
Semantic QoS Metric Matching

Kyriakos Kritikos and Dimitris Plexousakis
Foundation for Research and Technology-Hellas (FORTH)

Institute of Computer Science (ICS)
Information Systems Laboratory

P.O. Box 1385, GR-711 10, Heraklion, Crete, Greece
kritikos@ics.forth.gr and dp@ics.forth.gr

Abstract

As the Web Service paradigm gains popularity for its
promise to transform the way business is conducted, the
number of deployed Web Services grows with a fast rate.
While sophisticated semantic discovery mechanisms have
been invented to overcome the UDDI’s syntactic discovery
solution in order to provide more recallable and precise re-
sults, the amount of functionally equivalent Web Services
returned is still large. The solution to this problem is the
description of the QoS non-functional aspect of Web Ser-
vices. QoS encompasses the performance of Web Services
and can be used as a discriminator factor for refining Web
Service advertisement result lists. However, most scientific
efforts presented so far are purely syntactic and are not
capturing all aspects of QoS-based Web Service description
leading to imprecise syntactic discovery mechanisms. This
paper presents a novel, rich and extensible ontology-based
approach for describing QoS of Web Services that comple-
ments OWL-S. It is shown that, by using this approach and
by introducing the concept of semantic QoS metric match-
ing, QoS-based syntactic matchmaking and selection algo-
rithms are transformed to semantic ones leading to better
results.

1. Introduction

Web Services (WSs) are modular, self-describing,
loosely-coupled, platform and programming language-
agnostic software applications that can be advertised, lo-
cated and used across the Internet using a set of standards
such as SOAP, WSDL and UDDI. They encapsulate appli-
cation functionality and information resources, and make
them available through standard programmatic interfaces.
SOAs (Service Oriented Architectures) promise to enable
the creation of business applications from independently de-
veloped and deployed services. A key advantage of SOAs

is that they enable services to be dynamically selected and
integrated at runtime, thus enabling system flexibility and
adaptability – vital autonomic attributes for modern busi-
ness needs.

However, current techniques only partially address the
SOA vision. These techniques rely on static descriptions of
service interfaces and other general non-functional service
attributes for publishing and finding WSs. This situation
creates two problems. Firstly, syntactic discovery efforts
return results with low precision and recall. Secondly, no
means are provided in order to select among multiple ser-
vices that appear to perform the same function.

The first problem is solved by combining Semantic Web
and WS technologies. Ontologies are used, which provide
meaning to concepts and relationships between them and
thus lead to semantic WS descriptions and discovery al-
gorithms. These enhanced discovery algorithms equipped
with Semantic Web technologies provide more precise and
recallable results. One recent result of the joint Semantic
Web and WS efforts is OWL-S [7], which is a W3C mem-
ber submission.

The second problem can be solved by taking into ac-
count a big subset of all possible non-functional properties
of WSs, collectively referred to as QoS (Quality of Service).
QoS does not only encompass network characteristics like
bandwidth, latency, or jitter but it is used in a broader end-
to-end sense. It encompasses any characteristic of the ser-
vice host, the service implementation, the intervening net-
work and the client system that may affect the quality of
the service delivered. Therefore it has a substantial impact
on users’ expectations from a service and can be used as
a discriminating factor among functionally equivalent WS
advertisements. Thus WS descriptions must be enhanced
with QoS descriptions. Additionally, WS discovery algo-
rithms should perform QoS-based filtering (matchmaking)
and ranking (selection) on WS advertisements in order to
produce fewer ranked results.

A QoS offering (or demand) of a WS is a set of con-



straints on some QoS metrics. These QoS metrics quantify
QoS attributes/characteristics. Actually, current modeling
efforts of QoS offers or demands only differ in the expres-
siveness of these constraints. However, when it comes to
QoS attributes/metrics modeling, these efforts fail. The first
reason is because the QoS attribute/metric definition is a
syntactic one. As a result, QoS metrics like “average avail-
ability” may have different meanings to the parties that de-
scribe them or use them. Another reason is that the QoS
metrics model is not rich enough, not incorporating the de-
finition of measurement and currency units, and measure-
ment methods. This deficiency results in similar QoS met-
rics that are produced differently or use different units lead-
ing to problems in QoS-based WS discovery. The last rea-
son of failure is that the QoS metrics model is not extensible
to include newly invented metrics while taking care not to
change the underlying computation (matchmaking and se-
lection) model.

Based on these deficiencies in QoS-based WS descrip-
tion, the most prominent QoS-based discovery algorithms
fail to perform accurate semantic QoS metric matchmak-
ing and thus produce results with low recall and precision.
Therefore, it is clear that there is a need for the semantic
QoS-based description and discovery of WSs. This work
intends to address this need. First, we propose an upper
ontology for QoS-based WS Description, called OWL-Q,
which extends OWL-S. This ontology describes the possi-
ble parts of QoS metrics and constraints. It is an ontologi-
cal description designed into several facets that can be eas-
ily extended and enriched. Based on this upper ontology,
we also propose the development of a mid-level ontology
that will define all domain independent QoS metrics and
will form the basis for the definition of new QoS metrics on
other, low-level ontologies. Second, in case where QoS-
based advertisements and requests refer to different con-
cepts/metrics of the same or different ontologies, we pro-
pose a semantic QoS metric matching algorithm that infers
the similarity of two different metrics. For semantic QoS-
based discovery, we propose to extend syntactic QoS-based
matchmaking and selection algorithms by incorporating the
aforementioned semantic matching process, leading to se-
mantic QoS-based discovery algorithms.

