
Abstract 

Web Services form a new distributed computing 
paradigm. Collaborative verification and validation 
are important when Web Services from different 
vendors are integrated together to carry out a 
coherent task. This paper presents a new approach to 
verify Web Services by model checking the process 
model of OWL-S (Web Ontology Language for Web 
Services) and to validate them by the test cases 
automatically generated in the model checking 
process. We extend the BLAST, a model checker that 
handles control flow model naturally, to handle the 
concurrency in OWL-S. We also propose enhancement 
in OWL-S and PDDL (Planning Domain Definition 
Language) to facilitate the automated test case 
generation. Experiments on realistic examples are 
provided to illustrate the process. 

1. Introduction 

Web Services (WS) receive significant research 
recently from both academia and industry due to its 
broad applications and flexible architecture supporting 
re-composition and reconfiguration [23, 20]. As the 
complexity of composition increases, verification and 
validation (V&V) of the composite WS become a 
sophisticated task that deserves and has received many 
studies. Two major V&V approaches are automated 
testing [22] and model checking [5, 6, 8]. The main 
benefit of model checking is to provide an exhaustive 
proof-style certificate that the model, if not the 
software itself, satisfies some properties, such as 
safety temporal properties. The violation of the 
properties, e.g., deadlock, may be harmful; hence 
complete elimination is desirable. 

This paper presents an approach in a 
Collaborative Verification and Validation (CV&V) 
framework [24]. If any fault is found during the 
verification phase, the WS will be re-composed. The 
testing part is to validate whether the composite WS 
exhibits the desired properties as guaranteed on the 
model by verification phases and does not exhibits the 
undesired properties. Hence both positive and negative 
tests need to be employed.  

Several existing approaches discussed model 
checking composite WS. These studies adopt different 
models, utilize different model checking approaches, 
or check different types of properties [10, 11, 17, 25]. 
The majority of them adopt BPEL4WS (Business 
Process Execution Language for Web Services) [1] or 
a BPEL-like model to model WS, and utilize SPIN [15] 
or CCS-based (Calculus of Communicating Systems) 
model checker [17], e.g., CWB (CCS Workbench) [9], 
to do the model checking. A common theme of 
existing approaches is that they treat atomic WS as 
black-box. The process-oriented models successfully 
capture the temporal properties among atomic WS. 
However, if the internal structure of each atomic WS 
is blank in the model specification, it is inherently 
hard to describe and check more delicate properties 
involving the effect and output of each atomic WS. 
For example, consider the property that a customer 
must have at least one product in the cart before 
invoking atomic WS checkout. Clearly we cannot 
describe or check the property, unless we know that 
the effect of other atomic WS, such as add-to-cart, 
change the amount of products. Though we can still 
check the temporal property that add-to-cart must 
occur at least once before checkout, this property 
cannot substitute the former one due to the subtle 
difference between them. Formally, we name such 
properties that at location l a variable holds certain 
values as data-bound properties. The problem 
becomes more complicated when the effect is 
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conditional with respect to the effects or the outputs of 
previous atomic WS. Note that pure in-lining 
technique may not be feasible here since a composite 
WS could consist of atomic WS that are proprietary 
from different parties.  

Our model checking technique for composite WS 
is based on the process model of OWL-S (Web 
Ontology Language for Web Services) [3] and the 
model checker BLAST [13]. Each atomic WS is no 
longer a black-box because its behavior is bounded by 
the OWL-S specification. The goal of OWL-S is to 
enable automatic WS discovery, composition, 
invocation, and monitoring. The process model of 
OWL-S is a control flow model. The BLAST was 
designed for handling control flow automata and 
applies directly to C source code. The checkable 
properties of BLAST include the predicate-bound 
properties that at location l a predicate p holds a 
certain truth value. The data-bound properties can be 
translated to predicate-bound properties. Both the 
control flow model and data-bound properties are 
intuitive to software engineers. BLAST also generates 
positive test cases automatically [14].  

Table 1. Expressiveness of OWL-S, BPEL4WS, 
and WSCDL 

 Internal logic 
OWL-S Conditional and unconditional Input, 

Output, Parameter, and Effect (IOPE) 
BPEL4WS N/A 
WSCDL State change and alignment among WS 
 Variable and data 
OWL-S Lack the connection from data to 

predicates 
BPEL4WS Support integral expression (all values 

are integer) 
WSCDL States (only support state transition) 
 Control logic 
OWL-S Sequence / if-then-else / choice one / 

concurrent execution (split + join) / 
unordered / loop (iteration, repeat-while, 
repeat-until) 

BEPL4WS Sequence / switch / while / pick m out of 
n / fault handler / event handler / 
concurrent execution 

WSCDL State transition 
 Exception handling 
OWL-S N/A 
BPEL4WS Fault handler 
WSCDL N/A 

Table 1 compares the expressiveness of OWL-S, 
BPEL4WS, and WSCDL (Web Services 

Choreography Description Language). The 
expressiveness breaks further into four sub criteria:  
internal logic of each atomic WS, variable and data, 
control logic, and exception handling. 

