a mutex for each such
serializable scope for mutually exclusive accesses to the variables in the critical
region. According to the standard coding style, the Promela code fragment
to make accesses to the shared variables looks as below.

atomic{ mutex == free -> mutex = busy} ;
critical region to access variables

atomic{ mutex = free}

S. Nakajima / Electronic Notes in Theoretical Computer Science 151 (2006) 89–105102

Table 1
Four Cases

Name BPEL Features #States

(1) Purchase Order variable, flow 249

(2) Shipping Service switch, while 21

(3) Loan Approval flow, DPE 3516

(4) Auction Service multiple start 57

5.2 Example Cases

Table 1 presents a summary of the experiment. The four cases are taken from
the BPEL standard document [2]. The last column shows the number of states
in the analysis using the SPIN model-checker. Although its exact value is not
significant, the number shows roughly how the analysis is complicated. As
discussed in Section 5.1, the translation makes fully use of Promela language
constructs, the state-space can be small in the most example. The third
example Loan Approval contains five activities executing concurrently, the
state-space becomes large due to the interleaving semantics of the concurrency.

Each example employs particular language features in BPEL. (1) Purchase
Order (Figure 1) is introduced as the initial example to illustrate the most
basic structures and some of the fundamental concepts of BPEL language. (2)
Shipping Service uses switch and while activities to implement adequate con-
trols with some variables. Since their values are not determined, abstraction is
essential. (3) Loan Approval (Figure 2) makes use of BPEL concurrency with
the flow activity. This example also needs the abstraction of variables having
effects on the evaluation of the transition conditions. (4) Auction Service is
an example to have multiple start activities. It adds no new features for the
analysis in this paper, but it is interesting to note that a manual translation
can reduce the size of the state-space about 25% smaller. In each case, an ap-
propriate environment Promela description is introduced. The environment
process is constructed manually so that it adds little effects on the size of the
state-space.

As discussed in Section 4.2, LTL is a handly tool to express certain application-
specific properties. For the third example Loan Approval (Figure 2), a prop-
erty that either assign or invoke(2), not both, is executed can be checked
by expressing as below.

[](receive → (<>assign ∧ []¬ invoke(2) ∨ <>invoke(2) ∧ []¬ assign))

And the SPIN model-checker ensures that the property holds.

S. Nakajima / Electronic Notes in Theoretical Computer Science 151 (2006) 89–105 103

6 Discussion and Conclusion

This paper is the report of the first successful results that can analyze all the
four examples in the document [2]. The key point is that the proposed method
takes into account of such interesting features as DPE and the abstraction of
control variables.

Thanks to using the EFA as the intermediate representation, the proposed
method is clearly understood in two points: (1) to define what the behavioral
specification of BPEL programs is, and (2) to clearly state the verification
problem at hand. Further, X. Fu et al [6] employs the guarded automaton
model, which is essentially the same as the EFA in this paper. Both can
use variables and the transition may have guard condition. Such extended
automata is a good to for the behavioral analysis of BPEL application pro-
grams.

Other related work on the model-checking of the BPEL programs do not
consider DPE, and cannot properly analyze the Loan Approval example. In
addition, most of them do not care much about the abstraction on the con-
trol variables, and do not introduce techniques such as the predicate abstrac-
tion. The analysis results may have more false negatives than the approach
in this paper. Such a false negative sometimes appears as a result of the over-
approximation ignoring the causal relationships between the variables having
effects on the execution control.

Unfortunately not all the BPEL programs can be analyzed with the pro-
posed method. It does not deal with the semantics of handlers such as excep-
tion or compensation. Since handlers are the important language constructs
having much effects on the behavioral specifiation of BPEL programs, incor-
porating such features in the analysis method is essential. It is one of the futre
work.

Last, the tool discussed in the paper uses the SPIN as its back-end engine,
and will be combined with the method in [12] for the analysis of the potential
information leakage in BPEL application programs.

References

[1] F. van Breugel and M. Koshkina. Does Dead-Path-Elimination have Side Effects? Technical
Report CS-2003-04, York Univ., April 2003.

[2] F. Curbera et al. Business Process Execution Language for Web Services. Version 1.1, May
2003.

[3] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based Verification of Web Service
Compositions. In Proc. ASE 2003, September 2003.

[4] S. Graf and H. Saidi. Construction of Abstract State Graphs with PVS. In Proc. CAV’97,
pages 72 – 83, 1997.

S. Nakajima / Electronic Notes in Theoretical Computer Science 151 (2006) 89–105104

[5] G.J. Holzmann. The SPIN Model Checker. Addison-Wesley 2004.

[6] X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL Web Services. In Proc. WWW
2004, pages 621–630, May 2004.

[7] M. Koshkina and F. van Breugel. Verification of Business Processes for Web Services. Technical
Report CS-2003-11, York Univ., October 2003.

[8] F. Leymann and D. Roller. Production Workflow: concepts and techniques. Prentice Hall 1999.

[9] S. Nakajima. On Verifying Web Service Flows. In Proc. SAINT 2002 Workshop, pages 223–
224, January 2002.

[10] S. Nakajima. Verification of Web Service Flows with Model-Checking Techniques. In Proc.
Cyber World 2002, pages 378–385, IEEE, November 2002.

[11] S. Nakajima. Model-Checking of Web Service Flow (in Japanese). In Trans. IPS Japan, Vol.44,
No.3, pages 942–952, March 2003. A concise version presented at OOPSLA 2002 Workshop
on Object-Oriented Web Service, November 2002.

[12] S. Nakajima. Model-Checking of Safety and Security Aspects in Web Service Flows. In Proc.
ICWE’04, July 2004.

[13] S. Narayanan and S.A. Mcllraith. Simulation, Verification and Automated Composition of
Web Services. In Proc. WWW-11, 2002.

[14] G. Salaun, L. Bordeaux, and M. Schaerf. Describing and Reasoning on Web Services using
Process Algebra. In Proc. ICWS’04, July 2004.

[15] M.P.Singh and M.N.Huhns. Service-Oriented Computing. Wiley 2005.

[16] P. Wohed, W. van der Aalst, M.Dumas, and A. ter Hofstede. Pattern Based Analysis of
BPEL4WS. Techinical Report FIT-TR-2002-04, EUT, 2002.

[17] P. Wolper. Expressing Interesting Properties of Programs in Propositional Temporal Logic.
In Proc. POPL’86, Janurary 1986.

S. Nakajima / Electronic Notes in Theoretical Computer Science 151 (2006) 89–105 105

	Introduction
	Formal Analysis of BPEL
	Overview of BPEL
	Two Aspects of Formal Analysis
	Related Work

	Behavioral Specification in BPEL
	BPEL Behavioral Specification
	Formal Analysis and Abstraction

	Modeling and Analysis with EFA
	Modeling with EFA
	Verifications
	BPEL to EFA

	Implementation with SPIN
	EFA to Promela
	Example Cases

	Discussion and Conclusion
	References

