
QoS Aggregation for Web Service Composition
using Workflow Patterns

Michael C. Jaeger, Gregor Rojec-Goldmann, and Gero Muehl
Technische Universität Berlin

FG Intelligent Distributed Systems

Einsteinufer 17, Sek. EN-6

10587 Berlin, Germany

{mcj,gr,gmuehl}@ivs.tu-berlin.de

Abstract

Contributions in the field of Web services have identi-
fied that(a) finding matches between semantic descriptions
of advertised and requested services and(b) non-functional
characteristics – the Quality of Service (QoS) – are the most
crucial criteria for composition of Web services. In this
work a mechanism is introduced that determines the QoS
of a Web service composition by aggregating the QoS di-
mensions of the individual services. This allows to verify
whether a set of services selected for composition satisfies
the QoS requirements for the whole composition. The ag-
gregation performed builds upon abstract composition pat-
terns, which represent basic structural elements of a com-
position, like sequence, loop, or parallel execution.

This work focusses on workflow management environ-
ments. This paper defines composition patterns that are de-
rived from Van der Aalst’s et al. comprehensive collection of
Workflow Patterns. The resulting aggregation schema sup-
ports the same structural elements as found in workflows.
Furthermore, the aggregation of serveral QoS dimensions
is discussed.

1 Introduction

Using today’s workflow management systems, services
and components are manually integrated into a workflow.
We can assume that the technical challenges of service in-
tegration in terms of compatibility and adaptation are al-
ready solved. The next emerging area in this domain is the
automated integration of services enriched with approaches
from the Semantic Web [15]. Thus, a higher level of inter-
operability must be ensured, so that software-systems can
operate with the highest degree of autonomy possible. To
realise a higher level of automation, it is not only suffi-

cient to interpret the semantics of the integrated services or
find matching for required interface signatures but also to
take their Quality of Service (QoS) properties into account
for aggregation. The interoperation of distributed software-
systems is always affected by failures, dynamic changes, the
availability of resources and others. These effects are non-
functional aspects and caused by the nature of distributed
software-systems [19]. A service that does not provide an
acceptable QoS might be as useless as a service not provid-
ing the desired functional results.

For this work we focus on the composition of services
with QoS properties, which is similar to integration process
in workflow management systems. The goal of a compo-
sition is to have a collection of network resident services,
whose functionality can be automatically discovered and in-
tegrated into applications. The common point of service
composition and workflow management is that both pre-
sume the existence of a central peer, which is mediating the
execution [12]. But there are also several differences, such
as:

Variety For a composition description, more than one ser-
vice may be available. They may vary in their func-
tional and non-functional characteristics. Thus, a com-
position environment should be able to identify the
best match by relevant criteria [22].

Dynamic Binding Assuming that most services for com-
position are based on Web Services technologies, they
can be discovered and bound dynamically. That allows
a composition environment to replace or even find ser-
vices for the composition at runtime. But this flexibil-
ity needs to perform replacements or bindings safely
with still ensuring the characteristics of the composi-
tion.

Only Web Services Contrary to existing workflow envi-
ronments, the composition of Web Services does not

1

involve human-to-computer activities [4], but is ori-
ented more to a messaging behaviour between the in-
volved services.

Our approach is to apply the composition of services in
the workflow domain for automated integration. In order to
enable the selection of services and to leverage the advan-
tages of the dynamic binding, the composition process must
also take the QoS into account. We propose a mechanism
to determine the QoS in a composition by using a generic
workflow model as a basis for the algorithmic aggregation
of local QoS dimensions.

The paper is organised as follows: in the first part, we
discuss the patterns of workflow descriptions and workflow
management systems. Then we will present how we derive
a set of new patterns, which can be applied for composi-
tions of Web services. Based on this, we explain, how the
aggregation can be performed. Additionally, we define the
aggregation for some QoS dimensions, like execution time
or the cost of a service. The paper ends with a discussion
about the related work and our conclusions.

2 Motivation

In a workflow management environment, a modeller will
create an abstract workflow description, which is used for
the identification and the integration of available services
into the workflow. For the case that a workflow consists
only of services, the result of the integration process can be
seen as a composition of services. Adding the support for
QoS in a composition could serve two purposes:

Variety Services must be selected referring to the global
QoS requirements of the composition. Thus, local QoS
values of available services must be aggregated to a
global result.