The contribution of this paper include (1) 
applying BLAST to WS and evaluating atomic WS 
while previous approaches treat atomic WS as a black 
box; (2) extension of BLAST to handle concurrency in 
precise OWL-S semantics; (3) extension of OWL-S 
and PDDL (Planning Domain Definition Language) 
[12] to better facilitate both positive and negative test 
case generation. 

This paper is organized as follows. Section 2 
presents the process through an example. Section 3 
elaborates the conversion from OWL-S process model 
to the input of BLAST. Section 4 presents the 
extension of BLAST to handle the concurrency 
semantics in OWL-S. Section 5 discusses how to 
automatically embed to-be-checked properties. Section 
6 studies test case generation and presents some 
experimental data. Section 7 concludes this paper. 

2. The overall process 

This section uses an example to illustrate the 
process of automated model checking and testing on 
OWL-S process model. The process consists of the 
following steps: (1) convert OWL-S model to a C-like 
specification language; (2) embed properties to be 
checked into the specification language; (3) feed the 
specification language into BLAST; (4) model 
checking and positive test case generation; and (5) 
negative test case generation. The process is shown in 
Figure 1.  

 

Figure 1. Automated model checking process 

2.1. Online shopping 

The example is a process model shown in Figure 
2. We avoid the verbose XML (Extensible Markup 
Language) specification here for the sake of clarity. 



Instead, we denote the types of the structural 
constructs on the links among atomic WS.  

As shown in Figure 2, a customer must first login. 
If login succeeds, the customer has a choice to add a 
product to the cart, remove a product from the cart, or 
place an order. After placing an order, the product will 
be shipped to the customer and the customer’s credit 
card will be charged. The split and join means that 
shipping and charging credit card are concurrently 
executed. The repeat-until construct means that the 
user can keep adding or removing products before 
placing the order. 

 

Figure 2. Online shopping WS 

Although the control flow diagram resembles the 
control flow automata for BLAST, translating it to the 
C-like language is not straightforward. The challenges 
are: (1) extract proper Input, Output, Precondition, and 
Effect (IOPE) information from the XML 
specification, without which, certain properties are not 
checkable. For example, we need to know that the 
effect of AddProductToCart to check the data-bound 
property, i.e., when placing an order, there must be at 
least one product in the cart; (2) certain structural 
constructs, such as choice and split + join, are not 
recognizable to BLAST; (3) BLAST cannot handle the 
OWL-S concurrency semantics, such as the 
computation between split and join. 

The IOPE information is encoded as logical 
formulas in OWL-S [3]. Candidate languages for 
logical formulas are PDDL [12] and KIF (Knowledge 
Interchange Format) [2]. The problem with KIF and 
previous versions of PDDL is the lack of capability of 
specifying how variables acquire values. This problem 
is solved by PDDL2.1 with the assign operator. To 
properly support model checking, we utilized 
PDDL2.1. Figure 3 lists the sample specification of 
atomic WS Login, AddProductToCart, and 
RemoveProductFromCart in PDDL2.1. 

   

Figure 3. Sample PDDL 2.1 specification and 
corresponding C-like code 

The names starting with “?” are variables. The 
specification simply says that Login will set the cart to 
empty; AddProductToCart will increase ?item by 1; 
while RemoveProductFromCart will decrease ?item 
by 1. Most structural constructs, except choice and 
split + join, can be translated into C-like code directly. 
For choice, we implement it by a sequence of if-then-
else if-…-else statements.  

There is no corresponding C construct for split + 
join. We thus generate all effective interleaving of 
concurrent execution. In other words, BLAST will 
check two copies of C-like code with both interleaving 
of ShipProduct and ChangeCreditCard. Actually the 
interleaving algorithm is integrated in the BLAST to 
avoid duplicated checking on the same non-concurrent 
part. 

Next we need to embed the to-be-checked 
properties into the C-like code. Essentially, BLAST 
computes a reachability set on statements during 
model checking process. By introducing an ERROR 
statement, all checkable properties can be translated to 
the reachability of certain ERROR statements. 
Suppose we want to check two properties: (1) a data-
bound property, when placing order, there must be at 
least one product in the cart; and (2) a temporal 
property, we must charge the credit card before 
shipping the product. The properties are translated into 
ERROR statement as shown in Figure 4. 