The rest of this paper is organized as follows. Section
“Related Work” reviews the state-of-the-art in QoS-based
WS description and discovery. Section “QoS-based Web
Service Description” describes the main requirements and
principles for QoS-based WS description and unfolds our
semantic approach for achieving it. Section “QoS-based
Web Service Discovery” presents our approach for seman-
tic discovery of WSs based on QoS. Last, “Discussion and
Future Work” summarizes the paper and draws directions
for further research.

2. Related Work

The Web Service Description Language (WSDL) and
UDDI WS standards are syntactical approaches that do not
express the QoS aspects of WS Description. While OWL-S
is a standard semantic approach for WS Description, it does
not describe QoS offers or demands as it only contains an
attribute used for rating a WS.

Tosic, Esfandiari et. al. [9] argue that for the specifica-
tion of constraints for QoS metrics/attributes, five ontolo-
gies must be developed from which the most important (the
top one) is the metrics ontology. They describe the structure
and involved elements in four out of the five ontologies but
they did not develop any ontology. In addition, the require-
ments specified are incomplete as each of the four aspects
of QoS description needs further analysis. Ran [6] proposes
an extension to UDDI that represents description of QoS
information about a particular WS. However, there is no ac-
tual description of the contents of this extension apart from
its structure. Moreover, this extension relies on the UDDI
(model), so it can be used only for syntactic matchmaking
of offers and demands. Maximilien and Singh [4] present
an architecture and a conceptual model of WS reputation
(QoS) (which encloses a QoS attributes model). However,
concepts like QoS constraints and QoS offers and demands
are not modeled. Furthermore, the QoS metrics model is
not rich enough. Tosic, Pagurek et. al. [10] present the
Web Service Offerings Language (WSOL) and propose that
a WS must offer different classes of service in order to sat-
isfy a greater amount and type of customers and in order to
deal successfully with situations where there is a variation
in QoS due to network problems or mobility reasons. Their
work comes with the following shortcomings: (a) no sepa-
ration and integration of constraint dimensions; (b) no spec-
ification of a QoS demand; (c) metrics ontologies not devel-
oped. WSLA (Web Service Level Agreement) [2] is a XML
language used for the specification of Service Level Agree-
ments (SLAs). It represents a purely syntactic approach that
can not be used during the WS Discovery process and that is
not accompanied by a complete framework. Tian et. al. [8]
analyze what must be enclosed into the QoS information
for a WS request or advertisement with the help of a QoS
ontology. However, not only there is no complete and ac-
curate description of QoS constraints, but also metrics on-
tologies are only referenced. Oldham et. al. [5] offer a se-
mantic framework for the definition and matching of WS-
Agreements. However, within this framework, unary QoS
metric constraints can only be expressed while QoS metric
matching is enforced by manual incorporation of rules.

Zhou et. al. [12] extend the DAML-S WS description
language so as to include a QoS specification ontology.
In addition, they propose a novel QoS matchmaking algo-
rithm, which is based on the concept of QoS profile com-



patibility. The deficiencies of this research effort are the
following: (a) The metrics model is not rich enough; (b)
QoS metrics have the set N

+ as their range; (c) DL reason-
ers are slow and do not support the most complex mathe-
matical expressions.

Martı́n-Dı́az et. al. [3] use a symmetric QoS model ex-
pressing mathematical constraints for QoS metrics. How-
ever, semantics is missing leading to syntactic matchmak-
ing and selection algorithms. Before matchmaking, a
QoS specification is transformed to a Constraint Satisfac-
tion Problem (CSP) [11] which is checked for consistency.
Matchmaking is performed according to the concept of con-
formance (if every solution of offer is a solution of demand).
Concerning WS Selection, the (QoS) score of a WS ad-
vertisement is expressed as a Constraint Satisfaction Op-
timization Problem (CSOP), where from all solutions of the
CSP of an offer we try to find the one that minimizes the
weighted sum of the weight of each metric multiplied with
its utility assessment value. Unfortunately, CS(O)Ps can
have non-polynomial solutions when there are non-linear
expressions at QoS constraints.

3. QoS-based Web Service Description

3.1. Requirements for QoS-based Web Ser-
vice Description

After reviewing related work in QoS-based WS Descrip-
tion, we have come up with the following requirements that
must be satisfied by a QoS-based WS description language:

• Devise an extensible and formal semantic QoS model
in order to: a) have terms with exact meaning in QoS-
based WS specifications; b) exploit formal methods to
be used in conformance checking of QoS-based WS
specifications and in QoS-based WS discovery algo-
rithms.

• Comply with standards in order to: a) use widely avail-
able tools; b) be widely acceptable and become also a
standard.

