Semantic QoS-based Web Service Discovery Algorithms

Kyriakos Kritikos and Dimitris Plexousakis
Foundation for Research and Technology Hellas, Heraklion, Greece
kritikos@ics.forth.gr and dp@jics.forth.gr

Abstract

The success of the Web Service (WS) paradigm has
led to a proliferation of available WSs, which are ad-
vertised in WS registries. While sophisticated semantic
WS discovery algorithms are operating on these reg-
istries to return matchmaking results with high preci-
sion and recall, many functionally-equivalent WSs are
returned. The solution to the above problem comes in
terms of semantic QoS-based description and discovery
of WSs. We have already presented a rich and exten-
sible ontology language for QoS-based WS description
called OWL-Q. We have also proposed a semantic QoS
metric matching algorithm. Based on this algorithm,
we have extended a CSP-based approach for QoS-based
WS discovery. In this paper, we firstly analyze the evo-
lution of OWL-Q and its extension with SWRL rules,
we propose a modification to the metric matching al-
gorithm and we show the way the metric alignment
process takes place. Then we propose two nowvel se-
mantic QoS-based WS Discovery algorithms that return
matches even for over-constrained (QoS-based WS re-
quests. The first one deals with unary constraints while
the second one is more generic. Finally, implementa-
tion aspects of our QoS-based WS discovery system are
discussed.

1 Introduction

The success of the Web Service (WS) paradigm
has led to a proliferation of available WSs. Current
WS standard technologies involve the advertisement
of static functional descriptions of WSs in UDDI reg-
istries, leading to a WS discovery process that returns
many irrelevant or incomplete results. While seman-
tic functional discovery approaches, like the one in [3],
have been invented to overcome the above problem, the
amount of functionally equivalent WS advertisements
returned is still large. The solution to this problem
is: a) the description of the Quality of Service (QoS)

aspect of WSs, which is directly related to their perfor-
mance; b) filtering of WS functional discovery results
based on user constraints on their QoS descriptions;
c¢) sorting the results based on user weights on QoS
metrics.

QoS of a WS is a set of non-functional attributes
that may impact the quality of the service offered
by the WS. Each QoS attribute is measured by one
or more QoS metrics, which specify the measurement
method, schedule, unit, value range and other mea-
surement details. A QoS specification of a WS is ma-
terialized as a set of constraints on a certain set of
QoS metrics. These constraints restrict the metrics to
have values in a certain range or in a certain enumer-
ation of values or just one value. Actually, the current
modeling efforts of QoS specifications only differ in the
expressiveness of these constraints. However, these ef-
forts fail in QoS metrics modeling. The main reason is
that their QoS metric model is syntactic, poor and not
extensible. In this way, the most prominent QoS-based
WS discovery algorithms, like the one in [5], produce
irrelevant or incomplete results.

Based on the above deficiencies, we have devel-
oped OWL-Q [4], a rich, extensible and modular on-
tology language that complements the WS functional
description language OWL-S. In addition, we have de-
veloped a QoS metric matching algorithm that infers
the equivalency of two different QoS metric descrip-
tions based on the mathematical equivalency of their
derivation formulas. Based on OWL-Q and the met-
ric matching algorithm, we have extended the discov-
ery algorithm of [5]. In this paper, we firstly review
the state-of-the-art in QoS-based WS description and
discovery. Then, we explain that OWL cannot be
used for reasoning about relations between properties
so as to justify the extension of OWL-Q with SWRL
(http://www.w3.org/Submission/SWRL) rules. We
also describe some modifications that have been made
to OWL-Q. Following, a small introduction in Con-
straint Programming (CP) [11] will be provided, em-
phasizing on the definitions of notions like Constraint

Satisfaction Problem (CSP) and Constraint Satisfac-
tion Optimization Problem (CSOP). Next, we clarify
the way the QoS metric matching algorithm has been
modified to compute the satisfiability of possibly non-
linear CSPs instead of inferring mathematical equiva-
lency of formulas. In this way, this algorithm becomes
computationally feasible. In addition, we show the way
this algorithm can be exploited to align QoS-based WS
specifications and transform them to CSPs. Then, we
propose two CSP-based QoS-based WS Discovery algo-
rithms that provide solutions even for over-constrained
QoS-based WS demands. The first one deals only with
unary constraints and is very simple and quick. The
second is more generic as it deals with arbitrary con-
straints and uses Constraint Satisfaction Optimization
(CSO) techniques. Next, we analyze the architecture
and functionality of our QoS-based WS Discovery Sys-
tem, which is currently under development. Finally, we
conclude by drawing directions for further research.

2 Related Work

The WSDL and UDDI WS standards are syntactical
approaches that do not express the QoS aspect/part of
WS Description. While OWL-S is a standard semantic
approach for WS Description, it does not describe any
QoS concept.

Ran [8] proposes a syntactic extension to UDDI for
QoS-based WS description. Maximilien and Singh [6]
present an architecture and a conceptual model of
WS reputation that does not include concepts like
QoS constraints, offers and demands. Furthermore,
the QoS metrics model is not rich enough. Tosic,
Pagurek et. al. [10] present the XML-based Web Ser-
vice Offerings Language (WSOL). Their work comes
with the following shortcomings: (a) no specification
of a QoS demand; (b) metrics ontologies are not de-
veloped. Web Service Level Agreement (WSLA) [2]
is a XML language used for the specification of Ser-
vice Level Agreements (SLAs). It represents a purely
syntactic approach that is not accompanied by a com-
plete framework. Tian et. al. [9] propose an ontology-
based approach for QoS-based WS description. How-
ever, not only there is no complete and accurate de-
scription of QoS constraints, but also metrics ontolo-
gies are only referenced. Oldham et. al. [7] offer a
semantic framework for the definition and matching
of WS-Agreements. However, only unary QoS metric
constraints can be expressed while QoS metric match-
ing could only be enforced by manual incorporation of
rules.