Dynamic Binding When replacing, adding, or modifying
a service in a composition, the global characteristic of
the composition must be still ensured by the QoS re-
quirements. Thus, an aggregation mechanism must de-
termine the QoS of the composition after a local QoS
has changed.

The Reference Model of the Workflow Management
Coalition distinguishes functions of a workflow manage-
ment system betweenbuild time - and run time func-
tions [11]. According to this model, addressing the selec-
tion of services is a build-time functionality and supporting
the dynamic binding is a run-time functionality.

3 Approach

Since the composition of Web Services is a relatively
new field, different languages for the description of com-

positions are currently evolving. But rather than choosing
a particular language we have defined an abstract model,
which can be applied to different composition descriptions.
This approach has following advantages:

• It is likely that the current specifications of the differ-
ent languages may become revised. In this case an ab-
stract model could be easier adapted to the changes.

• The currently proposed languages or the organisations
behind them are currently in competition. The result
could be that a certain language might become an in-
dustry leader or that some might disappear.

Our approach identifies abstract composition patterns,
which represent basic structural elements of a composition,
like a sequence, a loop, or a parallel execution. The patterns
are used to model the structure of a composition. Since the
motivation for this work is to use the composition of Web
Services in the workflow domain, the composition patterns
are based on structural elements as used in workflow de-
scriptions.

Our proposal is to define the aggregation of QoS for
each pattern and each type of QoS dimension. Using an
hierarchical approach, the aggregated QoS dimensions for
each composition pattern can be aggregated in order to pro-
vide QoS dimensions for the whole composition. For each
combination of composition patterns and QoS dimensions
one aggregation definition must exist. We have found some
classification approaches for QoS dimensions as presented
in QML [9], which is a language for the description of
QoS using XML. In such languages QoS dimensions can
be qualified by characteristics like direction, definition, or
value type. But there are several reasons why such a classi-
fication is not beneficial for the aggregation:

• A general differentiation between increasing or de-
creasing directions for QoS dimensions exists. How-
ever, the definition of aggregation for one dimension is
very different for either relative or absolute numerical
values.

• QoS dimensions might have a direction but are dis-
crete, so another aggregation mechanism might be nec-
essary than with continuos dimensions.

• QoS dimensions might refer to a statistical definition -
like variance, or the mean - so therefore in some par-
allel composition arrangements, a quite specific aggre-
gation definition for each is needed.

• Some QoS dimensions are not numerical values, which
can be mathematically aggregated. Another - i.e. rule-
based - aggregation definition might be needed.

• The definition of QoS dimensions may vary depend-
ing on the environment. Thus, a classification of QoS
dimensions for generalisation cannot be applied.

4 Aggregation

Since our basic use case is the composition of Web Ser-
vices based on flow descriptions, we build on the existing
work about workflow patterns of Aalst et al [21]. In the fol-
lowing we explain why we have chosen the approach based
on workflow patterns and how we have derived our compo-
sition model from this work.

4.1 Workflow Patterns

The proposed workflow patterns were created to define
a set of requirements for workflow management systems.
They mainly describe their capability of executing different
workflow structures and their behaviour. The advantage of
these patterns lies in the ability to compare workflow man-
agement systems by their functional rather by their non-
functional aspects (like platform requirements). Choosing
the workflow patterns for our composition model has the
following reasons:

• The workflow patterns were designed to provide an
uniform approach for the comparison of workflow
management systems and their flow definition lan-
guages. Thus, the patterns can be regarded as a com-
prehensive description about the characteristics of a
workflow.

• Since the workflow patterns were published first in the
year 2000, the work about the workflow patterns can
be regarded as mature [2]. According to own state-
ments in [21] some vendors of workflow management
systems (e.g. COSA, FLOWer, or Staffware) refer al-
ready to the work about the workflow patterns.

• The existing flow languages for the composition of
Web Services are based on a similar approach like
modelling languages for workflows. Thus, a compar-
ison of these languages based on the workflow pat-
terns exists already [20]. This work also points out
the strong relation between workflow management and
service compostion.

