
Modelling and verification of BPEL business processes

Marina Mongiello
Dipartimento di Elettronica ed Elettrotecnica

Politecnico di Bari, Italy
mongiello@poliba.it

Daniela Castelluccia
Dipartimento di Elettronica ed Elettrotecnica

Politecnico di Bari, Italy
d.castelluccia@virgilio.it

Abstract

A business process is a complex web service with func-
tions provided by different web services, which are already
existing in web and are dynamically integrated for grant-
ing a more complex business task. For this reason, business
processes have become more and more diffuse in B2B and
B2C domains, so that the importance of their activities asks
for a high-level of reliability. Methods and tools for sup-
porting automatic system verification and validation could
be useful. Among the techniques of automatic verification,
we choose Model Checking method, because we applied it
efficiently for verification of a single web service and in
this paper we extend the area of application also in busi-
ness processes. Descriptions of the behavior of a business
process are coded using a standard language, BPEL4WS,
that has broadly spread because it is able to describe a
business process as both an executable process and an ab-
stract process. Therefore, we model a BPEL description
of a generic business process with a formal model and we
formalize correctness properties about the reliability of the
business process design. Also, we build a framework that
performs automatic verification of formal models of busi-
ness processes through NuSMV model checker. If there is
a violation of correctness specifications, NuSMV provides
counter-examples, so we can locate errors and effect right
changes for correcting business process design.

1. Introduction

Nowadays, the functions of web services have become
more and more applied in many domains like Business to
Business, Business to Consumer and Enterprise applica-
tions. For instance, a company has to make a purchase:
it can seek from the web advices of different suppliers or it
can check for offering of one supplier for days and it buys
when the price goes below a specified threshold. Generally
speaking, when different companies want to realize trans-
actions among them using web services, the functions pro-

vided by different web services have to be integrated to-
gether for granting a more complex function.

We define business process (BP) a complex web service,
that originates from the composition of web services, which
are already existing and dynamically integrated in one com-
plex process. This integration is realized through a synchro-
nous exchange of messages or through asyncronous not cor-
related interactions.

It is necessary to define a formal description of compo-
sition of web services with a standard language, so that it
is commonly understandable both to human designers and
to tools for automatic composition. Standard languages for
single web services are used (SOAP, Web Services Descrip-
tion Language and Universal Description, Discovery, and
Integration), but they are not suitable enough for complex
web services. SOAP defines the protocol of receipt and dis-
patch of messages in XML format, WSDL describes the
functions that can be provided by a web service through
a connection to a definite port number, UDDI provides a
method to publish a web service so that it can be discov-
ered in automatic way in the web and other web services
can access to it. However, even if WSDL defines the public
interface of a web service, it doesn’t provide informations
about its behavior with other web services.

Descriptions of behavior of web services and their inter-
actions can be defined using a standard language of high
level like BPEL4WS (Business Process Execution Lan-
guage for Web Services), simply BPEL, which is able to
explains business prosess from a high level point of view.
Particularly speaking, BPEL describes all the features and
the services provided by every web service that is a partner
in the business process (executable process). BPEL also de-
scribes the protocol of message exchange between partners
for performing the complex task, without revealing oper-
ations that partners internally complete (abstract process).
So, BPEL has broadly spread because it is able to model a
business process as both an executable process and an ab-
stract process.

However, it is possibile that problems happen during the
execution of a business process: for instance, problems of

Proceedings of the Fourth Workshop on Model-Based Development of Computer-Based Systems and Third
International Workshop on Model-Based Methodologies for Pervasive and Embedded Software (MBD/MOMPES’06)
0-7695-2538-5 /06 $20.00 © 2006 IEEE

interaction like invocations of remote services that do not
answer, problems in software like deadlocks in remote sys-
tems, problems of net-communications like temporary con-
gestions The designer of a business process has to also ver-
ify these situations, therefore a framework that can automat-
ically check for weakness in design could be useful. After
automatic verification, the BP design can be revised before
the real system implementation is submitted to testing.