Zhou et. al. [12] extend OWL-S by including a QoS
specification ontology. In addition, they propose a

novel matchmaking algorithm, which is based on the
concept of QoS profile compatibility. The deficiencies
of this research effort are the following: (a) The metrics
model is not rich enough; (b) QoS metrics have N as
their range; (¢) QoS Profile subsumption reasoning is
quite slow.

Martin-Diaz et. al. [5] use a symmetric but syntac-
tic QoS model and propose a CSP-based approach for
discovery. Before matchmaking, a QoS specification
is transformed to a CSP which is checked for consis-
tency/satisfiability. Matchmaking is performed accord-
ing to the concept of conformance. Concerning WS
Selection, the (QoS) score of an offer is computed by
solving a Constraint Satisfaction Optimization Problem

(CSOP).
3 QoS-based Web Service Description

For a rich, semantic and extensible QoS-based WS
description, we have developed an upper ontology
called OWL-Q [4], which comprises of many sub-
ontologies, each of which can be extended indepen-
dently of the others. This ontology also complements
OWL-S, the W3C submission for the semantic func-
tional specification of WSs. OWL-Q’s design has now
been finalized. In its new form, OWL-Q has eleven
facets: main, directive, expression, function, measure-
ment, metric, scale, spec, time, unit and value type.
There are four most significant changes that have been
made to OWL-Q. The first one is that now math-
ematical formulas and QoS specification guarantees
are not expressed in OpenMath but in a subset of
SWRL. Especially, guarantees are expressed in the
form: (f(arguments)|metric) op value, where f is a
SWRL built-in, arguments are a list of built-ins, met-
rics and values, op can be one of <, >, <, > =1 =.
The second one is that measurements are now modeled
so as to enable their storage and statistical process-
ing by registries or other parties. Statistical process-
ing leads to new metric derivation and to validation
of QoS-based WS provider guarantees. The third one
is modeling of scales. Scale is a more general concept
than Unit. A Unit is actually a subclass of Ratio Scales.
There are five disjoint subclasses of scales which actu-
ally control the operations on their metrics in functions
or QoS goals.

The most significant change in OWL-Q is the in-
corporation of rules. It is well-known at the Semantic
Web community that OWL supports very well reason-
ing about concepts but not about properties. For ex-
ample, there is no way we can specify that a fact p(z, y)
can be true, where x,y are instances, if other prop-
erty or instance facts are true. As another example,

there is no way to specify that two property facts can-
not be both part of the semantic database. However,
it is imperative in OWL-Q to reason about proper-
ties with rules because: a) relations between temporal
properties like duration should be expressed and rea-
soned about; b) operations or comparisons on metrics
should be restricted according to the scale that they
use; ¢) integrity constraints between property facts or
instance facts should be able to be enforced; d) com-
patibility or equivalency of scales and compatibility of
metrics’ value types should be expressed by OWL prop-
erty facts fired by rules; e) rule-based algorithms like
the metric matching one have to be specified. So we
are currently in the process of extending OWL-Q with
rules, which are expressed in SWRL — the currently
promoted SW standard.

4 Constraint Programming

CP is the study of computational models and sys-
tems based on constraints. CP has been widely used
in areas such as planning, scheduling and optimiza-
tion. Currently, it is becoming the standard method
for modeling optimization problems and is attracting
widespread commercial interest as it is based on a
strong theoretical foundation and can solve real-hard
problems. In fact, it has been shown that Logic Pro-
gramming (LP) is just a particular kind of CP.

A constraint is a relation among several variables,
each of which ranges over a given domain. So a con-
straint restricts the values that its variables can take.
In CP, a problem can be solved by first stating con-
straints about the problem area and, consequently,
finding a solution that satisfies all the constraints. The
last task is carried-out by a solver. Thus, CP uses
constraints to declaratively state the problem without
specifying a computational procedure to enforce them.
Constraints in CP are generally expressed by a rich lan-
guage that includes linear and non-linear constraints
or logical combinations of constraints. Actually, the
expressiveness of this language depends on the capa-
bilities of the underlying solver.

A problem in CP expressed as a set of constraints
is called CSP. A CSP is formalized as a set of vari-
ables V, a set of domain of values D and a set of
constraints C'. Domain of values can be reals, inte-
gers, boolean, enumerations or powersets and are asso-
ciated to one or more variables. Constraints are math-
ematical expressions over a subset of V restricting the
values these variables can take. A solution to a CSP
is an assignment in which each variable in V takes a
value from its corresponding domain in D as long as
it does not violate the constraint set C. The solu-

tion space of a CSP is the set of all its solutions. A
CSP is satisfiable if its solution space is not empty,
i.e. it has at least one solution. For example, the
CSP ({z,y},{[0...2],]0...2]},{z < y,x > 0}) is sat-
isfiable as its solution space contains the sole solution
{x— 1,y — 2}

Instead of getting one or all solutions of a CSP, a
user goal could be to find those solutions that satisfy
an objective function. This type of CSP is called CSOP
as it actually defines an optimization problem. In re-
lation to CSPs, the solution space of a CSOP is called
minimum space. The objective function is just a func-
tion over a subset of V.