In Table 1 we summarised the described workflow pat-
terns. We have also identified the relevant patterns for the
composition scenario. In our work only patters are rele-
vant that address the structure of a workflow in the process
modelling phase. For example, the patternCancel Casede-
scribes an execution pattern of a workflow management sys-
tem and is therefore not relevant for the composition pro-
cess. The identification for some patters is trivial (e.g. for

thesequence). However other patterns require some discus-
sion about the relevance for composition:

Multi Merge: This pattern describes a specific join oper-
ation of parallel executions in a workflow arriving at
the joining point. At this point for each workflow ex-
ecution arriving in parallel one following workflow is
being executed. Since this feature can be implemented
with just keeping different executions in parallel with-
out synchronisation, these patterns can be represented
by using AND split and an AND join operations for
the aggregation.

Implicit Termination: The implicit termination pattern
means that an engine is capable to terminate the flow,
if no processable data is available anymore. Since the
fact, whether an end is explicitly stated or ends implic-
itly, does not have an impact on the aggregation of QoS
properties, this pattern is not taken into account.

Deferred Choice: The difference between a deferred
choice in workflow context and the XOR split is that
in the deferred choice the split is performed based on
external input while the standard XOR split relies on
information being part of the workflow. In the descrip-
tion about the workflow patterns, the deferred choice is
referenced as a ”state based pattern”, thus not regarded
for having an impact on the modelling phase.

Patterns Involving Multiple Instances: This set of pat-
terns generally targets the run time abilities of a work-
flow management system. Therefore in the modelling
phase each workflow or each composition can be seen
as one unit for property aggregation. If at design time
the number of instances is already known, this results
in a parallel split (for patterns 12 and 13) with an open
end. If the number of instances is determined during
runtime (referring to patterns 14 and 15) the handling
of QoS properties must be processed by the run-time
environment of the composition and therefore is not
taken into account in the modelling process.

Milestone: This pattern has got an impact on the execu-
tion on the workflow and is also taken into account
for modelling the workflows. However, in the case
of service composition we do not regards this pattern
as being substantial. Furthermore this pattern is also
not supported by any of the flow languages analysed
in [20].

Cancellation Patterns: The cancellation patterns describe
the ability of workflow management systems to cancel
the execution of a workflow. Since this work targets
the modelling phase of a workflow/composition, these
patterns are regarded as not important for the compo-
sition model.

No. Workflow Pattern Synonym(s) Rel. Abstraction

Basic Control Flow Patterns
1 Sequence Sequential routing Y Sequence
2 Parallel Split AND-split Y AND Split
3 Synchronisation AND-join Y AND Join
4 Exclusive Choice XOR-split Y XOR Split
5 Simple Merge XOR-join Y XOR Join

Advanced Branching and Synchronisation Patterns
6 Multi-choice OR-split Y OR Split
7 Synchronising Merge Synchronising join Y OR Join
8 Multi-merge Y AND Split

with AND Join
9 Discriminator m-out-of-n, partial join Y m-out-of-n

Structural Patterns
10 Arbitrary Cycles Loop, iteration, cycle Y Loop
11 Implicit Termination Nothing to do anymore N

Patterns involving Multiple Instances
12 M.I. Without Y AND Split

Synchronisation with AND Join
13 M.I. With a Priori Y represented by

Design Time Knowledge patterns 2-9
14 M.I. With a Priori N

Runtime Knowledge
15 M.I. Without a Priori N

Runtime Knowledge

State-based Patterns
16 Deferred Choice External choice, Y XOR Split

deferred XOR-split
17 Interleaved Parallel Routing Unordered sequence Y Sequence
18 Milestone Test arc, state condition, N

withdraw message

Cancellation Patterns
19 Cancel Activity Withdraw activity N
20 Cancel Case Withdraw case N

Table 1. Workflow Patterns and their Relevance for Composition Patterns

Based on this analysis we have identified three relevant
sequential composition patterns: the trivial sequence, an un-
ordered sequence, and a loop. For the parallel case we have
identified different parallel split and join operations, which
can be summarised mainly in parallel AND, OR, and XOR
split and join operations. We will discuss the concrete com-
positions patterns in the next section.

4.2 Composition Patterns

Based on the analysis of the patterns in the previous sec-
tion, we can derive a composition model, which is the basis
for the aggregation of QoS properties. To ensure that the
aggregation results in relevant statements about the com-
position, our composition model is based on the following
assumptions:

Independence: It is assumed that the services for a com-
position are not dependent on each other in their ex-
ecution. This assumption presumes that the result or
the execution of one service does not change the QoS
definitions of other services.

