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ABSTRACT
Verification techniques like model checking, preorder check-
ing and equivalence checking are shown to be relevant to
web service orchestration. The Concurrency Workbench of
the New Century (CWB) is a verification tool that supports
these verification techniques. By means of the Process Al-
gebra Compiler (PAC), the CWB is modified to support the
BPE-calculus. The BPE-calculus is a small language, based
on BPEL4WS, to express web service orchestration. Both
the syntax and the semantics of the BPE-calculus are for-
mally defined. These are subsequently used as input for the
PAC. As output, the PAC produces modules that are incor-
porated into the CWB so that it supports the BPE-calculus
and, hence, provides a verification tool for web service or-
chestration.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—formal methods, model checking ; D.3.1 [Program-

ming Languages]: Formal Definitions and Theory; F.3.2
[Logics and Meanings of Programs]: Semantics of Pro-
gramming Languages—operational semantics

General Terms
Languages, Theory, Verification

Keywords
Business process, web service, BPEL4WS, modelling, veri-
fication, Concurrency Workbench of the New Century, Pro-
cess Algebra Compiler

1. INTRODUCTION
The Concurrency Workbench of the New Century (CWB)
is a generic and customizable verification tool developed by

∗This research is supported by IBM and the Natural Sci-
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Cleaveland et al. [14, 16]. The CWB supports model check-

ing, preorder checking and equivalence checking. We will
discuss these verification techniques below. Originally, the
CWB was designed for the verification of Milner’s Calculus
of Communicating Systems (CCS) [35]. However, the CWB
can be customized to support languages other than CCS. To
support a new language, a considerable number of modules
need to be implemented. This would be a time consum-
ing task if not for the Process Algebra Compiler (PAC) [17,
44]. The PAC is a tool that generates these modules from a
specification of the syntax and semantics of the language.

The CWB and the PAC have been successfully exploited in
a number of sophisticated case studies. For example, in [6],
Bhat, Cleaveland and Lüttgen model and verify several as-
pects of a widely used bus protocol. Cleaveland, Lüttgen,
Natarajan and Sims present in [15] a model of a safety crit-
ical part of a system that controls railway signals and verify
a number properties of the system. The modelling and veri-
fication of a fault tolerant active control system is addressed
by Elseaidy, Cleaveland and Baugh in [18]. In [24], Kapoor
and Josephs model delay insensitive circuits in CCS and ver-
ify some properties of these circuits using the CWB. Chen [9]
and also Gradara, Santone, Villani and Vaglini [21] encode
an abstraction of a multithreaded Java program in CCS and
check properties of the encoding exploiting the CWB.

In this paper, we will show how the CWB and the PAC
can be exploited to model and verify web service orches-

tration. To express web service orchestration, we introduce
the BPE-calculus, a small language based on the Business

Process Execution Language for Web Services (BPEL4WS)
[5]–a language put forward by IBM, Microsoft et al. for web
service orchestration. In the BPE-calculus we abstract from
many details of BPEL4WS. Initially, we are only interested
if modelling and verification of web service orchestration is
feasible using the CWB and the PAC. In the concluding
section of this paper we will discuss how the BPE-calculus
can be extended to also capture those features of BPEL4WS
that are not yet present in the BPE-calculus.

As we already mentioned, the CWB supports model check-
ing, preorder checking and equivalence checking. Next, we
will discuss these three verification techniques and their rel-
evance to web service orchestration.
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1.1 Model Checking
The goal of model checking is to determine whether or not
a system satisfies a property. The property is typically ex-
pressed in a logic. A variety of different logics have been
proposed for this purpose. The CWB supports a particu-
larly expressive logic, namely Kozen’s µ-calculus [28]. In
the µ-calculus many interesting properties can be expressed
including, for example, deadlock freedom. For a more de-
tailed discussion of model checking we refer the reader to,
for example, [13].

�� ��
�� ��process P

++WWWWWW
�� ��
�� ��CWB //�� ��

�� ��does P satisfy φ?
�� ��
�� ��property φ

33gggggg

As argued by Nakajima in [36], model checking is particu-
larly valuable for web service orchestration. For example,
assume that we run a BPEL4WS program and that it dead-
locks after some time. At that point, many different web
services may have been invoked. The roll-back of all the
transactions executed by those web services is very costly.
Also a considerable amount of network traffic has become
void, wasting a valuable publicly shared resource. Using
model checking to detect the deadlock before the BPEL4WS
program is run may prevent all those roll-backs and waste
of network traffic.