Among the techniques of automatic verification, the
Model Checking method can be efficiently applied for veri-
fication of a single web service, as our previous papers show
[8],[9],[11]. In this paper, we extend the area of Model
Checking applications also in business processes, which are
described through BPEL.

The structure of this article is the following one. The
section 2 introduces the notion of composition of web ser-
vices with particular attention to BPEL4WS description
language. This section also describes the state of the art
of formal techniques in BP verification. The section 3 ex-
plains how a business process, which is described in BPEL,
can be turned into our formal model. The section 4 explains
which specifications can be verified in our model; specif-
ically, temporal properties can be expressed and verified
about messages, that are sent during BP execution. The
section 5 describes the architecture of our system proto-
type for automatic verification of formal model of business
processes through Model Checking. Finally, the main pur-
poses and the future improvements of our research are syn-
thesized.

2. Composition of Web Services

The main reason of the great diffusion of web services
is the possibility to have a big collection of available soft-
ware programs, that are already implemented and existing
in Internet. They are accessible through standard protocols
as SOAP, WSDL and UDDI. Through such standards, the
services provided by a web application can automatically
be discovered and integrated in further web services or they
can be coordinated to build more complex services.

At a basic level, a web service is a collection of: ”ac-
tivities”, whose execution has to perform tasks of concern,
and ”messages”, that allow the web service to contribute in
the activities of a business process. Activities are similar
to traditional programs; messages are interactions among
different web services, however web services keep own au-
tonomy.

Different languages have been adopted to describe in-
teractions of business processes: BPEL [3], WSCI [12],
BPML [1], DAML-S [2]. The development of web services,
that is based on these standards, is supported by different
implementation platform as .Net and J2EE. Automatic com-
position of web services has been topic of concern for re-

searchers in the last years. For instance, in [7] a mapping
from BPML into OWL-S is realized: BPML is a graph-
based description language for composition of web service
that is especially suitable to model requirements of enter-
prise applications; OWL-S is a XML-based onthology that
allows identification, composition, execution, monitoring of
web services. However, the mapping is partial because of
the limited expressiveness of OWL-S (OWL-S is not able to
describe information sharing among web services). In [10]
a Petri net-based framework is explained for verification of
business processes, which are described with another stan-
dard language, DAML-S.

However, BPEL is the most employed standard de-facto,
because it is able not only to describe the services provided
by every web services of a business process, but also it de-
scribes the global behavior of the business process, that is
based on a synchronous and asyncronous exchange of mes-
sages. Specifically, a business process described in BPEL
incorporates different functions provided by web service
partners, exclusively using the respective public interfaces
and hiding their inside implementations. This separation
between public and private aspects involves two advan-
tages: companies that provide web services do not reveal
their methods of internal data management or decision mak-
ing; besides, in case of change of internal implementation,
the published services are accessible to the business process
with the same methodology. In this way, BPEL provides a
platform-independent language for describing the message
exchange protocol of the business process.

The approaches to the verification of BPEL processes
have been very different. One of researchers about this topic
is Bultan, that in [4] represents a business process through:
1- a conversation schema, that identifies every entity and
every message sent among entities, 2- a set of guarded au-
tomata, that identifies the behavior of every entity. The ver-
ification of web service interaction is performed after a fur-
ther translation in Linear Temporal Logic, that can be sub-
mitted to Spin. However, this analysis exclusively involves
synchronous communication, where messages are immedi-
ately consumed by the web service receiver. The limit of
Bultan’s paper is overcome by Pistore et al. in [5], where
BPEL processes have an asyncronous exchange of mes-
sages, represented by message queues. Then, this model
of BPEL processes is formalized in CTL propositions for
SMV model checker.

Adopting the same methodology, we represent business
processes, which are described through BPEL, in formal
models that include specific correctness properties related
to message exchange protocol. Then, we turn these models
into SMV models, so that NuSMV checker is able to ver-
ify the validity of such properties and we are able to locate
and correct possible errors in the business process design
through counterexamples.