Trust: For the aggregation of properties we assume that the
given properties of a service are correct. We think that
trusting the correctness of properties is a conception-
ally separate issue from the algorithmic aggregation.

Uniformity: For the aggregation we assume the uniformity
of the properties. This means that values refer to the
same definition. For example we assume that a prop-
erty describing the execution time is generally given
in milliseconds, seconds, or minutes and it is assumed
that all given values are generated by the same defini-
tion.

Equipartition: In the parallel case we assume for the ag-
gregation of services an equal probability for each ser-
vice in join and split cases. For example if in the case
of an XOR split a service needs to be chosen among a
number of services we assume all services have equal
probabilities. Taking probabilities into account can be
seen as an extension to the composition model.

In figure 1 the composition patterns are graphically
shown. In the composition model two sequential patterns
are defined:

• A simple sequence of service executions. The work-
flow pattern ”arbitrary sequence” is also covered by
this composition pattern, because it is assumed, that
the successful execution of a service is independent
form the execution of other services.(CP1)

• A loop where the execution of a service or a compo-
sition of services is repeated for a certain amount of
time. (CP2)

For the parallel patterns we cannot only re-use the rele-
vant workflow patterns, because for the algorithmic aggre-
gation of values not only the split condition but also the join
condition is relevant. For example, shall the mean execu-
tion time be subject for aggregation. If a flow splits into a
number of parallel flows, two join structures could be pos-
sible: (a) joining with synchronisation of all parallel flows
or (b) joining with synchronisation of one flow (workflow
pattern ”discriminator”). In case(a) the mean execution
time would be the mean execution time of the greatest value
(the slowest), and in case(b) the mean execution time is the
mean of the given values (because of the assumption, that
the discriminator will choose among the arriving services
with an equal probability). The discriminator pattern de-
notes that after the synchronising flow has arrived the other
flows are ignored.

There is also another reason for combining different split
and join patterns: In the next section we will describe an ag-
gregation scheme, which is basically realised with a back-
tracking algorithm, which requires a hierarchical structure
of the composition. Therefore we need to divide the compo-
sition into independent atomic structures. It is thus obvious
that various combinations between split and join operations
are possible. However, only some of them match. For ex-
ample an XOR split cannot occur in combination with an
AND join. We have identified the following relevant com-
position patterns for the parallel case:

• XOR split followed by a XOR join. (CP3)

• AND split followed by an AND join (CP4)

• AND split followed by a m-out-of-n join (discrimina-
tor). (CP5)

• OR split followed by OR join. (CP6)

• OR split followed by a m-out-of-n join (discriminator).
(CP7)

The result is now a composition model based on patterns,
which are derived from the workflow patterns identified in
languages for Web Service composition. From now on a de-
scription in BPEL4WS for example can be transferred into
this model, which is the basis for the aggregation. In the
following section we explain how this aggregation is per-
formed.

4.3 Aggregation Schema

The composition patterns we have proposed anticipate
that the described flow can be represented usingdirected
graphswhich specify the order in which activities are ex-
ecuted. For aggregation, we propose to stepwise collapse

AND
SPLIT

AND
JOIN

(...)

AND
SPLIT

m/n
JOIN

(...)

XOR
SPLIT

XOR
JOIN

(...)

OR
SPLIT

OR
JOIN

(...)

OR
SPLIT

m/n
JOIN

(...)

LOOP

(...)

CP4

CP5

CP3

CP6 CP7

CP1 CP2

Figure 1. Different Patterns of the Composition Model

the graph into a single node by alternately aggregating sim-
ple sequences and parallel service executions (see Figure 2).
This approach enables us to view aggregation in the follow-
ing from amicro-perspective, i.e., not the whole graph is
relevant at once for the aggregation process, but rather only
local composition patternswhich are accordingly differen-
tiated into sequential and parallel service executions.

Applying this procedure, the aggregation can be per-
formed on the basis of each composition pattern. The re-
sult is a composition model that has got the following key
dimensions as explained in [12]:

• It assumes that each peer service has got abound queue
with the length of 1. This conforms to the character-
istic of a flow where a peer is blocking the flow, when
processing the desired message/data.