• Support the syntactical separation of QoS-based and
functional parts of service specification for: a) speci-
fication of different QoS offerings for different imple-
mentations of the same interface; b) deactivation, re-
activation, dynamic creation or deletion of service of-
ferings independently of the interface specification; c)
reuse of QoS offers by different services.

• Support refinement of QoS specifications and their
constructs.

• Allow both provider and requester QoS specification:
providers and requesters should be given the capability

to specify their QoS constraints/requirements with the
same expressiveness and in a symmetric way.

• Allow fine-grained QoS specification i.e., QoS specs
for the whole WS and its parts.

• Devise an extensible and formal QoS metrics model,
which must at least specify: a) the value set of the met-
ric; b) the metric’s domain of knowledge; c) the rela-
tionship of the metric with other metrics; d) the associ-
ation of the metric with a unit, a measured QoS prop-
erty and a measurement function/directive; e) a (func-
tional or ontological) description of the derivation of a
complex service’s metric value from the corresponding
QoS metric’s values of the component services.

• Devise a corresponding extensible and formal QoS at-
tributes, units, functions and measurement directives
model.

• Allow classes of service specification: Class of Ser-
vice means the discrete variation of the complete ser-
vice and QoS provided by one WS. The benefits of
classes of service specification are the following: a)
for providers: 1) different QoS provision for differ-
ent classes of consumers; 2) achieve maximal gain
with optimal utilization of resources; b) for con-
sumers: can better select the service and QoS they
need and are willing to pay for, while minimizing their
price/performance ratio.

3.2. OWL-Q

Based on the requirements of QoS-based WS Descrip-
tion we have set in the previous subsection, we have de-
veloped an OWL-S extension (the requirement syntactical
separation is satisfied as our ontology can be developed in-
dependently from OWL-S) for QoS-based WS description
of both requests and offers. We have extended OWL-S onto-
logical description for two reasons: to comply with Seman-
tic WS description standards (standards compliance) and
to use the OWL ontology formalism (extensible and formal
semantic QoS model). OWL is one of the most expressive
ontology languages and it is a W3C standard.

Our ontology is separated into several facets. Each facet
can be developed and extended independently of the other
(syntactical separation and refinement of QoS specifica-
tions). Each facet concentrates on a particular part of our
QoS WS description. A document describing a QoS WS
advertisement or request should reference all the facets of
our ontology. In the sequel, we present and analyze all parts
of the OWL-Q ontology.

Connecting Facet As can be seen in Fig. 1, the Connect-
ing Facet connects OWL-S with OWL-Q and provides the
high-level concepts that are appropriate for defining QoS



Figure 1. Connecting Facet of OWL-Q.

advertisements and demands. For the connection of the two
ontological descriptions, the QoSAttribute class is a sub-
class of OWL-S ServiceParameter and references a Ser-
viceElement. Subclasses of the latter class are Condition-
alOutput, Parameter, Input, Precondition, Effect, and Ser-
vice. That is a QoSAttribute can reference any ServiceEle-
ment of a service’s functional description (fine-grained QoS
specification). Finally, a QoSAttribute can be static or dy-
namic (it changes with time) and is measured by one or
more static or dynamic QoSMetrics respectively.

Basic Facet A ServiceProfile is associated with many
QoSOffers (classes of service) or with only one QoSRequest
(both provider and requester QoS specification). A QoSRe-
quest is separated into a QoSDemand class and a QoSSelec-
tion class. The latter class is the actual incarnation of a list
of <QoSMetric, selectionFactor> elements useful for the
WS selection process. The QoSSpec class represents the ac-
tual QoS description of a WS. It describes the security and
transaction protocols used, the cost of using the service and
the associated currency for the cost, the validity period of
the offer or demand and an arbitrary OpenMath expression
(om:OMOBJ). This expression represents what is or must
be guaranteed and contains variables which are associated
to QoS Metrics.

QoS Metric Facet The Metric Facet describes all the
appropriate classes and properties used for a proper formal
definition of a QoS metric (QoS metric model). This met-
ric facet is actually an upper ontology representing any ab-
stract QoS metric. A specific QoS metric can be created

Figure 2. Basic Facet of OWL-Q.

Figure 3. Metric Facet of OWL-Q.

by refining the QoSMetric class. Many specific QoS met-
rics (especially the general ones) can be part of a midlevel
ontology created for QoS metric reuse. We prefer special-
ization to instantiation because it allows for a quicker rea-
soning process. We plan to develop a mid-level ontology
defining cross-domain QoS metrics and a low-level ontol-
ogy for defining QoS metrics for particular domains.



The QoSMetric is one of the most important classes of
OWL-Q representing a QoS metric. The values of a QoS
metric are provided by a service provider or a requester or
a third-party. A QoS metric belongs to a Domain of knowl-
edge, which is separated into one Generic Domain and sev-
eral Specific Domains. It has only one name. It measures a
QoSProperty on a specific ServiceElement. The value type
of a QoSMetric is an instance of the QoSValueType class
(analyzed in a separate facet) while the unit of the value
is an instance of the Unit class. A QoSMetric is separated
into static and dynamic metrics. A StaticQoSMetric is com-
puted only once to produce a value for a StaticQoSAttribute.
A DynamicQoSMetric is computed repeatedly according to
a Schedule to produce values of a DynamicQoSAttribute
that change over time. It can be a simple QoS metric mea-
suredBy a MeasurementDirective or a complex one. Com-
plexMetrics are derived from other metrics with the help of
a OMFunction (analyzed later). Last but not least a QoS-
Metric is related to other metrics according to two types of
Relationships: Independent and Related. When two met-
rics are related, we can specify the direction of their values
or the impact of one’s value to the other’s value.