Proceedings of the Fourth Workshop on Model-Based Development of Computer-Based Systems and Third
International Workshop on Model-Based Methodologies for Pervasive and Embedded Software (MBD/MOMPES’06)
0-7695-2538-5 /06 $20.00 © 2006 IEEE

Figure 1. BPEL metamodel.

3. Formal model

The papers, that are described in the previous section,
model a business process adopting the point of view of
”conversation” among web services or adopting the point
of view of the activities, which are performed in the busi-
ness process and are described through UML activity dia-
grams. However, we know that activity diagrams do not
follow Object-Oriented paradigm [6], therefore we choose
to model business process with a Object-Oriented-based
scheme and we approve an approach focused on the com-
munication.

In fact, BPEL describes a business process with: 1. a
set of partners, having own features defined in partnerLink,
partnerRole and Activity 2. a set of messages, sent among
partners that invoke operations of web services through con-
nections to portTypes

BPEL metamodel is introduced in the following figure:
We model every single web service partner as a finite

state machine, which is represented with a graph having
nodes and arcs. Then, we model the communication among
partners through a set of activities that synchronize the
states of the different partners. For this reason, entities and
messages are the fundamental components of our formal
model.

An entity identifies a web service partner in the business
process and it is marked by specific attributes.

Definition 1. Given a set of attributes Ai that mark the
entity i, every attribute a Ai can have one of the possible
values that belong to the set: V =

⋃
a ∈ AiVa

The entity state is identified by the value of the attributes
of the entity in the instant of execution.

Definition 2. Given a set of attributes Ai that mark the
entity i, the value of all the attributes in the current instant
defines the state s of the entity: ∀a ∈ Ai, s(a) ∈ V An
entity can evolve from a state to another state through a
transition, that is determined by the execution of an activity
that manipulates in atomic way the value of one or more at-
tributes. So, a transition is the connection among two states
of the entity: origin state and destination state.

Definition 3. Given an entity i, a transition T is de-
fined by a binary relation among a pair of states, s1 and
s2,, that belong to the set of possible states Si of the entity:

T : s1 ∈ Si → s2 ∈ Si A transition can be defined by
pre-conditions and post-conditions: generally speaking, a
condition is a Boolean expression that returns a true or false
value according to the value of a control attribute of the cur-
rent state. If pre-condition has a positive value, activity is
performed and a new state is reached.

A transition can be non-deterministic, so that the same
message makes a state evolving in different successor states
that are all equally possible. For instance, an activity can
complete in attended way or it can produce computational
errors or inconsistent data. Fault tolerance is examined in
building the formal model: there are successor states that
model network problems or non-responding servers as well
as other problems that occur at the technical level at run-
time; in this way, they are amenable to model checking.

Therefore, it is possible a transition from the current state
in one or more successor states. The set of successor states
can be defined as S ′ = s′S|T : sT s′.

However, it is also possible that transitions from the cur-
rent state to successor states do not exist, therefore we de-
fine the current state as a final state. The set of final states
can be defined as Sf = sf ∈ S|notT : sfTs′

When there is a state transition among pairs of states that
do not belong to the same entity, it represents a message that
is exchanged among two entities.

Definition 4. Given two different entities i and j, a mes-
sage M is defined by a binary relation among a pair of states
s1 ∈ Siands2 ∈ Sj �=i : Mi,j : s1 ∈ Si → s2 ∈ Sj �= i A
message can be a request of services or a response among
two entities that are partners in the business process and it is
represented through control conditions, that force sequen-
tial operations. For instance, the service of another entity
can be invoked only if the current entity has completed its
elaborations. A control attribute can be used for marking if
elaborations are finished. A possible execution of the busi-
ness process is a sequence of states and it is determined by
state transitions of the same entity and messages sent among
different entities.