5 QoS-based WS Specification Align-

ment and Transformation

5.1 QoS Metric Matching as a Non-Linear
CSp

All QoS-based WS discovery algorithms fail to pro-
duce accurate results because they rely on either syn-
tactic or semantically-poor QoS metric descriptions.
Hence, they cannot infer the equivalence of two QoS
metrics based on descriptions provided by different par-
ties. Different specifications occur for two reasons: a)
different perception of the same concept; b) different
type of system reading for the same metric. For exam-
ple, equivalent response time metrics could be associ-
ated to different units (e.g. minutes vs. seconds) and
to different value types(e.g. [0.0,10.0] vs. [0,600] re-
spectively). As another example, a DownTime metric
can be either obtained in the form of high-level reading
from a system with advanced instrumentation or can
be derived from a resource metric of a system’s Status
obtained from low-level reading of systems with basic
instrumentation.

Provided that two QoS metric descriptions are ex-
pressed in OWL-Q, we have developed a rule-based
QoS metric matching algorithm [4] that infers the
equivalence of the two metrics. This algorithm is com-
posed of three main rules, each corresponding to a dif-
ferent case in a two metrics comparison. The last rule —
used in complex-to-complex metric matching — is recur-
sive and reaches the final point of checking the equiva-
lence of two mathematical formulas in order to infer the
equivalence of two metrics. Unfortunately, equivalency
of mathematical expressions is generally undecidable
and not really effective in pragmatic circumstances.

Due both to changes on the OWL-Q Ontology and
to the above undecidability problem, we have modified

our metric matching algorithm as follows:

mm (My, Ms) < rrm (M, M) V rem (My, Ma)
V eem (M, Ms) (1)

sm (My, M) < svm (M;.scale, Ms.scale, My .type, My.type)

A M;.object = Ms.object A Mi.measures = My.measures

(2)
rrm (My, My) <= RM (M1) A RM (Mz) A sm (My, Ms)
3)
rem (My, Ms) < RM (My) ACM (Mz) A sm (My, Ms)
A Ms.derivedFrom N Composite M etric = @
A -3V € Ms.derivedFrom match (My,V) (4)
cem (My, My) <= CM (My) ANCM (Mz) A sm (M, M)
A msm (M .derived From, Ms.derivedF'rom)
A —solveC'S P(M,.derived From, Ms.derived From,
M .measuredBy — Ms.measuredBy! = 0) (5)

where M; and M, are Metrics, RM (M)
and CM (M) are rules inferring if metric
M is resource and composite respectively,
svm (My.scale, Ms.scale, My .type, Ms.type) is
a rule that infers if the scales and value
types of metrics M; and M, are compatible,
msm (M .derivedFrom, My.derivedFrom) is a
rule that matches one by one the Mj’s list of deriva-
tive metrics with the corresponding metrics list of
Mo, and solveCSP (Listy, Lista, equation) is a logic
procedure that solves the CSP defined by the two first
metric lists and the equation given by third argument.
When the latter procedure finds a solution, it returns
true, otherwise it returns false. More details about all
other clauses and symbols can be found in [4].

In relation to our previous matching algorithm [4],
we have modified the third main rule (rule (5)) so as
to reach the final point of defining and solving a (pos-
sibly non-linear) CSP in order to infer the matching
of two complex metrics. Suppose that all previous
body clauses of our rule are satisfied. In addition,
suppose that all possible matches between the met-
rics — from which our two compared metrics are de-
rived — have been inferred. Then, from the deriva-
tion lists Mj.derivedFrom and Ms.derivedFrom of
the compared metrics M; and Ms and their corre-
sponding measurement formulas M;.measuredBy and
Ms.measuredBy, a CSP is produced by the following
transformation:

1. VM; € Mi.derivedFrom & Ms.derivedFrom
map M; to CSP variable X; ; and assign the value
type of M; to the value domain of this variable

2. VM; € Ms.derivedFrom ¢ M;.derivedFrom

map M; to CSP variable X » and assign the value
type of M; to the value domain of this variable

3. VM} € M,.derivedFrom NMs.derivedFrom map
M, to CSP variable X}, 12 and assign the value
type of M} to the value domain of this variable

4. Add the constraint f(Xi1, Xeka12) —
9(Xj2,Xr12)! = 0 to the CSP, where
f = Mi.measuredBy, g = Ms.measuredBy.

If the CSP is unsatisfiable i.e. it hasn’t any solution at
all, then the last clause of our rule is satisfied. In result,
the head of the rule is fired and the match between the
two compared metrics is derived. More details about
the algorithm can be found in [4]. Following, a simple
example of composite-to-composite metric matching is
provided for illustration purposes.