1.2 Preorder Checking
A behavioural preorder can be used to express that an im-
plementation satisfies its specification. Several different be-
havioural preorders have been put forward. The CWB sup-
ports two key behavioural preorders: the may testing and
must testing preorders of De Nicola and Hennessy [39].
Checking that an implementation and its specification are
part of a behavioural preorder, that is, checking if the im-
plementation satisfies its specification, is known as preorder
checking.

�� ��
�� ��process I

++VVVVVV
�� ��
�� ��CWB //�� ��

�� ��does I implement S?
�� ��
�� ��process S

33hhhhh

Currently, web services are usually specified in the Web Ser-

vice Description Language (WSDL) [11]. However, WSDL
mainly addresses the format of the messages that are ex-
changed. Meredith and Bjorg [33] argue for the need of a
specification language that is considerably more expressive
than WSDL but abstracts from the implementation details
of languages such as BPEL4WS. The specification language
they propose is similar to our BPE-calculus. Preorder check-
ing can be exploited to check if a BPEL4WS program sat-
isfies such a specification.

1.3 Equivalence Checking
A behavioural equivalence equates states of a system that
behave the same. A large variety of behavioural equiva-

lences have been proposed. The CWB supports two key be-
havioural equivalences: bisimilarity, a notion due to Milner
[34] and Park [40], and observational equivalence, also due
to Milner [34]. Checking if states are behavioural equivalent
is known as equivalence checking.

�� ��
�� ��process P

**VVVVV
�� ��
�� ��CWB //�� ��

�� ��do P and Q behave the same?
�� ��
�� ��process Q

44hhhhh

One important application of equivalence checking is state
space minimization. That is, the state space of the sys-
tem is minimized by identifying states that are behaviourally
equivalent. Such state space reductions are sometimes es-
sential in order for model checking to be feasible. In the con-
text of web service orchestration, state space minimization
is particularly fruitful when the web services are themselves
are defined in BPEL4WS. In that case, each BPEL4WS pro-
gram can be minimized before composition, leading to a con-
siderable state space reduction and, hence, making model
checking applicable to larger compositions of web services.

1.4 Overview
The rest of this paper is organized as follows. In Section 2
we introduce the syntax of the BPE-calculus. The semantics
of the BPE-calculus is presented in Section 3. The syntax
and semantics of the BPE-calculus are used as input to the
PAC to generate modules for the CWB. After recompiling
the CWB with these new modules, it also supports the BPE-
calculus.

�� ��

�� ��

syntax of
BPE-calculus

**VVVVV
�� ��
�� ��PAC //�� ��

�� ��modules

��

�� ��

�� ��

semantics of
BPE-calculus

44hhhhh

�� ��
�� ��CWB

In Section 4 we provide some examples showing how the
CWB can be used to verify BPE-processes. In the conclud-
ing section of this paper, we discuss related and future work.

2. SYNTAX OF THE BPE-CALCULUS
Rather than studying BPEL4WS in its full complexity, we
restrict our attention to a small language. We call this lan-
guage the BPE-calculus as it focuses on the control flow in
BPEL4WS and it is similar in flavour to calculi like CCS. In
the BPE-calculus, we abstract from many details of BPEL-
4WS. In particular, we do not consider data, time, and fault
and compensation handlers. In the concluding section of
this paper we will briefly discuss how we plan to incorpo-
rate these features into the BPE-calculus.

Before defining the syntax of the BPE-calculus, we first fix

• a set A of external basic activities,

• the internal basic activity τ , and

• an infinite set L of links.
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BPEL4WS contains a variety of basic activities including
the invoke, receive, reply and assign activity. We can choose
which of these activities we represent as external (that is,
observable) basic activities and which ones we represent by
the internal (that is, not observable) basic activity τ . Differ-
ent choices lead to different levels of abstraction. The more
basic activities of BPEL4WS are represented by τ , the more
abstract the representation of a BPEL4WS business process
becomes.

Definition 1. The set C of join conditions is defined by

c ::= true | ` | ¬c | c ∧ c

where ` ∈ L. The set P of BPE-processes is defined by

P ::= 0 | α.P | ` ↑ b.P | c ⇒ P | P ‖ P | Q + Q

Q ::= α.P | Q + Q

where α ∈ A ∪ {τ}, ` ∈ L, b ∈ {true, false} and c ∈ C.