Definition 5. Given n entities, a path of communication

is a sequence of states s0, s1, s2, s3 . where s0 ∈ S1
T→

s1 ∈ S1
T→ s2 ∈ S1

M1,7→ s3 ∈ S7
T→ s4 ∈ S7

M7,4→ s5 ∈
S4

T→ s6 ∈ S4

According to the previous definitions, in our formal
model the concept of business process is defined as follow-
ing:

Definition 6. A Business Process is the set of all possible
sequences of execution s0, s1, s2, s3

So we build a formal model of a BP as a unique graph
with all sequences of the set. We will verify in this graph the
soundness of specific properties, that are defined in Compu-
tational Tree Logic and described in the following section.

Proceedings of the Fourth Workshop on Model-Based Development of Computer-Based Systems and Third
International Workshop on Model-Based Methodologies for Pervasive and Embedded Software (MBD/MOMPES’06)
0-7695-2538-5 /06 $20.00 © 2006 IEEE

4. Correctness Properties

The verification of a business process involves many ob-
jectives: it has to validate the system, i.e. to examine if
system behavior is consistent with the attended behavior; it
has to verify the system, i.e. to prove specifications of cor-
rectness; it has to study system performance, i.e. to consider
resources, timing and delays, throughput

In this paper, we focus on the verification of properties
that include a temporal order. To this purpose, we exploit
the expressiveness of temporal logics, that are been applied
to the verification of similar properties in other domains as
digital circuits, protocols of communication and software
development. Particularly speaking, we adopt CTL, be-
cause it allows to define specifications not only along a sin-
gle computational sequence but also some or all the possible
executions of the business process. Therefore, it is possible
to define:

- ”invariant” properties, that have to be validated in all
states of all sequences of execution of BP; for instance, we
can check that the value of a specific control attribute is true
in all reachable states or we can notice activities that must
not be performed in any case;

- properties of final states of all sequences of execution;
for instance, it is possible to verify the objectives, checking
the final value of specific control attributes or it is possible
to prove the absence of faults or deadlock in the BP defini-
tion;

- temporal properties that verify the coherence of activ-
ities performed along the sequences of execution; for in-
stance, we can check if there is an answer message (affir-
mative or negative) following a message of service request.
Such properties are predicates that often impose precondi-
tions or postconditions in the execution of activities of the
business process.

The correctness properties must be defined by design-
ers inside BPEL description of the business process through
Xpath predicates, then they are automatically translated in
CTL by our framework of automatic verification, described
in the next section.

5. Framework Architecture

We know that it would be too much difficult for a BP
designer to study all the principles of our formal model and
to opportunely apply the methodology of model construc-
tion and verification for effecting correction and refinement
of BP design. Contrarily, a designer is able to provide a
description of BP through BPEL, that explains the business
logic of the business process in XML standard language.

To use BPEL description in conjunction with Symbolic
Model Checking technique for automatic verification, we
implement a framework which is able to automatically

Figure 2. Role of BPEL2SMV component.

transform BPEL design in the corresponding formal model;
then, the formal model is expressed in NuSMV input lan-
guage and it is given as source program to the model
checker.

The following figure underlines the role of this frame-
work, called BPEL2SMV:

This component has three main packages, according to
the three principal functions that it completes:

- BPEL Manager.

It imports BPEL design in a file that is structured in XML
language, then it analyzes BPEL file and extracts every in-
formation about the finite state machine, representative of
every web service partner, and about messages in the busi-
ness process. The result is a set of graphs (one for every
entity) and a set of conditions (one for every message);
instead, correctness properties will be assigned in Model
Manager package.

- Model Manager.

It is the principal package of the tool, because it calls the
main classes of connected packages to start operations as
model creation or SMV code creation. It internally memo-
rizes graphs in suitable data structures, that is a set of adja-
cency matrix; it manages the assignment of labels of cor-
rectness properties to the states of the formal model and
then adds CTL specifications to the model to be subse-
quently verified through model checker.

- SMV Manager.

It effects analysis of all states of every graph of the for-
mal model and recovers information for the transformation
of every graph in one module of SMV code. It builds the
content of a specific module (Monitor), that models mes-
sages of the formal model, then it inserts correctness speci-
fications in the main module. Finally, it submits SMV code
to automatic verification process through NuSMV model
checker.