Figure 4. Function, Measurement Directive
and Schedule Facets of OWL-Q.

Function, Measurement Directive and Schedule
Facets The Function Facet describes all the appropriate
concepts and properties for the proper definition of metric
functions. The OMFunction class is the basic concept that
represents a QoS Metric Function. A Metric Function is
either expressed with an arbitrary OpenMath Formula (ex-
pressed in XML via the OpenMath XML Schema om:) or
with a known OpenMath function (subclass of the Open-
MathSymbol class of the MONET [1] Ontology). A Met-
ric Function takes as input objects of the Operand class,

which associate a QoSMetric with an OpenMath variable
(om:OMV) that is used inside the function’s formula.

The Measurement Directive Facet describes the concept
of measurement directive which is used for the measure-
ment of simple metrics. A MeasurementDirective is com-
posed of a URI that describes where and how to get a value
of a resource’s property. A Schedule is used to compute the
frequency of the computation of a Complex Metric’s value.
It has a specific name and is defined either by a starting and
ending Period of xsd:dateTime type or by a Time Interval
that is expressed in specific time units.

Figure 5. Unit Facet of OWL-Q.

Unit Facet The Unit Facet formally describes the unit
of a QoS metric. A Unit has one name, several abbrevi-
ations and synonyms (even in different languages). A Unit
belongs to a System of Units and is associated with the same
QoSProperty as the one that is measured by the QoS metric
of the unit. A Unit is separated into BaseUnits, Multiple-
sOfUnits and DerivedUnits. The BaseUnit class expresses
units which are used most of the times in measurements.
A MultipleOfUnit is associated with a BaseUnit and con-
verted to it by a constant (multiplicationFactor). It has a
name composed of the name of its BaseUnit and a prefix.
A DerivedUnit is proportional to some Units and inverse
proportional to other Units. It also has a multFactor that is
used to express its mathematical definition in relation to the
other (inverse) proportional units. An unit is equivalent to
another unit and can be converted to it with the help of the
Equivalence class. This class correlates the equivalent met-
rics and defines the OpenMath functions or formulas that
are used to convert the values of the one unit to the other.
A midlevel ontology of units must be developed in order to
have a semantic description of specific base units and their
alternatives or multiples. This midlevel ontology will be
very helpful in converting between values of metrics where
these metrics are equivalent but use different units.



Figure 6. QoS Value Type Facet of OWL-Q.

QoSValueType Facet The QoSValueType ontology de-
scribes the types of values a QoS metric can take. The
QoSValueTypes can be Scalar or NumericUnion, or List-
based types. Scalar value types are simple value types that
can be Numeric or String. NumericTypes can be Positively-
Monotonic or NegativelyMonotonic in order to show the di-
rection of values of the associated metric. ConstrainedNu-
meric value types represent Numeric value types that have
(upper, low or one) limits (e.g. the Integers set [2,5] or the
Integer value {2}). A String value type may have a toNu-
meric OpenMath formula that will be used to compute the
numeric counterpart of its values. A ConstrainedString rep-
resents a finite closed String list which has specific String
values as parts. The NumericUnion class represents value
types that are expressed as unions of Numeric value types
(e.g. [1, 2] ∪ {4} ∪ [9, 11]). The List-Based class represents
list value types that have a specific size and whose elements
are of a specific QoSValueType.

4. QoS-based Web Service Discovery

4.1. Semantic QoS Metric Matching

All current QoS-based WS discovery efforts try to infer
if an advertisement constraint involving a particular QoS
metric is stricter than a request constraint involving the
same QoS metric. However, equivalence of QoS metrics
is inferred by the syntactic comparison of their names. As
a result, the QoS-based WS matchmaking process fails as it
produces results with low precision and recall.

The solution to the above problem is to semantically de-
fine and compare two QoS metrics so as to infer that they

are the same. For the semantic comparison of two QoS met-
rics, we have devised a semantic QoS metric matching al-
gorithm. This algorithm makes the following assumptions:

• Both the requester and service provider use the OWL-
Q semantic language for describing QoS metrics.
However, they may reference different QoS metrics
from different OWL-Q ontology instances.

• The description of a QoS metric references the unit of
measurement, the QoS property that is measured, the
type of values that this metric takes as a result of the
measurement, and the service object that is measured.
In addition, the metric has a direction of values (pos-
itive, negative) which indicates if a greater value re-
flects greater quality and is derived from the value type
of the metric.