Let us informally define the semantics of the BPE-calculus.
A formal semantics will be presented in the next section.
The nil process 0 does nothing at all. It corresponds to
BPEL4WS’ empty activity. The process α.P consists of the
basic activity α followed by the process P . That is, P is
prefixed by α. BPEL4WS supports sequencing, which is
more general than prefixing since a process can be preceded
by an arbitrary process rather than just by a basic activity.
Sequencing is treated in [27]. In the process P1 ‖ P2, the
processes P1 and P2 are concurrent. This corresponds to
BPEL4WS’ flow construct. In α1.P1 + α2.P2, process α1.P1

is chosen if basic activity α1 is enabled (for example, in case
α1 is a receive activity then it is enabled if an appropriate
message is available), process α2.P2 is picked if basic activity
α2 is enabled, and a nondeterministic choice between α1.P1

and α2.P2 is made if both α1 and α2 are enabled. This
corresponds to the pick construct of BPEL4WS. Calculi like
CCS contain all the above described constructs.

Synchronization between concurrent processes is provided
by means of links. Each link has a source and a target.
Furthermore, a transition condition is associated with each
link. The latter is a Boolean expression that is evaluated
when the source is activated. Its value is associated to the
link. As long as the transition condition of a link has not
been evaluated, the value of the link is undefined. In the
process ` ↑ b.P , the source of the link ` is specified and
its transition condition b is given. In the process c ⇒ P ,
we associate a join condition c with the process P . This
join condition consists of the incoming links of the process
combined by Boolean operators. Only when all the values of
its incoming links are defined and its join condition evaluates
to true, a process can start. As a consequence, if its join
condition evaluates to false then the process never starts.
For example, in the process a1.`1 ↑ true.0 ‖ a2.`2 ↑ true.0 ‖
`1 ∧ `2 ⇒ a3.0, basic activity a3 can only be performed after
the basic activities a1 and a2 have both been performed.

For those that are familiar with BPEL4WS, it should be
evident that the resulting calculus is considerably simpler
and hence more manageable than BPEL4WS. It captures
most of the features of BPEL4WS related to the flow of

control. We refer the reader to [27] for a considerably richer
calculus.

In BPEL4WS, each link should have a unique source and a
unique target. We capture this restriction by means of the
following very simple type system. The type of a process P

is a pair: the set of links that are used as incoming links in
P , and the set of links that are used as outgoing links in P .
A process P satisfies the above restriction only if it can be
typed, say P : (I, O), and I = O.

Definition 2.

(nil) 0 : (∅, ∅)

(act)
P : (I, O)

α.P : (I, O)

(out)
P : (I,O) ` 6∈ O

` ↑ b.P : (I,O ∪ {`})

(join)
P : (I, O) links(c) ∩ I = ∅

c ⇒ P : (I ∪ links(c), O)

(flow)
P1 : (I1, O1) P2 : (I2, O2) I1 ∩ I2 = ∅ O1 ∩ O2 = ∅

P1 ‖ P2 : (I1 ∪ I2, O1 ∪ O2)

(pick)
P1 : (I1, O1) P2 : (I2, O2) I1 ∩ I2 = ∅ O1 ∩ O2 = ∅

P1 + P2 : (I1 ∪ I2, O1 ∪ O2)

In the above definition, we use links(c) to denote the set of
links that occur in the join condition c. This set is defined
by

links(true) = ∅
links(`) = {`}

links(¬c) = links(c)
links(c1 ∧ c2) = links(c1) ∪ links(c2)

Not every process can be typed. Consider, for example,
the process ` ↑ true.0 ‖ ` ↑ true.0. According to axiom
(nil), the process 0 has type (∅, ∅). From rule (out) we
can conclude that process ` ↑ true has type (∅, {`}). As a
consequence, the rule (flow) is not applicable to the process
` ↑ true.0 ‖ ` ↑ true.0. Hence, this process cannot be typed.
However, if a process is well-typed then its type is unique.

Proposition 3. If P : (I1, O1) and P : (I2, O2) then

I1 = I2 and O1 = O2.

Proof. Follows immediately from the fact that there is
at most one rule applicable to each process.

Furthermore, each type is finite.

Proposition 4. If P : (I,O) then I and O are finite sets

of links.

Proof. By structural induction on P .
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3. SEMANTICS OF THE BPE-CALCULUS
In the previous section, we introduced the syntax of the
BPE-calculus. Next, we present its semantics. We model
the BPE-calculus by means of the structural operational ap-
proach due to Plotkin [42].

In our model, we need to keep track of the values of the links.
The value of a link is either true, false, or undefined. The
latter we denote by ⊥. The values of the links is captured
by an element of

Λ = L → {true, false,⊥}.

Initially, all the links are undefined. Setting the value of all
the links in the set L to the Boolean value b we denote by
{L 7→ b}. That is, λ{L 7→ b} is defined by

λ{L 7→ b}(`) =



b if ` ∈ L

λ(`) otherwise.