 

Figure 4. Embedding to-be-checked properties 

The inserted code for to-be-checked properties is 
highlighted. Note that we introduce a new variable 
shipped to indicate whether ShipProduct is executed. 
Clearly, property (1) is violated if and only if the first 
ERROR is reached, and analogously to property (2) 
and the second ERROR. Embedding the properties 
and interleaving exploration are two independent steps. 



In reality, embedding happens before interleaving as 
interleaving is integrated with the BLAST model 
checker. We present the different order to reveal the 
ERROR immediately. 

Now we can feed the code into BLAST. For each 
violation, BLAST will return a counterexample. In this 
case, we will have a counterexample: 

Login, RemoveProductFromCart, PlaceOrder, 

which violates property (1), and counterexample 

Login, AddProductToCart, PlaceOrder, ShipProduct, 
ChargeCreditCard, 

which violates property (2). 
If no property is violated, BLAST will generate 

positive test cases. Negative test cases can be 
selectively generated by using the technique presented 
in [24]. Both positive and negative test cases are 
applied to verify the WS.  

3. Convert OWL-S to C-Like code 

This section presents the translation from OWL-S 
process model to the C-like specification language for 
BLAST. The translation is divided into two sub-
problems: converting structural constructs into OWL-
S and converting logical formulas into PDDL2.1. 

3.1. Convert structural constructs 

According to OWL-S 1.1 beta version [3], the 
process model supports the following structural 
constructs: sequence, split, split + join, unordered, 
choice, if-then-else, iterate, repeat-while, and repeat-
until. Most constructs have natural correspondence in 
our C-like language and thus the translation is 
straightforward. Hence we focus on split, split + join, 
choice, and unordered. Some constructs has a 
condition associated with it, such as if-then-else, 
repeat-while, and repeat-until. The conditions are in 
logical formulas, and their translations will be 
discussed in Section 3.2. 

Choice: The choice is significantly scaled down 
to choose one from multiple choices. We implement 
this by introducing a dummy variable, choice_m, and a 
sequence of if-then-else if-else if-…-else that relies on 
choice. The value of variable choice_m is not specified, 
to force BLAST to explore all branches. Formally, 
choosing one from branchi, i ∈ [n], is translated into 
the code listed in Figure 5. The postfix _m is to 
differentiate the different choices. 

Split and split + join: These constructs specify the 
concurrent executions of threads. We translate 
concurrent executions of threadi, i ∈ [n], into the code 
listed in Figure 5. There are two types of threads, 

join_thread and thread. A join_thread indicates that 
after the thread is finished, the control will return to 
the synchronization point specified by the join in 
OWL-S, while thread has no such restriction, which 
correspondents to the loose restriction on 
synchronization of split in OWL-S. Note that OWL-S 
supports partial synchronization, i.e., only “join” some 
threads. Hence it is possible that in the scope of the 
parallel, not all threads are join_thread. The 
interleaving exploration algorithm presented in 
Section 4 will process the code and generate all 
meaningful interleaving. 

   

Figure 5. C-like code for choice, split, and join 

Unordered: Unordered is implemented in the 
same way with split + join to explore all meaningful 
execution orders, as it requires the completion of all 
components. 

3.2. Convert logical formulas 

We assume logical formulas are expressed in 
PDDL2.1 [12]. The assign operator in PDDL2.1 links 
variables to values. We support the Action (and related) 
syntax listed in Appendix 2 in [12], which includes 
arithmetic operators, numeric functions, numeric 
comparison operators, predicates, and conditional 
effects. We do not support the forall and exists in 
PDDL2.1 yet, and they can be added later. The 
conversion of formulas is straightforward though the 
formulas in PDDL2.1 are in pre-order while in C it is 
in in-order.  

4. BLAST for concurrency in OWL-S 

This section presents an enhancement on BLAST 
to check concurrency in OWL-S. BLAST bears 
capability to model checking concurrent threads [14]. 
However, the synchronization semantics in split + join 
is not supported by C grammar, we enhance BLAST 
to directly exhaust every interleaving of the concurrent 
threads that matters. We extend the partial order 
reduction approach traditionally developed for state 
transition system [8] to control flow automata. We 
incorporate the summarizing technique [19] to reduce 



the complexity of the interleaving. The enhancement 
includes 1) single forward pass (without backward 
tracking) algorithm for interleaving exploration; and 2) 
amenable for the NEXT operator in LTL (Linear 
Temporal Logic). 