• QoS metrics are classified into two disjoint categories:
Resource metrics and Composite metrics. Resource
metrics are retrieved directly from the managed re-
sources residing in the service provider’s tier, such as
routers, servers, implemented applications. Typical ex-
amples of resource metrics are counters and gauges.
For every resource metric, a Measurement Directive is
specified, which contains the command and other con-
text information needed to retrieve the metric from the
managed resource instrumentation. Composite met-
rics are created by combining several other (compos-
ite or resource) metrics according to a specific algo-
rithm, such as averaging one or more metrics over a
specific amount of time, or by breaking them down to
specific criteria (top 10%, minimum, maximum val-
ues of a time series). This is usually done within
the service provider’s domain but can be outsourced
to a third-party measurement service as well. We as-
sume that Composite metrics are specified by means
of a Function (a formula describing the input metrics
and the arithmetic operations to aggregate them). We
further assume that this Function is specified in the
OpenMath XML language. OpenMath is an emerging
standard for representing mathematical objects with
their semantics, allowing them to be exchanged be-
tween computer programs, stored in databases, or pub-
lished on the worldwide web. Translations (called
phrase-books) to the internal (math object) representa-
tions of popular mathematical engines like Mathemat-
ica and Maple have already been developed for com-
puting the result of OpenMath expressions. In addi-
tion, an OWL ontology for the semantic representation
of OpenMath objects has been developed in the context
of the MONET [1] project. This ontology is used for
representing common functions which take only one
argument as input and are used for unit transformations
or composite metric value computations.



• The requester and service provider use three common
ontologies: unit, QoS property and QoS ValueType.
The unit ontology semantically describes the unit used
for the measurement prescribed by a QoS metric. The
QoS property is an ontology for the semantic descrip-
tion of domain-independent (like throughput, avail-
ability and response time) and domain-dependent (e.g.
“flexibility of reservation changes” in the travel do-
main) QoS properties. Finally, the third ontology is
used for the semantic description of simple (integer,
real, string) and complex QoS types (real number in
[0,1], binary integer, list, time series). It is easy to
come up and agree with the content of these three on-
tologies as they usually contain terms/concepts with an
easily understood meaning for people/users. Thus they
will be common and available to every requester and
service provider. If this is not the case, then matching
algorithms for units, QoS properties and QoS Value-
Types must be developed and used.

The input to the described algorithm is the following:

• Three ontologies O1, O2, O3. O1 contains U concepts,
each representing a unit. O2 contains P concepts, each
representing a QoS Property. O3 contains V concepts,
each representing a QoS Value Type.

• An ontology instance of a subpart of the MONET on-
tology describing functions which are subclasses of
the OpenMathSymbol concept and the OpenMath’s
XML Schema om: for describing arbitrary OpenMath
formulas.

• Two different ontological instances D1 and D2 of
OWL-Q which include the description of two differ-
ent QoS Metrics M1 and M2 respectively. In general,
if we have a QoS Metric concept M described by an
ontology instance D, then:

– M.unit ∈ U , where “unit” is a relation associat-
ing metrics and units,

– M.measures ∈ P , where “measures” is a rela-
tion associating metrics and QoS Properties,

– M.type ∈ V , where “type” is a relation associat-
ing metric and value types,

– M.object ∈ ServiceElement =
{Service,Operation,Activity, F low,
Endpoint, Port, Parameter, Input,
ConditionalOutput, . . .}, where “object”
is a relation associating metrics and service
elements,

– If M.type instanceOf Number ∧
PositivelyMonotonic ⊆ V then
valueDirection(M) = “positive” else if

M.type instanceOf Number ∧
NegativelyMonotonic ⊆ V then
valueDirection(M) = “negative” else
M.toNumeric instanceOf om : OMOBJ .
It is stated that if the metric takes numeric
values, then it has a positive or negative value
direction. Otherwise, a function must be defined
that computes the numeric counterpart of every
value of the metric.

– If M subclassOf CompositeMetric then
M.measuredBy subclassOf OMFunction
and M.derivedFrom subclassOf Metric. It
is stated that if a metric is composite and not
resource, then its values are computed by a
function and is derived from other metrics.

The algorithm considers three different cases depending on
the nature of the two compared metrics M1 and M2 (i.e. if
they are Resource metrics or Composite):

[First Case] If M1 subclassOf ResourceMetric and
M2 subclassOf ResourceMetric, then

match (M1,M2) ≡ t ∧ M1.object = M2.object∧

∧ M1.measures = M2.measures

t = uvmatch (M1.unit,M2.unit,M1.type,M2.type).
The matching of units and types is not going to be ana-
lyzed due to space limitation of this paper. We just note that
when the same units are used, the types must be the same.
Otherwise, if the units are compatible (one is multiple or
equivalent to the other), then the types must be compatible
(i.e. if they are constrained, then the transformation of the
one type’s limits must lead to values equal to the limits of
the second). We assume that Resource metrics have always
Numeric values, so there is no meaning to include a compar-
ison of the “toNumeric” math objects. To provide a simple
match example, consider two Resource metrics: “Down-
TimeMetric” and “UpTimeMetric”. Assume that they both
try to measure the “Availability” QoS property of a service,
they take values from the Integers set and they use the same
unit (of time). However, the “DownTimeMetric” has nega-
tive value direction while the “UpTimeMetric” has positive
value direction. Thus, they are not matched.