Instead of λ{{`} 7→ b} we will often write λ{` 7→ b}.

A labelled transition system is similar to a nondeterminis-
tic finite automaton. It consists of a set of states, a set
of labels and a set of transitions. Note that the sets of
states and labels may be infinite and that there are no ini-
tial or final states. In our labelled transition system for the
BPE-calculus, each state consists of a pair: a process and
the values of the links. That is, a state is an element of
P ×Λ. As labels we use basic activities, that is, elements of
A ∪ {τ}. The transitions are defined as a relation, that is,
a subset of (P × Λ) × (A ∪ {τ}) × (P × Λ). This relation is
denoted by →. Instead of (〈P, λ〉, α, 〈P ′, λ′〉) ∈ → we will

write 〈P, λ〉
α

−→ 〈P ′, λ′〉. Such a transition tells us that the
process P whose links have values specified by λ can perform
the basic activity α to become the process P ′ whose links
have values captured by λ′. Performing the basic activity α

often involves interaction with the environment. For exam-
ple, in case α is a receive activity, a message is received from
the environment. The transition relation is defined in terms
of a collection of axioms and rules that are driven by the
syntactic structure of the processes involved.

Definition 5.

(act) 〈α.P, λ〉
α

−→ 〈P, λ〉

(out) 〈` ↑ b.P, λ〉
τ

−→ 〈P, λ{` 7→ b}〉

(joint)
C(c)(λ) = true

〈c → P, λ〉
τ

−→ 〈P, λ〉

(joinf )
C(c)(λ) = false P : (I,O)

〈c → P, λ〉
τ

−→ 〈0, λ{O 7→ false}〉

(flow`)
〈P1, λ〉

α
−→ 〈P ′

1, λ
′〉

〈P1 ‖ P2, λ〉
α

−→ 〈P ′

1 ‖ P2, λ
′〉

(flowr)
〈P2, λ〉

α
−→ 〈P ′

2, λ
′〉

〈P1 ‖ P2, λ〉
α

−→ 〈P1 ‖ P ′

2, λ
′〉

(pick`)
〈P1, λ〉

α
−→ 〈P ′

1, λ
′〉 P2 : (I2, O2)

〈P1 + P2, λ〉
α

−→ 〈P ′

1, λ
′{O2 7→ false}〉

(pickr)
〈P2, λ〉

α
−→ 〈P ′

2, λ
′〉 P1 : (I1, O1)

〈P1 + P2, λ〉
α

−→ 〈P ′

2, λ
′{O1 7→ false}〉

Let us briefly discuss the above axioms and rules.

(nil) There is no rule applicable to the process 0 and, hence,
it cannot make any transitions.

(act) The process α.P is capable of making a transition
labelled α. After the basic activity α has been per-
formed, the process P remains to be executed.

(out) The value of the outgoing link ` in the process
` ↑ b.P is set to b. This is reflected by the change
of λ to λ{` 7→ b}. The update of λ is modelled by a
τ -transition since it is an internal (that is, not observ-
able) action. After the update, the process P remains.

(join) To model the evaluation of join conditions, we intro-
duce the function C : C → Λ → {true, false,⊥} defined
by

C(true)(λ) = true

C(↑`)(λ) = λ(`)
C(¬c)(λ) = ¬C(c)(λ)

C(c1 ∧ c2)(λ) = C(c1)(λ) ∧ C(c2)(λ)

where

true false ⊥
¬ false true ⊥

and

∧ true false ⊥
true true false ⊥
false false false ⊥
⊥ ⊥ ⊥ ⊥

In case the join condition c evaluates to true, the pro-
cess P is executed. In case the join condition c is
false, the process P is skipped. In addition to skip-
ping P , dead-path-elimination (DPE) [30] is triggered
in that case. It sets all the outgoing links of process P

to false. This is done to eliminate processes that will
never be executed. For example, consider the process
false ⇒ ` ↑ true.0 ‖ ` ⇒ P . Process P will never be
executed. DPE “garbage collects” this process. For a
detailed study of DPE we refer the reader to [8]. In
both rules a τ -transition is used, since the evaluation
of a join condition and the execution of DPE are both
internal actions.

(flow) In the process P1 ‖ P2, the transitions of the processes
P1 and P2 are interleaved.