• The topology ismediator based- contrary to a bro-
kered approach. Furthermore, it is obvious that the
flow has a tree-oriented hierarchy, otherwise we would
not be able to collapse a local composition pattern.

• The composition model can be applied to composi-
tions that consider bothclosed and open environments.
An open system allows the integration of services from
an external environment, and thus depends on the tools
used for composition and organisational constrains of
using external services.

Based on this model the aggregation of numerical QoS
dimensions can now easily be performed. We have sum-
marised the aggregation schemes in tables 2, 3 and 4. The
following notation is used:n is the number of services,k is
the assumed number of repetitions in the loop,xn is a given
value for each service, andN is the set containing allxn.
The variablexa represents the aggregated value.

In this model the loop case is not solved sufficiently, be-
cause it is likely that the number of loops cannot be de-
termined during the design time (because they depend on
conditions that will occur during runtime). For example,
in BPEL4WS the condition of a loop statement is defined
with a bool-expression (thewhile-construct), the proposed
aggregation covers only the case of knowledge about the
number of repetitions at design time. For other scenarios a
different aggregation pattern must be implemented. For the
loop case the model would fit well in monitoring QoS prop-
erties for analysis, but cannot serve as a decision support in
the modelling process.

To address the OR splits, an aggregation model must
know which paths are taken into account for this split.
Keeping the assumption that equal probabilities among all
choices hold, let setT contain all sets of the power-set ofN
that are relevant for the OR split. To determine the upper
and lower bound for QoS values all combinations of pos-
sible splits must be taken into account. This results in the
power-setP(T). To simplify the notation in the tables we
define that for an aggregation operation applied to the ele-

AND
SPLIT

AND
JOIN

(...) (...)

AND
SPLIT

AND
JOIN

(...)

AND
SPLIT

AND
JOIN

AND
SPLIT

AND
JOIN

Figure 2. A Stepwise Graph Transformation.

ments of a power set:

f(P(T)) := f
({

x : x = f(S),∀S ∈ P(T)
})

For example, if the maximum of all values ofT is de-
sired, the maximum operation is first applied to each ele-
ment ofP(T), which is resulting in a new set. For this new
set the maximum operation is applied as well.

Execution Time Applying our scheme to the aggregation
of execution times, a definition for lower and upper
bounds is shown in table 2. In a sequence, the time is
determined by the sum of the values of each involved
service. The definitions for lower an upper bounds are
in a sequential case the same. Because the time is a de-
creasing measure in the sense of QoS, the largest value
in a parallel arrangement of services denotes the worst
case. This case demonstrates that with the same split
operation (AND) it depends on the type of synchronis-
ing join operation, how the minimal execution time is
determined. To determine the minimal execution time
in the AND-AND case, the worst/largest value of all
involved services denotes the overall minimal value.

Cost The cost of a service is a measure for the resources
consumed by a service execution. Therefore, the cost
can be seen as a decreasing dimension, where a lower
value denotes a better service. Table 3 shows the ag-
gregation definitions for the upper and lower bounds
of the cost. Contrary to the execution time, all services
must be taken into account that were started, regardless

whether they are relevant for the synchronising join or
not.

Encryption Level In this discussion it is assumed that the
encryption level is equivalent with the length of a key,
that is used for signing or encrytion. Generally it de-
notes the level of protecting the data and is thus an
increasing dimension. Usually, key lengths are given
in bits. For the aggregation of the encryption level in
sequential patterns the weakest key is only significant.

In the parallel case the encryption level is a non-
functional characteristic, which must be fulfilled by all
significant parallel nodes in the same manner. But we
can assume that if the node does not fulfill a demanded
level of encryption, the execution would be worthless.
Thus, this dimension has got an discrete character and
aggregation based on for example the average of in-
volved services cannot be applied. The aggregation for
the encryption is listed in table 4.

Throughput The throughput of a service denotes the
amount of processable data per time unit. Usually, the
throughput is given inbytes/sec and is interpreted as
an increasing dimension. In a sequence, the node with
the lowest value assigned determines the throughput
for the aggregated property. In a parallel arrangement,
the throughput of each starting node must be consid-
ered, because exceeding the defined throughput could
result in an unsuccessful execution. The aggregation
of throughput is shown in table 4

Uptime Probability The uptime probability denotes the
probability that the execution of the node performs

successfully and is regarded as a decreasing dimen-
sion. For this dimension only the lower bound is rel-
evant, because a maximal uptime probability does not
make sense. The aggregation of the uptime probability
is also shown in table 4.