[Second Case] If M1 subclassOf ResourceMetric and
M2 subclassOf CompositeMetric, then

rcmmatch (M1,M2) ≡ match (M1,M2)∧

∧ M2.derivedFrom ∩ CompositeMetric = �

∧ M2.derivedFrom! = M1

In other words, a Resource and a Composite metric can
be matched if the Composite metric is only derived from
Resource metrics that are different from the compared Re-
source metric and the conditions for resource-to-resource



metric match are met. This is the case where we have on
one hand a Resource metric that is obtained in the form of a
high-level reading from systems with advanced instrumen-
tation and on the other hand the same but Composite met-
ric that is derived from a Resource metric obtained in the
form of low-level reading from systems with basic instru-
mentation. For example, rather than deriving DownTime as
a Composite metric of time series of a system’s Status (i.e.
Resource metric), some systems offer this reading directly.
To formally demonstrate the above example, the following
hold:

M1.unit = “sec” ∧ M1.measures = Availability

∧ M1.type = NMonotInteger ∧ M1.object = Service

∧ M2.unit = “sec” ∧ M2.measures = Availability

∧ M2.type = NMonotInteger ∧ M2.object = Service

∧ M2.derivedFrom = M3 ∧ M3.type = Percentage

It is easy to derive that !rcmmatch(M1,M3) and
rcmmatch(M1,M2).

[Third Case] If M1 subclassOf CompositeMetric
and M2 subclassOf CompositeMetric, then we
have the hardest case of all. Let us assume that:
M1.derivedFrom = {R1, R2, . . . , Rn, C1, C2, . . . , Cm},
where Ri subclassOf ResourceMetric ∀i ∈ {1, . . . , n}
and Cj subclassOf CompositeMetric ∀j ∈ {1, . . . ,m}.
Similarly, we assume that: M2.derivedFrom =
{R′

1, R
′

2, . . . , R
′

n′ , C ′

1, C
′

2, . . . , C
′

m′}, where
R′

i subclassOf ResourceMetric ∀i ∈ {1, . . . , n′}
and C ′

j subclassOf CompositeMetric ∀j ∈ {1, . . . ,m′}.
Initially, the algorithm assumes that both of the metrics
are Resource and executes a resource-to-resource metric
match. If this match fails, then we have a failed match.
Otherwise, the algorithm proceeds in order to match every
Resource metric Ri of M1 with every resource metric R′

i of
M2. If there is a match, then it substitutes every occurrence
of these matched metrics in the M1.measuredBy and
M2.measuredBy mathematical expressions with a new
variable Ri,j , where i ∈ {1, . . . , n} and j ∈ {1, . . . , n′}.
Similarly, the algorithm attempts to match every Composite
Metric Cj of M1 with every Composite Metric C ′

j of M2.
If there is a match, then it substitutes every occurrence
of these matched metrics in the M1.measuredBy and
M2.measuredBy mathematical expressions with a new
variable Ci,j , where i ∈ {1, . . . ,m} and j ∈ {1, . . . ,m′}.
If there are unmatched resource or composite metrics of
M1 and composite or resource metrics of M2 respectively,
then the algorithm attempts to match them and assign them
a new variable name in the corresponding mathematical
expressions of M1 and M2. After all of this groundwork,
we have a match if the following hold:

ccmmatch(M1,M2) ≡ match(M1,M2)∧

∧ equivalent(M1.measuredBy,M2.measuredBy)

In other words, the two Composite metrics are matched
if the conditions for resource-to-resource metric match are
met and they have equivalent functions for computing the
derivation of the metrics’ values. Two functions (i.e. math-
ematical expressions) are equivalent if for every instance of
their variables, they take the same value. Equivalency of
mathematical expressions is generally undecidable but the
most powerful mathematical engines like Mathematica and
Maple successfully deal with many hard cases.

Let us now examine a complete example of two QoS
metrics that try to measure the QoS Property of Availability.
For the first QoS metric A1, the following hold:

A1.unit = � ∧ A1.type = PMonotonicPercentage

∧ A1.measures = Availability ∧ A1.object = Service

∧ A1.derivedFrom = {D1, U1}

∧ A1.computedBy = “1 − D1/(U1 + D1)”
∧ U1.unit = “sec” ∧ U1.type = PMonotInteger

∧ U1.object = Service ∧ U1.measures = Availability

∧ D1.unit = “sec” ∧ D1.type = NMonotInteger

∧ D1.object = Service ∧ D1.measures = Availability

For the second QoS metric A2, the following hold:

A2.unit = � ∧ A2.type = PMonotonicPercentage

∧ A2.measures = Availability ∧ A2.object = Service

∧ A2.derivedFrom = {D2, U2}

∧ A2.computedBy = “U2/(U2 + D2)”
∧ U2.unit = “sec” ∧ U2.type = PMonotInteger

∧ U2.object = Service ∧ U2.measures = Availability

∧ U2.derivedFrom = S2 ∧ D2.derivedFrom = S2

∧ D2.unit = “sec” ∧ D2.type = NMonotInteger

∧ D2.object = Service ∧ D2.measures = Availability

∧ S2.unit = � ∧ S2.type = {0, 1}

∧ S2.object = Service ∧ S2.measures = Availability

Initially, the algorithm will try to match the two met-
rics, regarding them both as Resource. They match,
so it continues. Then, it attempts to match resource-
to-resource and composite-to-composite ancestral metrics.
There a no such pairs, so it then tries to match resource-
to-composite metrics. It infers that: rcmmatch(D1, D2)
and rcmmatch(U1, U2). So it replaces D1 and D2
with D, U1 and U2 with U in the mathematical ex-
pressions of both A1 and A2. In other words, it now
holds that: A1.measuredBy = “1 − D/(U + D)” and
A2.measuredBy = “U/(U + D)”. Next, the algorithm
attempts to infer the equivalence of the ”measuredBy” ex-
pressions of the two metrics. Indeed, it is obvious that:
equivalent(“1 − D/(U + D)”, “U/(U + D)”), so the al-
gorithm finally infers that: ccmmatch(A1, A2).



4.2. Extending QoS-based Web Service
Matchmaking Algorithm

One of the most prominent QoS-based WS discovery al-
gorithm [3] expresses each QoS-based WS description as a
CSP. Then it separates the QoS-based advertisements into
two categories: the ones that satisfy completely the QoS-
based request and the others that do not satisfy the request.
However, this algorithm presents two major drawbacks:

1. It performs syntactic metric matchmaking producing
false negative and false positive results.

2. The algorithm does not treat two cases at all: a) when
the advertisement uses QoS metrics that are not used
by the request; b) the opposite.

In the sequel, we present a QoS-based WS matchmaking
algorithm that exploits the OWL-Q ontology model and the
“semantic QoS metric matching” algorithm in order to ex-
tend the aforementioned algorithm. This algorithm takes as
input the QoS offers of all the WS advertisements and the
QoS demand of the request and returns four lists of WS ad-
vertisements. It is composed of three main sequential steps:

1. OWL-Q advertisements and OWL-Q request are trans-
formed to CSP problems via XSLT as OWL-Q descrip-
tion files are expressed in XML. However, this trans-
formation must be performed carefully according to
the following two directives:

(a) Only metrics which are semantically equal
should correspond to the same CSP variable.
That is by using the requester’s QoS description,
we check every provider’s QoS description as
follows: for each QoS metric X of the requester,
we try to find a provider’s QoS metric Y that is
semantically equivalent. If Y is eventually found,
then Y is set to X i.e. the two metrics are assigned
to the same CSP variable.

(b) If two equal metrics do not use the same units,
then we consider the request’s metric unit as the
default and a unit transformation procedure is
performed as follows: If X is the metrics CSP
variable and f(x) = x/100 (for example) is the unit
transformation function (i.e. a formula), then for
every appearance of metric X at the CSP of the
provider we set X to X/100.

2. We solve all advertisement CSPs and the CSP of the
request with a known and efficient CSP engine.

3. We constrain the solution space of the advertisements
and the request only to the metrics that are common.
Then, for every solution of the CSP of an advertise-
ment, we check if it is contained in the solution space

of the CSP of the request. If this is not the case, the
advertisement is considered as a failed match. Other-
wise, if the advertisement has more variables or fewer
solutions than the request it is considered as a super
match. Otherwise, if it has the same set of variables
and solutions, it is considered as an exact match. Oth-
erwise, if it has the same or smaller set of solutions and
fewer variables, it is considered as a partial match.

The algorithm produces four types of results: super
matches, exact matches, partial matches and failed matches
with decreasing order of significance.

4.3. Extending QoS-based Web Service Se-
lection Algorithm

In some cases, there will be several QoS offers which
will be returned from a QoS-based WS matchmaking al-
gorithm. Therefore, a QoS-based selection mechanism is
required to discover the best-fit WS with respect to its QoS
offer. Based on the OWL-Q ontology, a QoS-based WS se-
lection algorithm performs the following steps:

1. Step 1 is the same as the one at the previously ana-
lyzed QoS-based matchmaking algorithm. However,
we now try to match every QoS metric appearing at
the “QoS Selection” section of the demand with every
QoS metric of an offer.

2. Based on the CSP cω of an offer ω, we compute the
minimum and maximum utility assessment of the offer
as follows:

(a) The minimum utility assessment Uminω
of an of-

fer ω is derived from the following formula:

Uminω
= min

subject to cω

∑

m∈Dmetrics

∩ωmetrics

U(m)·WD(m)

, where m is a metric that in not only contained
in the metric list Dmetrics of the “QoS Selec-
tion” part of the demand D but is also con-
tained in the metric list ωmetrics of the offer ω,
U(m) = m−mmin

mmax−mmin

is a utility function that
assigns a unique assessment value to every value
a metric m can take and takes values from the set
[0, 1] of real numbers, mmax and mmin are re-
spectively the maximum and minimum values a
metric m can take by definition, and WD(m) is
the weight of the metric m presented at the de-
mand D. What is done here is that the CSP cω

of an offer ω is is transformed to a CSOP, which
consists of a standard CSP and of an optimization
function that maps every solution to a numerical
value. ¿From all the solutions of the CSP cω , we



choose the one that minimizes the optimization
function, i.e. the formula of the minimum utility
assessment Uminω

.