(pick) The pick construct performs a choice. This choice
is dictated by the environment. The process that is
capable of interacting with the environment is cho-
sen. If both processes are capable of such interac-
tion then the choice is nondeterministic. The process
that is not chosen is simply discarded. Furthermore,
DPE sets all of the outgoing links of the discarded
process to false. Consider, for example, the process
(a1.0 + a2.` ↑ true.0) ‖ ` ⇒ P . If this process interacts
with the environment through basic activity a1 then
process P will never be executed. In that case, DPE
“garbage collects” process P .
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Let us look at an example. Consider a1.`1 ↑ true.0 ‖ a2.`2 ↑
true.0 ‖ `1 ∧ `2 ⇒ a3.0. According to axiom (act), state
〈a1.`1 ↑ true.0, λ〉 can make a transition labelled a1 to state
〈`1 ↑ true.0, λ〉. Applying rule (flow`) twice, we can con-
clude that state 〈a1.`1 ↑ true.0 ‖ a2.`2 ↑ true.0 ‖ `1 ∧ `2 ⇒
a3.0, λ〉 can make a transition labelled a1. The resulting
state is 〈`1 ↑ true.0 ‖ a2.`2 ↑ true.0 ‖ `1 ∧ `2 ⇒ a3.0, λ〉.
Subsequent transitions can be proved similarly. For exam-
ple, we can prove the following sequence of transitions.

〈a1.`1 ↑ true.0 ‖ a2.`2 ↑ true.0 ‖ `1 ∧ `2 ⇒ a3.0, λ〉
a1−−→ 〈`1 ↑ true.0 ‖ a2.`2 ↑ true.0 ‖ `1 ∧ `2 ⇒ a3.0, λ〉
a2−−→ 〈`1 ↑ true.0 ‖ `2 ↑ true.0 ‖ `1 ∧ `2 ⇒ a3.0, λ〉
τ

−→ 〈0 ‖ `2 ↑ true.0 ‖ `1 ∧ `2 ⇒ a3.0, λ{`1 7→ true}〉
τ

−→ 〈0 ‖ 0 ‖ `1 ∧ `2 ⇒ a3.0, λ{{`1, `2} 7→ true}〉
τ

−→ 〈0 ‖ 0 ‖ a3.0, λ{{`1, `2} 7→ true}〉
a3−−→ 〈0 ‖ 0 ‖ 0, λ{{`1, `2} 7→ true}〉

All possible transition sequences are combined into the fol-
lowing diagram.

·
a1

����
��

��
�

a2

��
>>

>>
>>

>

·

τ

����
��

��
�

a2

��
>>

>>
>>

> ·
a1

����
��

��
�

τ

��
>>

>>
>>

>

·
a2

��
>>

>>
>>

> ·

τ

����
��

��
�

τ

��
>>

>>
>>

> ·
a1

����
��

��
�

·

τ

��
>>

>>
>>

> ·

τ

����
��

��
�

·

τ

��
·

a3

��
·

Note that basic activity a3 can only be performed after the
basic activities a1 and a2 have both been executed.

Next, we show that if a process can be typed, then all pro-
cesses reachable from that process by means of a transition
can be typed as well. This property is known as subject
reduction.

Proposition 6. If P : (I, O) and 〈P, λ〉
α

−→ 〈P ′, λ′〉 then

P : (I ′, O′) for some I ′ ⊆ I and O′ ⊆ O.

Proof. By induction on the proof of 〈P, λ〉
α

−→ 〈P ′, λ′〉.

Bisimilarity is one of the key behavioural equivalence rela-
tions on the states of a labelled transition system. In our
setting, it amounts to the following.

Definition 7. A relation R ⊆ (P×Λ)× (P×Λ) is a bisim-
ulation if for all (〈P1, λ1〉, 〈P2, λ2〉) ∈ R,

• if 〈P1, λ1〉
α

−→ 〈P ′

1, λ
′

1〉 then 〈P2, λ2〉
α

−→ 〈P ′

2, λ
′

2〉 for
some 〈P ′

2, λ
′

2〉 such that (〈P ′

1, λ
′

1〉, 〈P
′

2, λ
′

2〉) ∈ R.

• if 〈P2, λ2〉
α

−→ 〈P ′

2, λ
′

2〉 then 〈P1, λ1〉
α

−→ 〈P ′

1, λ
′

1〉 for
some 〈P ′

1, λ
′

1〉 such that (〈P ′

1, λ
′

1〉, 〈P
′

2, λ
′

2〉) ∈ R.

States 〈P1, λ1〉 and 〈P2, λ2〉 are bisimilar, denoted 〈P1, λ1〉 ∼
〈P2, λ2〉, if (〈P1, λ1〉, 〈P2, λ2〉) ∈ R for some bisimulation
R. Processes P1 and P2 are bisimilar, denoted P1 ∼ P2, if
〈P1, λ〉 and 〈P2, λ〉 are bisimilar for all λ ∈ Λ.