5.1.1 Composite-to-Composite Metric Match-
ing Example.

Assume that a WS provider defines composite metric
Awaily that measures the QoS Property of Availability
of his WS and is derived from two Resource met-
rics Downtime; and Uptime; based on the formula:
1 — Donwtime; /(Downtime; + Uptime;). In addi-
tion, assume that a WS requester defines composite
metric Availy that also measures the QoS Property
of Awailability and is derived from two Composite
metrics Downtimes and Uptimes based on the for-
mula: Uptimes/(Uptimes + Downtimes). Further as-
sume that all metrics have as value type the inter-
val [0.0,1.0] and that the two compared metrics use
the same unit. Finally, assume that the following
matches are true: match(Downtime;, Downtimes),
match(Uptimey, Uptimes) and that all previous
clauses of the third main rule are satisfied. We want to
see if composite metrics Avail; and Avails are matched
based on the satisfiability of the last clause of the
rule. Based on the aforementioned transformation pro-
cedure, a CSP is created and solved that has the fol-
lowing definitions: D, U :: [0.0,1.0] and constraints:
1-D/(D+U)—-U/(U+ D)! =0. This CSP is unsat-
isfiable so the last clause is satisfiable and finally the
fact match (Availy, Avails) is inferred.

5.2 Alignment and Transformation

The Alignment process is executed when any QoS
specification S is published or queried on the under-
lying QoS-based WS discovery system. Its goal is to
align S with all already processed offers O; and de-
mands D; by finding their common QoS metrics based
on the QoS metric matching algorithm. After metric

alignment, S is transformed to a CSP which is checked
for consistency (i.e. if it has a solution). If the CSP is
inconsistent, then neither S nor its CSP are stored in
our Repository (R) and S’s owner is informed. In case
of an inconsistent demand, the discovery algorithm is
also not executed. The alignment process relies on the
concept of the Metric Store (MS), which is part of R.
MS stores all unique QoS metrics encountered so far.
So when a new QoS spec arrives, we don’t need to ex-
amine if any of its metrics matches with any metric of
all offers or demands but with any metric in the MS. In
this way, there is a minimization of all possible metric-
to-metric comparisons. In addition, all unique metrics
of this new QoS spec are added to the MS. If this QoS
spec is inconsistent, its metrics are not removed from
the MS.

The transformation of a QoS spec S to a CSP is
carried away as follows: Initially, the CSP is empty.
Then, for every unique metric M of S, we take two
steps: a) We check if it was matched or not; If yes,
then we get the matching MS metric M’ and its posi-
tion j in the MS and we add a definition to the CSP:
X, : a..b, where [a,b] is the value range of M’. Oth-
erwise, we get the position of M in the MS and we
add the definition: X; :: a..b, where [a,b] is the value
range of M; b) For every goal G of S, we check if
M is contained in its expression. If yes, then if M
was new, we update G’s expression by substituting the
name of M with the variable X;; if it was matched,
then we update G’s expression by first substituting the
name of M with the variable X; and then applying
the scale-to-scale transformation function to X; in or-
der not to change the meaning of G. After all metrics
have been processed, for every goal we add its modified
expression as a constraint to the CSP. For example, if
the matching MS metric has scale Minute and domain
[0.0,2.0], the spec’s metric has scale Second and domain
[1,120] and has goal Metric >= 100, then we add to
the CSP the definition X :: 0.0..2.0 and the constraint
60 * X; >= 100.

6 QoS-based Web Service Discovery
Algorithms

One of the most prominent QoS-based WS discovery
algorithm [5] expresses each QoS-based WS descrip-
tion as a CSP. Then it separates the QoS-based ad-
vertisements into two categories: the ones that satisfy
completely the QoS-based request and the others that
do not satisfy the request. However, this algorithm
presents three major drawbacks: 1) it performs syntac-
tic metric matchmaking producing false negative and
false positive results; 2) QoS spec matchmaking relies

on the concept of conformance, which is not absolutely
correct (see next paragraph); 3) it does not provide
advanced categorization of results.

Matchmaking of QoS offers and demands is based
on the concept of conformance [5], which is mathemat-
ically expressed by the following equivalency:

conformance (O, D) < sat (P; A —PP) = false (6)

To explain, an offer O; matches a demand D when
there is no solution to the offer’s CSP P; that is not
part of the solution set of the demand’s CSP PP.
This definition is slightly wrong as it excludes from
the result set those QoS offers that provide better so-
lutions than that of the demand’s. For example, sup-
pose that a WS provider and requester use the same
metric X, measuring the QoS Property of Availability,
that has as value type the set (0.0,1.0). Further as-
sume that the WS provider’s CSP has the constraint:
X > 0.96 while the WS requester’s CSP has the con-
straint: 0.95 < X < 0.999. Based on the above defi-
nition, the provider’s offer does not match the request
as it contains solutions greater than that of the re-
quest’s, although these solutions are better. Thus, a
more correct definition of matchmaking is the follow-
ing: an offer O; matches a demand D when its CSP P;
has solutions that are either contained in the solution
set of the demand’s CSP PP or are better that the
demand’s solutions.

Based on the deficiencies of [5] and the new defini-
tion of matchmaking, we propose two QoS-based WS
discovery algorithms that are analyzed in the following
subsections. The first one is only restricted to unary
constraints but is more effective and easy to implement
while the other is more generic but harder to imple-
ment. These algorithms presuppose that the offers set
{O;} and the demand D are already aligned and trans-
formed to corresponding CSPs P; and PP respectively.

6.1 Unary Constraints Discovery Algo-
rithm

Suppose we have N QoS offers O; that are trans-
formed to N CSPs P;. Each P; has constraints C'ji of
the form X op v, where X is a variable, op is one of
{<,>,<,>,! =,=} and v is a single value. In addi-
tion, we have a QoS demand D that is transformed
to a CSP PP which has constraints of the previous
form. Further, suppose that each variable X has as
value type the set [a, b], where a,b € R or N and a < b.
Moreover, suppose that each constraint C' of PP has
a weight we € (0.0,1.0) U {2.0}. A weight of 2.0 indi-
cates that the constraint is hard and must be satisfied
at any cost. A weight in {(0.0,1.0)} indicates that

the constraint is soft. Higher-weighted soft constraints
should be satisfied first with respect to lower-weighted
soft constraints.