Especially for this dimension, the assumption that each
serve executes independently from others is relevant.
Otherwise the model must be extended with a spe-
cialised case, that the uptime probability of interrelated
services must be combined.

5 Related Work

There are several contributions addressing the composi-
tion of Web Services. A growing interest can be noticed
in this field, because the composition of Web Services can
enhance the execution of workflows. There are proposals
for languages to describe compositions like BPEL4WS [6],
WSCI [3], XLANG [18], or WSFL [13]. The composition
of Web Services is also an issue for contributions about de-
scribing services with semantic information. As a comple-
mentary approach the semantic description of services can
also be used as a criteria for the selection or dynamic bind-
ing of services as we have introduced using QoS dimen-
sions. The W3C proposes DAML-S (renamed as OWL-
S) [7] as an ontology for service description.

The contributions addressing the composition structures
are not relying on a stringent structural model. A reference
model proposed by Yang et al. [22] doesn’t cover as many
structural cases as we are considering in our model. For
example, their model lacks the cases for a parallel execu-
tion scheme, where either m-out-of-n services are chosen
for execution (so called OR-split) or m-out-of-n services are
required for synchronisation (a so called discriminator). In
his PhD thesis [5], Jorge Cardoso discusses the aggregation
of QoS properties in a workflow for some specific QoS as-
pects like cost or response time. Contrary to our work, the
composition model does not identify general structures, but
analyses some specific application scenarios. So the pro-
posed structures are limited in combination to their applica-
tion case, and the model has also the flaws we discussed for
the model of Yang et al.

An approach from another perspective can be seen with
the introduction ofXL, which is an XML-based program-
ming language for ”the specification of Web Services” [8].
In fact this approach allows to define a composition of Web
Services using a specific programming language. The ad-
vantage of this approach is that a common type system and
data model is used for both, the description of Web Services
and the programming language. One design cornerstone in
their proposal is the separation of declarative elements of
Web Services from the operational expressions. In sum-
mary this work covers a lot of the aspects for which we have

used the workflow patterns instead. However, for our ap-
proach building not onto XL has two main reasons:(a) we
expect a bigger momentum with BPEL4WS or other flow
languages to define Web Service compositions than with
XL. And (b) we believe that we need to orientate our work
to the likely scenarios of the industry application, which is
the application in workflow management systems. Contrary
to the flow languages we think that XL is not focussed on
applications in this field.

Further examples addressing the composition of Web
Services with custom composition patterns and custom ag-
gregation models can be found in the work of Daniel A.
Menasce [14], which also addresses the aggregation of
QOS dimensions, or in [10]. But in summary all the pro-
posed material does not address the composition structure
in the way, that reflects the occurring patterns in workflows.
Therefore in our work the relevant contribution is the defi-
nition of an abstract, workflow-oriented composition model
to aggregate of QoS properties.

Puschner and Schedl [17] also used a graph-based ap-
proached to aggregate the execution times of atomic exe-
cutions units in real-time systems. A work from the field
of real-time based systems has already used a graph-based
approached to aggregate the execution times of atomic exe-
cutions units in real-time systems. They use the same prin-
ciples for the aggregation of execution times of software
units as we do. Besides that their work is remarkable for
the design of real-time systems, our composition model dis-
tinguishes more cases in order to address the workflow pat-
terns.

6 Conclusions

We have presented a composition model that can serve as
a basis for aggregation of service properties for QoS dimen-
sions. The model assumes that for the composition of Web
Services that use common flow languages standard work-
flow patterns apply. Therefore workflow patterns of Aalst
et. al are used to derive the introduced composition patterns
which enable the aggregation of properties. We have mod-
elled a flow description of a Web service composition as a
graph, and we have transformed this graph into a graph of
composition patterns. With this graph of composition pat-
terns we have used a recursive approach to aggregate prop-
erties on the level of identified composition patterns.