If λ1 and λ2 agree on the values of the links that are used
as incoming links in process P , then the states 〈P, λ1〉 and
〈P, λ2〉 are bisimilar. The restriction of λ to I we denote by
λ � I.

Proposition 8. If P : (I, O) and λ1 � I = λ2 � I then

〈P, λ1〉 ∼ 〈P, λ2〉.

Proof. It suffices to show that

R = { (〈P, λ1〉, 〈P, λ2〉) | P : (I, O) ∧ λ1 � I = λ2 � I }

is a bisimulation. First, we can prove that if 〈P, λ〉
α

−→
〈P ′, λ′〉, P : (I, O) and P ′ : (I ′, O′), then λ � (L \ O) ∪ O′ =
λ′ � (L\O)∪O′. This can be shown by transition induction.

Second, we can prove that if 〈P, λ1〉
α

−→ 〈P ′, λ′

1〉, P : (I, O),

P ′ : (I ′, O′), and λ1 � I = λ2 � I, then 〈P, λ2〉
α

−→ 〈P ′, λ′

2〉
for some λ2 such that λ′

1 � I ′ ∪ (O \O′) = λ′

2 � I ′ ∪ (O \O′).
Also this second property can be proved by transition induc-
tion, exploiting the first property for the rules (flow`) and
(flowr). From this second property we can immediately
conclude that R is a bisimulation.

As a consequence, to check if processes P1 and P2 with types
(I1, O1) and (I2, O2) are bisimilar, we only need to check
〈P1, λ〉 ∼ 〈P2, λ〉 for all λ ∈ Λ with λ(`) =⊥ for all ` 6∈ I1∪I2.

Next, we show that bisimilarity is a congruence.

Proposition 9. If P1 ∼ P ′

1 then α.P1 ∼ α.P ′

1, ` ↑ b.P1 ∼
` ↑ b.P ′

1, c ⇒ P1 ∼ c ⇒ P ′

1, P1 ‖ P2 ∼ P ′

1 ‖ P2 and

P1 + P2 ∼ P ′

1 + P2.

Proof. The proof of this proposition is a straightforward
modification of the proof that bisimilarity is a congruence
in CCS as shown in, for example, [35, Proposition 4.10]. For
example, one can show that

{ (〈P1 ‖ P2, λ〉, 〈P
′

1 ‖ P2, λ
′〉) | 〈P1, λ〉 ∼ 〈P ′

1, λ
′〉 }

is a bisimulation.

As a consequence, we can reason about bisimilarity in a
compositional way. For example, consider that process P2
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can be obtained from process P1 by replacing the subprocess
Q1 of P1 with Q2. If Q1 and Q2 are bisimilar then we can
conclude from the above proposition that P1 and P2 are
bisimilar as well.

For the definition of observational equivalence, another key
behavioural equivalence relation on the states of a labelled
transition system, we refer the reader to [34]. Properties
similar to the ones formulated in Proposition 8 and 9 can
be proved for observational equivalence.

4. EXAMPLES
Below, we present some toy examples illustrating how the
CWB, modified to support the BPE-calculus, can be ex-
ploited to verify BPE-processes. We also briefly discuss a
more realistic example. For more details, we refer the reader
to [27].

4.1 Model Checking
Recall that the goal of model checking is the determine if
a process satisfies a property. Consider, for example, the
process `3 ⇒ a1.`1 ↑ true.0 ‖ `1 ⇒ a2.`2 ↑ true.0 ‖ `2 ⇒
a3.`3 ↑ true.0 ‖ a4.0 ‖ a5.0 ‖ a6.0. Since deadlock freedom
can be expressed in terms of a formula of the µ-calculus and
the CWB supports model checking of µ-calculus formulae,
we can use the CWB to check if the above process is free
of deadlock. It will not come as a surprise that the above
process does not satisfy this property. The CWB reports
this.

Alternatively, we can also press the “find deadlock” button
on the graphical user interface of the CWB. Since a deadlock
is found, as shown below, CWB’s simulator is invoked.

This simulator allows us to trace a sequence of transitions
from the initial state to the one that causes a deadlock. In
the picture below, we have only traced one transition. That
is, state 2 is the current state and state 3 is the next state.

Besides checking for deadlock, we can verify other interest-
ing properties as well. Some examples will be presented in
Section 4.4.