Our first QoS-based WS Discovery algorithm takes
as input the CSPs P; and PP of the QoS offers and
demands respectively and produces four ordered cate-
gories of results. As it is based on unary constraints, it
is easy to implement in any programming language and
does not require the use of CSP engines. In result, it is
easy to show that it will have very good performance.
Obviously, the price we pay for simplicity and enhanced
performance is reduced constraint expressivity. This
algorithm consists of four sequential processes, which
are analyzed in the following paragraphs.

CSP Preprocessing. The CSP Preprocessing pro-
cess has two sequential goals: 1) minimization of offers
having missing variables/metrics; 2) minimization of
the number of constraints of all CSPs. So this process
produces new CSPs P/ and P’ P of each offer O; and the
demand D respectively. The first goal is achieved by
asking the WS providers, having offers whose CSP does
not have unary constraints on metrics/variables that
are contained in constraints at the CSP of the demand,
to enrich them with corresponding constraints on these
metrics/variables. The second goal is achieved by ma-
nipulating for each CSP (of QoS offers and the demand)
the following cases:

e Identical constraints are all removed except from
one.

e Constraints X < v and X = v are replaced with
X = v. In addition, constraints X > v and X = v
are replaced with X = v.

e Constraints X < v and X! = v are replaced with
X < w. In addition, constraints X > v and X! =v
are replaced with X > v.

e Constraints of the form: Xopjv, where op; = {>
, >}, are all removed except from the one that has
the greatest v. If there are two with the greatest
v then the constraint with op; = > is removed.

e Constraints of the form: Xops v, where opy = {<
, <}, are all removed except from the one that has
the smallest v. If there are two with the smallest
v then the constraint with op; = < is removed.

e If Xopy a or Xops c and X = b are present, where
op1 € {>,>},0p2 € {<,<} and a < b < ¢, then
the inequality constraint(s) are removed.

e If Xopiaor Xops cand X! = b are present, where
op1 € {>,2}ope € {<,<} and a < ¢,b < a or
b > ¢, the difference constraint is removed.

Matchmaking The previous process has produced
offers and demand CSPs that contain one of the follow-
ing forms of constraints for each variable X: [X = v],
(X! = v, X! = vy,..., X! = v,], [Xop1a, Xopsb],
where v,v1,v2,...,0,,v,a,b € domain(X),a <
b,op1 = {>,>} and opy = {<, <}. The first two forms
are usually used for variables that have small sets of
integers as value types. The third form (where we can
have one or both of the two constraints) is used for all
other cases. Let us now analyze the two different cases
of matchmaking CSPs P; and P of one offer O; and
one demand D respectively (according to the domain
of a common variable of their CSPs).

If the domain of the common variable X is a small
set of integers, then there are four cases to consider:

1. P; has the constraint X = v and PP has the
constraints X! = vy, X! = vg,..., X! = v,. In
this case, PP’s set of constraints are violated
if and only if: worse(v,worseO f(domain(X) —
{v1,v2,...,v,})). Function worse(vy,vs) returns
true if vy is a worse value than vy according to
the domain of X and the value monotonicity of
the metric that was mapped to X. Function
worseO f(S) returns the worse value of a set of
values.

2. P; has the constraint X = v; and PP has the
constraint X = wvy. In this case, PP’s constraint
is violated if and only if: worse(vy, va).

3. P; has the constraints X! = o,X! =
Vo,...,X! = v, and PP has the constraint
X = v. In this case, PP’s constraint is vio-
lated if and only if: worse(worseO f(domain(X)—

{v1,v2,...,0,}),0).

4. P; has the constraints X! = wv,X! =
va,...,X! = w, and PP has the con-
straints X! = o}, X! = v),..., X! = v/,. In
this case, PP’s constraints are violated if
and only if: worse(worseO f(domain(X) —
{v1,v2,...,0,}), worseO f(domain(X) -

» U }))-

For the second case, we have again four cases to con-
sider (excluding op; =< and opy; => for simplicity)

{v],v5,...

1. P, has the constraint X > a and PP has the con-
straint X > b. In this case, PP’s constraint is
violated if: @ < b and X T, where the T symbolizes
that the value monotonicity of the metric that was
mapped to X is positive. | means negative.

2. P; has the constraint X > a and PP has the con-
straint X < b. In this case, PP’s constraint is
violated if: X | and a > b.

3. P, has the constraint X < a and PP has the con-
straint X < b. In this case, PP’s constraint is
violated if: X | and a > b.

4. P; has the constraint X < a and PP has the con-
straint X > b. In this case, PP’s constraint is
violated if: X 7T and a < b.