The composition model based on common workflow
structures as presented in the workflow patterns delivers a
stringent and clean model for the aggregation, which can be
implemented. The given definitions for aggregating values
according to the composition can be used to extend a tool
for modelling Web service compositions. We see the next
steps in the integration of trust aspects when properties are
retrieved and the integration in a tool for modelling Web ser-

Comp. Pattern Max. Execution Time Min. Execution Time

Sequential Composition Patterns

1 Sequence xa =
Pn

i=1 xi xa =
Pn

i=1 xi

2 Loop xa = kx xa = kx

Parallel Composition Patterns

3 XOR-XOR xa = max{x1, . . . , xn} xa = min{x1, . . . , xn}

4 AND-AND xa = max{x1, . . . , xn} xa = max{x1, . . . , xn}

5 AND-DISC xa = max{x1, . . . , xn} xa = min{x1, . . . , xn}

6 OR-OR xa = max
`
P(T)

´
xa = min

`
P(T)

´
7 OR-DISC xa = max

`
P(T)

´
xa = min

`
P(T)

´

Table 2. Aggregation of Numerical QoS Dimensions: Upper and Lower Bounds of Execution Time

Comp. Pattern Max Cost Min Cost

Sequential Composition Patterns

1 Sequence xa =
Pn

i=1 xi xa =
Pn

i=1 xi

2 Loop xa = kx xa = kx

Parallel Composition Patterns

3 XOR-XOR xa = max{x1, . . . , xn} xa = min{x1, . . . , xn}

4 AND-AND xa =
Pn

i=1 xi xa =
Pn

i=1 xi

5 AND-DISC xa =
Pn

i=1 xi xa =
Pn

i=1 xi

6 OR-OR xa = max
n

z : z =
P
y∈S

y, ∀S ∈ P(T)
o

xa = min
n

z : z =
P
y∈S

y, ∀S ∈ P(T)
o

7 OR-DISC ” ”

Table 3. Aggregation of Numerical QoS Dimensions: Upper and Lower Bounds of Cost

vice compositions. Also, the composition model could be
discussised/extended for the case that one of the mentioned
assumptions does not hold.

For future extensions of our composition model we will
evaluate the contributions of modelling workflows or com-
positions of Web Services with Petri Nets as found in [1]
and [16]) or with other formalisms like using linear tempo-
ral logic as found in [12]. This reference also introduces
a composition framework, which we will address in our
model in section 4.3.

Acknowledgments

The authors wish to thank Kurt Geihs, Andreas Tanner,
Gerhard Koehler and Torben Weis for many fruitful discus-
sions.

References

[1] W.M.P. van der Aalst, K.M. van Hee, and G.J.
Houben. Modelling workflow management systems
with high-level petri nets. In G. De Michelis, C. El-
lis, and G. Memmi, editors,Proceedings of the second
Workshop on Computer-Supported Cooperative Work,
Petri nets and related formalisms, pages 31–50, 1994.

[2] W.M.P. van der Aalst, A.H.M. ter Hofstede, A. Kie-
puszewski, and A.P. Barros. Advanced workflow pat-
terns. In7th International Conference on Coopera-
tive Information Systems (CoopIS 2000), volume 1901
of Lecture Notes in Computer Science, pages 18–29.
Springer-Verlag, Berlin, 2000.

[3] Assaf Arkin et al. Web service choreography
interface (wsci) 1.0. Technical report, W3C,

Description Encrytion Throughput Uptime Probability

Sequential Composition Patterns

1 Sequence xa = min{x1, . . . , xn} xa = min{x1, . . . , xn} xa =
Qn

i=1 xi

2 Loop xa = x xa = x xa = xk

Parallel Composition Patterns

3 XOR-XOR xa = min{x1, . . . , xn} xa = min{x1, . . . , xn} xa = min{x1, . . . , xn}

4 AND-AND xa = min{x1, . . . , xn} xa = min{x1, . . . , xn} xa =
Qn

i=1 xi

5 AND-DISC xa = min{x1, . . . , xn} xa = min{x1, . . . , xn} xa =
Qn

i=1 xi

6 OR-OR xa = min
`
P(T)

´
xa = min

`
P(T)

´
xa = max

n
z : z = 1−

Q
y∈S

(1− y),

∀S ∈ P(T)
o

7 OR-DISC xa = min
`
P(T)

´
xa = min

`
P(T)

´
”

Table 4. Aggregation of Numerical QoS Dimensions: Encryption, Throughput and Uptime Probability

http://www.w3.org/TR/wsci, 2002.