4.2 Preorder Checking
To verify that an implementation satisfies its specification
we can exploit preorder checking. Consider, for example,
the process (receive.τ.`1 ↑ true.0 + receive.τ.`2 ↑ true.0) ‖
`1 ∨ `2 ⇒ reply.0. In this process, the τ ’s may be invoca-
tions of web services. To check that this process satisfies
the specification captured by the process receive.reply.0 we
can exploit the CWB. The CWB reports that the specifica-
tion (process) and its implementation (process) are related
according to both the may testing preorder and the must
testing preorder.

4.3 Equivalence Checking
Recall that equivalence checking can be exploited to identify
states that are behaviourally equivalent which may result in
a system with a smaller state space. For example, consider
the process (receive.τ.`1 ↑ true.0 + receive.τ.`2 ↑ true.0) ‖
`1 ∨ `2 ⇒ reply.0. Its transitions can be depicted as follows.

·
receive

zztttttt receive

$$JJJJJJ

·
τ

��

·
τ

��
·

τ
��

·
τ

��
·

τ
��

·
τ

��
·

reply
��

·
reply

��
· ·

The system has 11 states. However, the process is observa-
tionally equivalent to the process receive.reply.0. This sys-
tem has only 3 states. The CWB reports that the processes
are observationally equivalent. The CWB also tells us that
the processes are not bisimilar. Furthermore, in that case
the CWB also provides a property, formulated in terms of
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the µ-calculus, that is satisfied by one of the processes but
not by the other process, as shown below.

Alternatively, we can also press the “minimize” button on
the graphical user interface of the CWB. We can minimize
the process either with respect to observational equivalence
or bisimilarity.

4.4 Book Ordering
Next, we consider the book ordering process described by
Van der Aalst in [2]. We have modelled this business pro-
cess in our BPE-calculus and we have verified it using the
CWB. Below, we present a simplified version of this business
process.

The process starts when an order is received from the cus-
tomer. This basic activity is denoted a1. The order is pro-
cessed by checking if the book is in stock (activity a2) and by
calculating the price of the order (activity a3) concurrently.
Either the book is in stock (activity a5) in which case it
can be shipped (activity a6) or the book is not in stock (ac-
tivity a4) in which case an attempt is made to re-stock. If
the attempt is successful (activity a9) then the book can be
shipped. Otherwise the customer is notified that the order
cannot be completed (activity a8). The bill is sent (activ-
ity a7) only once the book has been shipped and the price
has been calculated. The process then waits to receive a
payment from the customer (activity a10).

a1

��

a2

��

a3

��
a4 + a5

// a6
<<

yy
yy

yy
yy

y
// a7

��
a8 + a9

��

)
)
)
)
)
)

a10

In the above diagram, the dotted box denotes a flow. The
dotted arrows denote prefixing. The solid arrows denote
links. All transition conditions are true. Those activities

that have incoming links have a join condition. Its join
condition is the disjunction of the incoming links.

Using the CWB, we can verify that the above process is
free of deadlock. We can also check that it is possible to
ship the book after replenishing stock. Furthermore, we can
verify that at some point after the order has been received
the stock is checked. All these properties can be expressed
in the µ-calculus. We refer the reader to [27] for more de-
tails. Using a richer calculus, the above specification can be
refined. For this more detailed process, several other inter-
esting properties can be checked as described in [27].

5. CONCLUSION
Let us first summarize our contributions. We introduced
a new calculus, named the BPE-calculus, that contains the
main control flow constructs of BPEL4WS. We modelled our
BPE-calculus by means of a structural operational seman-
tics. The syntax and semantics of the BPE-calculus were
used as input of the PAC to produce modules for the CWB
to support the BPE-calculus. The modified CWB provides
us with a powerful verification tool for BPE-processes.

5.1 Related Work
In the literature, a number of calculi to model business pro-
cesses have been proposed. For example, in [10], Chessell et
al. introduce the business process modelling language StAC.
This language shows similarities with our BPE-calculus. The
focus of StAC is on compensation handlers, an ingredient
of BPEL4WS that is not considered in the BPE-calculus.
Chessell et al. do not provide a formal semantics for StAC.
The πt-calculus of Bocchi, Laneve and Zavattaro [7] is an-
other calculus that includes compensation handlers. The
πt-calculus is modelled by means of a reduction semantics,
an approach closely related to the structural operational ap-
proach taken in this paper. In [41], Piccinelli and Williams
present the calculus DySCo for business processes that is
similar to CCS. They model DySCo by means of a struc-
tural operational semantics. In contrast to this paper, the
above mentioned papers consider neither advanced synchro-
nization patterns like DPE, nor verification.