(b) The maximum utility assessment Umaxω
of an

offer ω based on a demand D is given by the fol-
lowing formula:

Umaxω
= max

subject to cω

∑

m∈Dmetrics

∩ωmetrics

U(m)·WD(m)

3. The overall utility assessment Uω of an offer ω based
on a demand D is given by the following formula:
Uω = a · Uminω

+ b · Umaxω
, where 0 ≤ a, b < 1 and

a + b = 1. This formula states that the overall utility
assessment (score) of an offer depends on percentage
a of the minimum utility assessment of the offer and
on percentage b of the maximum utility assessment of
the offer. Although most QoS-based WS selection al-
gorithms are interested in the worst score that can be
given by an offer, we believe that this is not enough; =
we have to pick among the same “worst-score” offers
the one that gives the best of the best scores.

This algorithm takes advantage of the “metric matching”
concept previously introduced and extends the QoS-based
WS selection algorithm presented in [3] by considering the
maximum utility assessment of an offer.

5. Conclusion

This work addresses the need for semantic QoS-based
WS description and discovery by proposing an appropri-
ate semantic framework. For QoS-based WS description,
a semantically rich, formal and extensible QoS model (as
an extension of OWL-S) is proposed that is based on on-
tologies and captures every aspect of QoS description. This
ontology-based QoS model is designed into several facets
that can be easily extended and enriched.

For QoS-based WS discovery, a semantic QoS metric
matching algorithm has been developed that can be used
to enhance QoS-based WS matchmaking and selection al-
gorithms in order to produce results with better precision
and recall. Besides this extension, some flaws of these al-
gorithms have been addressed. What remains to be done is
the empirical evaluation of such extended algorithms.

As future work, we propose three extensions. The first is
the separation of QoS constraints into hard and soft in cases
where the QoS-based WS discovery process only produces
failed match results. In this way, the results are first filtered
by the hard (compulsory) constraints and then ordered by
the number of soft (optional) constraints they satisfy. The
second is the description of the context of both the WS and

the WS requester. We believe that a Context-aware WS dis-
covery process will be more accurate and customizable as
the tasks of request and input completion, output adaptation
and added-value composition of service-offerings become
possible. The last extension is the implementation of sev-
eral tools that will assist providers and requesters in provid-
ing less input and in fulfilling their goals.

References

[1] O. Caprotti, M. Dewar, and D. Turi. Mathematical ser-
vice matching using description logic and owl. In A. As-
perti, G. Bancerek, and A. Trybulec, editors, Mathematical
Knowledge Management (MKM), volume 3119 of Lecture
Notes in Computer Science, pages 73–87. Springer, 2004.

[2] A. Keller and H. Ludwig. The wsla framework: Specifying
and monitoring service level agreements for web services.
Technical Report RC22456 (W0205-171), IBM, 2002.

[3] O. Martı́n-Dı́az, A. R. Cortés, D. Benavides, A. Durán, and
M. Toro. A quality-aware approach to web services procure-
ment. In B. Benatallah and M.-C. Shan, editors, Technolo-
gies for E-Services (TES), volume 2819 of Lecture Notes in
Computer Science, pages 42–53. Springer, 2003.

[4] E. M. Maximilien and M. P. Singh. Conceptual model of
web service reputation. SIGMOD Rec., 31(4):36–41, 2002.

[5] N. Oldham, K. Verma, A. Sheth, and F. Hakimpour. Se-
mantic ws-agreement partner selection. In WWW ’06: Pro-
ceedings of the 15th international conference on World Wide
Web, pages 697–706, New York, NY, USA, 2006. ACM
Press.

[6] S. Ran. A model for web services discovery with qos. SIGe-
com Exch., 4(1):1–10, 2003.

[7] K. Sycara et al. OWL-S 1.0 Release. OWL-S Coalition,
http://www.daml.org/services/owl-s/1.0/, 2003.

[8] M. Tian, A. Gramm, M. Nabulsi, H. Ritter, J. Schiller, and
T. Voigt. Qos integration in web services. Gesellschaft fur
Informatik DWS 2003, Doktorandenworkshop Technolo-
gien und Anwendungen von XML (Ph.D. students workshop
Technologies and Applications of XML), October 2003.

[9] V. Tosic, B. Esfandiari, B. Pagurek, and K. Patel. On re-
quirements for ontologies in management of web services.
In CAiSE ’02/ WES ’02: Revised Papers from the Interna-
tional Workshop on Web Services, E-Business, and the Se-
mantic Web, pages 237–247, London, UK, 2002. Springer-
Verlag.

[10] V. Tosic, B. Pagurek, and K. Patel. Wsol - a language for the
formal specification of classes of service for web services.
In L.-J. Zhang, editor, ICWS, pages 375–381. CSREA Press,
2003.

[11] P. Van Hentenryck and V. Saraswat. Strategic directions
in constraint programming. ACM Computing Surveys,
28(4):701–726, 1996.

[12] C. Zhou, L.-T. Chia, and B.-S. Lee. Daml-qos ontology for
web services. In ICWS ’04: Proceedings of the IEEE Inter-
national Conference on Web Services (ICWS’04), page 472,
Washington, DC, USA, 2004. IEEE Computer Society.