[4] Gregory Alan Bolcer and Gail Kaiser. Swap: Lever-
aging the web to manage workflow. InIEEE Inter-
net Computing, pages 85–88. IEEE, January-February
1999.

[5] Jorge Cardoso.Quality of Service and Semantic Com-
position of Workflows. PhD thesis, Department of
Computer Sceince, Universoty of Georgia, Athens,
GA (USA), 2002.

[6] Satish Tatte (Editor). Business Process Ex-
ecution Language for Web Services Ver-
sion 1.1. Technical report, BEA Systems,
IBM Corp., Microsoft Corp., http://www-
106.ibm.com/developerworks/webservices/library/ws-
bpel/, 2003.

[7] Anupriya Ankolenkar et al. Daml-s: A semantic
markup language for web services. InProceedings of
1st Semantic Web Working Symposium (SWWS’ 01),
pages 441–430, Stanford, USA, August 2001. Stan-
ford University.

[8] Daniela Florescu, Andreas Gruenhagen, and Donald
Kossmann. XL: an XML Programming Language
for Web Service Specification and Composition. In
Proceedings of the eleventh international conference
on World Wide Web, pages 65–76. ACM Press, May
2002.

[9] Svend Frolund and Jari Koistinen. Quality of service
specification in distributed object systems design.Dis-
tributed Systems Engineering Journal, 5(4), Decem-
ber 1998.

[10] Dinesh Ganesarajah and Emil Lupu. Workflow-based
composition of web-services: a business model or a
programming paradigm? InProceedings of Sixth In-
ternational Enterprise Distributed Object Computing
Conference, 2002. EDOC ’02., pages 273–284. IEEE,
September 2002.

[11] David Hollingsworth. The Workflow Reference
Model. Technical Report TC00-1003, Workflow Man-
agement Coalition, 1995.

[12] Richard Hull, Michael Benedikt, Vassilis
Christophides, and Jianwan Su. E-services: A
look behind the curtain. InProceedings of the 22nd
ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS 2003), San
Diego, USA, June 2003. ACM Press.

[13] Frank Leymann. Web services flow languageweb
services flow languageweb services flow lan-
guageweb services flow language. Techni-
cal report, IBM Software Group, http://www-
4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf,
2001.

[14] Daniel A. Menasce. Qos issues in web services.
In IEEE Internet Computing, pages 72–75. IEEE,
November-December 2002.

[15] Eric Miller. Semantic web activ-
ity statement. Technical report, W3C,
http://www.w3.org/2001/sw/Activity, 2003.

[16] Srini Narayanan and Sheila A. McIlraith. Simulation,
verification and automated composition of web ser-
vices. In Proceedings of the eleventh international

conference on World Wide Web, pages 77–88, Hon-
olulu, USA, May 2002. ACM Press.

[17] Peter Puschner and Anton Schedl. Computing maxi-
mum task execution times - a graph-based approach.
Journal of Real-Time Systems, 13(1):67–91, July
1997.

[18] Satish Thatte. Xlang - web services for business pro-
cess design. Technical report, Microsoft Corporation,
http://www.gotdotnet.com/team/xmlwsspecs/xlang-
c/default.htm, 2001.

[19] Andreas Ulrich, Torben Weis, Kurt Geihs, and Chris-
tian Becker. DotQoS - QoS extension for .NET Re-
moting. In K. Jeffay, I. Stoica, and K. Wehrle, ed-
itors, International Workshop on Quality of Service
(IWQoS), pages 363 – 380, Monterey, CA, June 2003.
Springer-Verlag Heidelberg.

[20] W.M.P. van der Aalst. Don’t go with the flow: Web
services composition standards exposed.Jan/Feb
2003 issue of IEEE Intelligent Systems, pages 72–76,
January 2003.

[21] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kie-
puszewski, and A.P. Barros. Workflow patterns.Dis-
tributed and Parallel Databases 14(3), pages 5–51,
2003.

[22] Jian Yang, Mike P-Papazoglou, and Willem-Jan
van den Heuvel. Tackling the challenges of service
composition in e-marketplaces. InProceedings of the
12th International Workshop on Research Issues in
Data Engineering (RIDE ’02), pages 125–133. IEEE,
February 2002.