The matchmaking process takes as input the CSPs
P; and PP of the offers and the demand and produces
four types of results. For each offer’'s P; it checks if
it conforms to the demand’s PP by the following way:
For each variable X of PP, we check if it also exists
in P;. If no, then variable count; is increased with
the number of constraints of PP that contain variable
X while variable counts is increased with the addition
of the weights of these constraints. If yes, we check
which constraints of P; containing X violate which con-
straints of PP also containing X. If there are violated
constraints, then variables count; and counts are up-
dated accordingly. If P; contains better X solutions
than that of PP’s, then variable counts is set to 1.
If every variable X of PP is examined, we check if
count; equals the total number of constraints of PP.
If yes, then P; is added to fail matches, otherwise if
counti! = 0 it is added to partial matches along with
its counters. If there are no violated constraints at all,
then: if counts = 1 then P; contains better solutions
than that of Pp’s and it is added to super matches,
otherwise it is added to exact matches. count; counts
the number of violated constraints of the demand and
counts represents the total weight of these constraints.
These constraints do not allow some worse solutions of
the offer’s P; to be part of the demand’s PP solution
space. If they get relaxed, then the corresponding offer
will conform to the demand.

Thus, the matchmaking process produces four types
of results: super, exact, partial, fail with decreasing or-
der of significance. Super offers not only conform to
the demand but also contain better solutions. FEzact
offers just conform to the demand by containing a sub-
set of the solutions of the demand. Partial offers do not
conform to the demand because either they do not use
some metrics of the demand or they contain (worse)
solutions that are not part of the demand’s solution
space. So partial results are promising, especially if the
first two lists of results are empty. Fail offers contain
lower quality solutions with respect to the solutions
requested by the demand. If only fail matches are pro-
duced, then this is an indication of an over-constrained

demand. In this case, the discovery algorithm fails and
an appropriate warning is issued to the WS requester.

Constraint Relaxation Process. Assume that the
matchmaking process returns only partial and fail type
of results. Fail match results are of no use and are not
further processed. However, partial results are promis-
ing as they represent QoS offers that don’t use QoS
metrics of the demand or have solutions that are not
included in the solution space of the demand’s CSP.
If the first case holds, then the solution is to find the
offer(s) with the smallest set of same undefined vari-
ables/metrics and then continue to the next process to
order these offers. The user gets back the ordered list
and an indicating message that his query was relaxed
by removing some metrics and their unary constraints.

For the second case, the matchmaking process has
provided three metrics for each partial offer: number of
demand’s violated constraints, their total weight and if
offer contains better solutions that the demand. So we
order the partial list of offers according first to total
weight and then to the number of violated constraints.
In this way, at the top will be offers having the smallest
number of hard constraints and the least total weight of
weak constraints. So we put these topmost offers along
with their conflicting constraints at the super or ezact
match list according to the value of the third metric and
we move to the last process in order to rank them and
return them. However, the user is warned that these
ordered lists represent super or eract matches only if
he weakens the corresponding violated constraints list
from his demand.

Selection Process. The goal of the selection process
is to rank the best result lists produced by the previous
processes. If super and/or ezact matches exist, then
they are ranked. Otherwise, there will be only partial
matches to be ranked. By providing a sorted list of the
best possible matches, the WS requester is supported
in choosing the best QoS offer according to his prefer-
ences, which are expressed by a list associating weights
to QoS metrics.

Our selection process [4] extends the one defined
in [5] by a) having semantically aligned CSPs of offers;
b) the score of each offer is produced by the weighted
sum of the score of its worst solution plus the score of
its best solution by having two CSOPs solved. More
details can be found in [4].

Complete Example. To demonstrate our QoS-
based WS discovery algorithm, we supply a simple ex-
ample of its application to a small set of four QoS
offer CSPs P, and one demand CSP PP. Assume

that all CSPs have the following three definitions:
X1 = (0.0,86400.0] |, X5 := (0,100000] T and X3 ::
(0.0,1.0) 1. Based on these variable definitions, as-
sume that each CSP has the following constraints:
Py [X; < 10.0,X, < 100,Xy > 50,X5 > 0.9],
P2 : [Xl S 4.8,X2 S 507X2 Z 40,X3 Z 095]7
P3 : [Xl S 16,X2 S 40,X2 Z 30,X3 Z 098]7
P4 : [Xl < 16,X2 < 5O7X2 > 40,X3 > 098}7 and
PD : [Xl S 150,X2 Z 40,X2 S 60,X3 Z 099] More-
over, assume that the WS requester does not provide
weights to the constraints of his demand and associates
the following weights to the three metrics/variables:
X; « 03, Xy « 03, X3 <« 04, while a = 0.7
and b = 0.3 [4]. In addition, assume that the fol-
lowing utility functions are applied to the CSOPs:
Ule = (16 — Xl)/16, qu2 = (XQ — 30)/70, UfX3 =
(X5 —10.9)/0.1 [4].

We now apply the four processes of our dis-
covery algorithm. The CSP Preprocessing process
has no result at all to the CSPs. The match-
making process produces the following four re-
sults lists: Super = [], Exzact = [], Partial =
[(O1,P1,1,2.0,1),(02, P5,1,2.0,1), (04, Py, 2,4.0,1)],
Fail = [(Os3,Ps]. The constraint relaxation pro-
cess sorts the partial list based on the third and
fourth argument of each entry and produces two
lists that are passed to the last process. These
lists are: Super* = [(O1,CSP;), (02, CSPY)] and
Partial = [O4,CSPY]. Finally, the selection process
solves two CSOPs for each of the first two offers,
produces one score for each: Score§ ~ 0.44 and
Score9 ~ 0.55, and returns the following ordered list
to the requester: Super* = [(O2,0.55),(01,0.44)].
However, the WS requester is warned that this list
contains offers that do not satisfy his constraint:
X3 >0.99.