NuSMV model checker automatically performs verifica-
tion of CTL specifications on the formal model and pro-
vides counter-examples if there is a violation of some cor-
rectness property. This gives designers the opportunity to
understand wrong BP behavior, to locate errors and to effect
right changes for correcting BP design. Then, the modified
design is again submitted to model checker for verification
of correctness properties. This methodology determines a
gradual correction and refinement of BP design, before it is
definitely implemented.

Proceedings of the Fourth Workshop on Model-Based Development of Computer-Based Systems and Third
International Workshop on Model-Based Methodologies for Pervasive and Embedded Software (MBD/MOMPES’06)
0-7695-2538-5 /06 $20.00 © 2006 IEEE

6. Conclusion and Future Development

In conclusion, in this paper we propose a formal model
of a BPEL description of a generic business process and we
build a tool for supporting model checking-based verifica-
tion of BP design, using our formal model.

The main purpose of our Model Checking-based tool is
to unify phase of BP planning with phase of BP verification
in a single automatic activity, so that:

- BPEL2SMV performs an ”a priori” verification of BP
design, with notable benefits in term of saving of develop-
ment time and testing costs and in term of increasing of
quality;

- the verification is automated because BPEL2SMV em-
bedds NuSMV model checker, which replaces logical rea-
soning in the task to establish system correctness;

- BPEL2SMV is able to prove or to deny system correct-
ness, since it effects an exhaustive evaluation of specifica-
tions in all the possible states of the system;

- verification using Model Checking is formal, because
correctness specifications are precise mathematical propo-
sitions and the formal model is not ambiguous but declared
according to a syntactic notation, which is established by
model checker; in this way, the model checker is able to
perform analysis with rigorous methods.

In the future, we extend this framework with mod-
ules, which translate BPML business process in our for-
mal model. Besides, the framework will embed other model
checkers like SPIN or UPPAAL.

References

[1] BPML. Business process modeling language.
[2] DMAL-S. Daml-s and owl-s.
[3] T. A. et al. Business process execution language for webser-

vices. Version 1.1 Specifications (2003).
[4] X. Fu, T. Bultan, and J. Su. Analysis of interacting bpel web

services. In Proc. of the 11th Intl. World WideWeb Conf.,
2004.

[5] R. Kazhamiakin and M. Pistore. A parametric communica-
tion model for the verification of bpel4ws compositions. In
Proc. of the WSFM, 2005.

[6] A. Kleppe and J. Warmer. Unification of static and dynamic
semantics of uml-a study in redefining the semantics of the
uml using the uml oo meta modelling approach. In Technical
report, 2005.

[7] L.Guo, Y.Chen-Burger, and D.Robertson. Mapping to busi-
ness process model to semantic web service model. In
Proc. of the IEEE International Conference on Web Ser-
vices, 2004.

[8] M.Mongiello, D.Castelluccia, R.Totaro, and M.Ruta. A
model checking-based tool for verification of web applica-
tions. In SVV 2005, 2005.

[9] M.Mongiello, R.Totaro, D.Castelluccia, F.M.Donini, and
G.Piscitelli. A model checking based approach for web ap-
plications design verification. In AICA, 2005.

[10] S. Narayanan and S. McIlraith. Simulation, verification and
automated composition of web services. In Proc. of the 11th
Intl. World WideWeb Conf., 2002.

[11] E. D. Sciascio, F. Donini, M.Mongiello, R.Totaro, and
D.Castelluccia. Design verification ofweb applications us-
ing symbolic model checking. In ICWE, 2005.

[12] WSCI. Web service choreography interface (wsci).

Proceedings of the Fourth Workshop on Model-Based Development of Computer-Based Systems and Third
International Workshop on Model-Based Methodologies for Pervasive and Embedded Software (MBD/MOMPES’06)
0-7695-2538-5 /06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