One can distinguish three different approaches to verify pro-
grams. One can translate a program into the input language
of an existing verification tool, one can develop a new tool
that can handle the program directly, or one can use a com-
bination these two approaches. For a discussion of the ad-
vantages and the disadvantages we refer the reader to, for
example, [45]. Next, we discuss verification tools for web ser-
vice orchestration that are closely related to ours. All use
the first approach whereas we exploit the third approach.

In [43], Schroeder presents a translation of business pro-
cesses into CCS. Subsequently, the CWB can be used for
verification. The business process language that is studied
in that paper is considerably simpler than our BPE-calculus.
It is not clear to us if this approach is also applicable to
BPEL4WS. In particular, it is not clear how to capture DPE
in CCS (it can be done though, since CCS is Turing com-
plete).

Nakajima [37] describes how to use the SPIN model checker
[23] to verify web service orchestration. The language used
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to compose web services is the Web Services Flow Language
(WSFL) [29] which is one of BPEL4WS’s predecessors. In
order to do the verification using SPIN, business processes
are first translated into Promela, the specification language
provided by SPIN. SPIN only provides model checking and
not preorder checking or equivalence checking.

In [26], Koehler, Kumaran and Tirenni model business pro-
cesses as nondeterministic automata with state variables and
transition guards. These automata are subsequently trans-
lated into the input language of the model checker NuSMV
[12]. Koehler et al. show how NuSMV can be exploited to
detect termination of business processes.

A similar approach is taken by Karamanolis, Giannakopou-
lou, Magee and Wheater in [25]. They translate business
processes into FSP-processes and use the LTSA toolkit [31]
for model checking. The LTSA toolkit allows the user to
specify properties in terms of deterministic FSP-processes.
In [19], Foster, Uchitel, Magee and Kramer describe a BPEL-
4WS plug-in for the LTSA toolkit. They translate BPEL-
4WS program into FSP-processes and subsequently use the
LTSA toolkit to verify the FSP-processes. The LTSA toolkit
only supports model checking. The set of properties that can
be expressed as deterministic FSP-processes is smaller than
the set of properties that can be captured by the µ-calculus.

In our study, we used a labelled transition system to model
the BPE-calculus. Petri nets provide an alternative ap-
proach to model business processes. For an overview of
modelling business processes by means of Petri nets we refer
the reader to, for example, [3]. These Petri nets can also be
used as a basis to develop verification tools. For examples,
we refer the reader to, for example, the work of Van der
Aalst [1], Martens [32], and Narayanan and McIlraith [38].
We believe that labelled transition systems are superior to
Petri nets when it comes to modelling BPEL4WS, since, as
also pointed out by Van der Aalst and Ter Hofstede in [4],
advanced synchronization patterns like DPE cannot easily
be captured by means of Petri nets (although it can be done,
as shown by Martens [32]).

5.2 Future Work
We have already developed a tool that translates a BPEL-
4WS program into a BPE-process. Using this tool, we have
applied model checking, preorder checking and equivalence
checking to a number of BPEL4WS programs. We were
pleasantly surprised by the size of the labelled transition sys-
tems corresponding to BPE-processes that model BPEL4WS
programs. For instance, using our tool we translated a re-
alistic travel booking BPEL4WS program into the BPE-
calculus. The so-obtained BPE-process gives rise to a la-
belled transition system with only 59 states. To put this
in perspective, the CWB can handle labelled transition sys-
tems with millions of states. (It is not difficult to come up
with a BPE-process the labelled transition of which consists
of millions of states, but we have not encountered such BPE-
processes in practice.) As a consequence, we are confident
that BPEL4WS programs can be modelled in much more
detail while still being verifiable by means of the CWB.

We are interested to extend the BPE-calculus so that it cov-
ers even more of BPEL4WS. Initially, we plan to tackle com-

pensation handlers and fault handlers. Here, we can build
on the work on compensation handlers of Bocchi, Laneve
and Zavattaro [7] and Chessell et al. [10]. Next, we plan to
incorporate time into our model. In this case, we can exploit
the work of Bhat, Cleaveland and Lüttgen [6]. Finally, we
plan introduce some data into our BPE-calculus. Here we
can fruitfully exploit predicate abstraction, as first proposed
by Graf and Saidi [22].

We are also interested to extend our calculus to model and
verify multiple interacting BPEL4WS programs. Fu, Bultan
and Su have addressed this problem in [20]. They trans-
late BPEL4WS programs into guarded automata. These
automata are subsequently translated into Promela and can
be verified using the SPIN model checker. We plan to tackle
this problem using the CWB.

These extensions would allow us to model web service or-
chestration described in BPEL4WS more accurately and it
would form the basis of an even more powerful tool for the
verification of web service orchestration.
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