As it can be seen from this example, offer Os is at
the top of the result list as it violates in a significantly
lower amount the last constraint of the demand with
respect to the amount of violation of O;. So if Oq
is selected by the WS requester, then the minimum
possible constraint relaxation will have been achieved.

6.2 Generic Discovery Algorithm

This algorithm is more generic than the previous
one as it allows any kind of constraint to be used in
the CSPs. However, now the notion of better or worse
applied to CSP solutions is altered. To remind, the
previous algorithm checks if a tuple of a n-tuple so-
lution of an offer is worse than all corresponding tu-
ples of the solution set of the demand in order to find
a mismatch/conflict. The generic discovery algorithm

checks if the whole solution of the offer is worse than
all solutions of the demand by assigning a preference
or value to each CSP solution. So it is more closed to
the definition of conformance we have previously given
in this section.

One question is how the assignment of preferences
to solutions takes place. The technique we use is based
on utility functions and weights on CSP variables [5].
Each CSP variable (a map of a metric) is given a
(user) weight or preference (taking values from the set
[0.0,1.0]) to reflect the significance of this variable to
the preference/value of the solution. In addition, each
possible value of this variable is given also a preference
(€ [0.0,1.0]) by the variable’s utility function. The
preference of a CSP solution is given by the following
sum on all variables X;: ps = >y (wx; - ufx, (vx,),
where wx; is the weight of the variable X, ufx;() is
its utility function and vy, is its value.

Based on the above technique, a partial ordering of
all solutions of a CSP can be inferred. This is the ap-
propriate mean in order to define matchmaking: an
offer’s CSP P, matches the CSP PP of the demand if
its worst solution has a preference of greater or equal
value with respect to the preference of the worst solu-
tion of the demand. This definition leads to two main
observations: a) CSOPs for offers and demands have
to be solved in order to find the preference of the worst
solution; b) constraints are only used to reduce the do-
main of the variables. The second observation hides an
important conclusion: constraint relaxation is inherent
to the optimization of CSPs based on preference func-
tions. To explain, a matching offer may have a (worst)
solution that violates constraints of the demand affect-
ing one or more variables of less significance. However,
this solution surely provides better values for variables
of higher significance/preference. It is like relaxing
some constraints of the demand in order to match this
offer. The next paragraph provides a sketch of the
QoS-based WS discovery algorithm, while the last one
provides a simple example of its application.

Algorithm. [Matchmaking] We compute the pref-
erences pSD1 and pg of the demand’s CSP PP worst
sP and best s solution respectively by solving two
CSOPs (minimization and maximization) [4]. For each
offer’s CSP P;, we compute the preferences pgl and piz
of its worst s| and best s% solution respectively in the
same manner as above. Then, we consider four cases:

1. If (pi2 < pg), then the offer is put in the fail
match list.

2. If (pf92 > pg /\pé1 < pg), then the offer is put in
the partial match list.

3. If (pi, > pP Apl, < pl), then the offer is put in
the exact match list.

; D ; D ; D
4. If ((py, = ps, ADs, > Ps,) V (P, > ps,)), then the
offer is put in the super match list.

The first case expresses the fact that the offer’s best
solution is not better than the worst solution of the
demand and justifies the classification of the offer as
failed. The second case expresses the fact that the of-
fer has some bad solutions but also some good solutions
so it is considered as a partial result. The third case
concerns offers that contain a subset of the solutions
of the demand and justifies their classification as ex-
act. The last case is about offers that contain not only
solutions of the demand but also better ones. That’s
why they are classified as super results/matches.

[Selection] In this process, either the best two cate-
gories of results (if not empty) or the third category are
ordered based on the weighted sum of the preferences
of their worst and best solutions [4].

Example. In order to show that this algorithm is
more generic than the previous proposed one, we ap-
ply it on the same example. For each offer CSP
P; we have the following preferences: [P : pél =
0.1982,pt, = 1.0,[P, : p2, = 0.4528,p% = 0.7857],
[P3 = pl = 032,p3 = 0.7428], [P, ps =
0.3628,]9;12 = 0.7428]. The demand’s CSP PP has
the following preferences: PP : g = 0.4216,pg =
0.8285]. So the discovery algorithm will produce the
following results lists: Super = [], Exzact = [O3],
Partial = [(01),(03), (04)], Fail = [].

As it can be seen, offer Os is in the Ezact match list
although it violates the last constraint of the demand.
The reason for this is that the preference of its worse
solution is greater than the preference of the worse so-
lution of the demand. To put it in another way, Oq
provides a far better lowest value for the X attribute
with respect to the worse lowest value for the X3 at-
tribute (compared to the corresponding lowest values
of the demand). Another observation is that O; pays
the penalty of providing the minimum possible value
for the X3 attribute and is considered a partial result.
The last observation is that O3 is promoted as a partial
result. O3’s promotion is due to the fact that its worse
solution violates only in a small amount the constraints
of the demand.

7 QoS-based Web Service Discovery
Engine

We are currently in the development phase of our
QoS-based WS discovery engine by using the Pel-

let reasoner (http://http://pellet.owldl.com)
for ontology reasoning and the ECLiPSe
(http://eclipse.crosscoreop.com) system for
solving linear constraints, while the Java programming
language is used as a bridge between them. Pellet
is chosen because it is on of the best three ontology
reasoners supporting the tasks of ontology validation
and reasoning, OWL 1.1 datatype reasoning and
partial SWRL inferencing. ECLiPSe is chosen as
it is one of the most efficient Constraint Logic Pro-
gramming languages that supports advanced linear
constraint solving and extends the common facilities
of Prolog. Moreover, it can be extended to support
non-linear constraint solving through external solvers.
The architecture of the system under development
is shown in Fig. 1. In the sequel, an overview of
the functionality of each component of our system
is provided by analyzing the scenario where a WS
provider wants to publish the QoS offer of his WS
while a WS requester wants to find available QoS
offers based on his request.

Publication. The WS Provider (WSP) describes
his QoS offer in OWL-Q and sends it to the Java
Server, the main component of our system. The Java
Server (JS) sends this offer to the Reasoner (RS) in
order to validate its (ontological) consistency against
the common OWL rules and the accompanying SWRL
rules. If the offer is not consistent, then an error mes-
sage is returned to the WSP. Otherwise, JS aligns the
OWL-Q offer according to the contents of the Met-
ric Store (MS), which is part of the Repository (R),
and with the help of the XSLT Transformer (XSLT) it
transforms it into an ECLiPSe CSP. This CSP is send
to the ECLiPSe Engine (EE) in order to find if it is
satisfiable. If not, then an appropriate error message
is returned to the WSP. If yes, then the OWL-Q of-
fer and its accompanying CSP are stored at R and an
appropriate positive message is returned to the WSP.
Note that the alignment process also produces CSPs,
which are also forwarded to the EE.

Matching. The WS Requester (WSR) sends his
OWL-Q demand to the JS, which follows exactly the
same procedure as above. If everything is alright,
then the demand and its CSP are stored at R for
caching purposes. Then the remaining three processes
of matchmaking, constraint relaxation and selection
process are executed at JS, which suspends execution
to send appropriate CS(O)Ps for solving to the EE and
resumes when it gets the results back. In the end, the
user gets an ordered list of matching OWL-Q offers or
a list of partial matches along with a suggestion or a
matching failure message.

Reguester

Publish OWL-Q Spe

QoS-based WS

Discovery Engine

Match OWL-Q Spec

Valldate OWL-Q Spec
Transform OWL-Q Spec

Reasoner

XSLT
Transformer

/Suve CWL-Q Spec apd
T
|

Repository

ECLiPSe

Figure 1. QoS-based WS Discovery Engine.

8 Future Work

As future work, we plan to evaluate our metric
matching and discovery algorithms in order to show
their performance and accuracy. We also intend to ex-
ploit advanced techniques for solving over-constrained
problems like semi-ring based constraint satisfaction [1]
as alternatives to the branch-and-bound algorithm
used for constraint optimization solving. In addition,
we plan to extend OWL-Q with the description of con-
text of both the WS and the WS requester. We believe
that a Context-aware WS discovery process will be
more accurate and customizable as the tasks of request
and input completion, output adaptation and added-
value composition of service-offerings become possible.
Our ultimate and final goal is to achieve QoS-based
and context-aware WS composition.

References

[1] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-
based constraint satisfaction and optimization. J.
ACM, 44(2):201-236, 1997.

A. Keller and H. Ludwig. The wsla framework: Speci-
fying and monitoring service level agreements for web
services. Technical Report RC22456 (W0205-171),
IBM, 2002.

M. Klusch, B. Fries, and K. Sycara. Automated se-
mantic web service discovery with owls-mx. In AA-
MAS °06: Proceedings of the fifth international joint
conference on Autonomous agents and multiagent sys-
tems, pages 915-922, New York, NY, USA, 2006. ACM
Press.

K. Kritikos and D. Plexousakis. Semantic qos metric
matching. In ECOWS ’06: Proceedings of the Eu-
ropean Conference on Web Services, pages 265-274,

2]

10

[5]

Washington, DC, USA, 2006. IEEE Computer Soci-
ety.

O. Martin-Diaz, A. R. Cortés, D. Benavides,
A. Durédn, and M. Toro. A quality-aware approach to
web services procurement. In B. Benatallah and M.-
C. Shan, editors, Technologies for E-Services (TES),
volume 2819 of Lecture Notes in Computer Science,
pages 42-53. Springer, 2003.

E. M. Maximilien and M. P. Singh. Conceptual model
of web service reputation. SIGMOD Rec., 31(4):36-41,
2002.

N. Oldham, K. Verma, A. Sheth, and F. Hakimpour.
Semantic ws-agreement partner selection. In WIWW
’06: Proceedings of the 15th international conference
on World Wide Web, pages 697-706, New York, NY,
USA, 2006. ACM Press.

S. Ran. A model for web services discovery with qos.
SIGecom Exch., 4(1):1-10, 2003.

M. Tian, A. Gramm, M. Nabulsi, H. Ritter, J. Schiller,
and T. Voigt. Qos integration in web services.
Gesellschaft fur Informatik DWS 2003, Doktoranden-
workshop Technologien und Anwendungen von XML,
October 2003.

V. Tosic, B. Pagurek, and K. Patel. Wsol - a language
for the formal specification of classes of service for web
services. In L.-J. Zhang, editor, ICWS, pages 375-381.
CSREA Press, 2003.

P. Van Hentenryck and V. Saraswat. Strategic direc-
tions in constraint programming. ACM Computing
Surveys, 28(4):701-726, 1996.

C. Zhou, L.-T. Chia, and B.-S. Lee. Daml-qos ontol-
ogy for web services. In ICWS ’04: Proceedings of
the IEEE International Conference on Web Services
(ICWS’04), page 472, Washington, DC, USA, 2004.
IEEE Computer Society.