An atomic WS is a WS whose process is virtually 
transparent, which is the fundamental unit for model 
checking concurrent execution of composite WS. Due 
to the transparency of atomic WS, only the order of 
atomic WS matters during model checking. Let w1 and 
w2 be two atomic WS, W be the set of all atomic WS. 
Let S be the set of global states defined by the 
combination of all parameters except the local 
parameters of atomic WS in W. Define independency 
relation I ⊆ W × W be a binary relation, (w1, w2) ∈ I if 
for any state s, there exists a state s’, such that both the 
ordered execution (w1, w2) and (w2, w1) transit s to s’, 
without violating any properties that consists of 
NEXT operator. The two atomic WS w1 and w2 are 
independent, if (w1, w2) ∈ I. Clearly, the execution 
order of independent atomic WS does not affect the 
model checking, thus we can execute them in any 
order. 

Define RW(•): W → 2P to be the read-write set of 
an atomic WS, where P is the set of all global 
parameters. For a parameter p ∈ P, if p is referenced 
by the IOPEs of a WS w, then p ∈ RW(w). Let N ⊆ P 
× P be a binary relation, such that (p, p’) ∈ N if there 
exists a property to be model checked, the property 
contains NEXT operator, p occurs to one side of the 
NEXT operator, and q occurs to the other side of the 
NEXT operator. The following Lemma presents a 
simple criterion to identify independent atomic WS. 

Lemma 1 Let w1 and w2 be two atomic WS. If RW(w1) 
∩ RW(w2) = ∅, and for any p ∈ RW(w1) and p’ ∈ 
RW(w2), (p, p’) ∉ N, then w1 and w2 are independent. 

The proof is straightforward and hence omitted. 
Note that Lemma 1 takes care of the NEXT operator. 
During model checking, we need only to exhaust all 
the orders among dependent atomic WS. We remark 
that counting all read-write parameters is sufficient but 
sometimes overapproximating. We remark that a fine-
grained read-write, write-read, and write-write 
analysis may further reduce the complexity. 

We incorporate concurrent summarizing 
technique [19] into our analysis. The concurrent 
summarizing technique can be viewed as a precise 
inter-procedural data-flow analysis for concurrent 
threads. It represents the execution of statements 
inside a transaction (atomic WS) by a single state 
transition to reduce the model checking effort when 
the transaction is visited again in the model checking 
process. 

The transaction boundary partitions each thread 
into two parts. Instead of applying summarizing 
technique to the transactions, which is inside the 
atomic WS and cannot help us much in our case, we 
apply summarizing technique to the partition outside 
the transitions, which expands the independency 
relation to B × B, where B is the set of basic blocks of 
atomic WS. Two basic blocks b and b’ are 
independent if for any w ∈ b and w’ ∈ b’, w and w’ 
are independent. When exploring all the possible 
interleaving, we can advance on a thread one 
independent basic block instead one atomic WS in 
each step. We also summarize dependent atomic WS 
to the independent basic block following it, to be a 
dependent basic block. The above summarizing 
enables the single-forward-pass algorithm because it 
guarantees no meaningful interleaving will be missed 
in the forward exploration (detailed in the proof of 
Theorem 1). 

We devise an interleaving exploration algorithm 
to facilitate BLAST to exhaust all possible concurrent 
execution sequences. The algorithm is relatively 
independent of the LazyAbstraction algorithm [13]. 
The decoupling process facilitates the correctness 
analysis and the implementation of the algorithm. We 
first present an example, and then the algorithm.  

 

Figure 6. Sample control flow automata 

Consider the control flow automata in Figure 6. It 
contains two concurrent threads (c, d) and (c’, d’) are 
concurrent. The dotted line between d and d’ means 
that d and d’ are dependent. During the single thread 
part (a, b), we just apply the LazyAbstraction 
algorithm of BLAST to explore atomic WS one-by-
one and check whether any properties are violated. In 
order to handle concurrency, we introduce a frontier 
set F that marks the choices of the atomic WS to be 
explored in the next step. When arriving at the split 
point b, there are two choices in F = {c, c’}. Since c 
and c’ are independent, we pick up an arbitrary one, 
say, c in this example. The interesting part is when it 
reaches the point where F = {d, d’}. Since d and d’ are 
dependent, we need to explore all possible orders. We 
achieve this by spawning two successors, one with d 
picked up, the other with d’ picked up. Finally we 



explored the two possible interleaving (d, d’) and (d’, 
d). We remark that this will not change the structure of 
LazyAbstraction, since it already maintains a 
reachability tree and we just spawn more successors. 

Algorithm 1 (Interleaving Exploration) 
Initial Phase 
1. Identify all dependent atomic WS 
2. Summarize all sequential independent 

atomic WS into basic blocks 
3. F ← ∅ 
Main Loop 
1. If no dependent basic blocks in F, choose 

one basic block b; extend the current path 
with b; F  F – {b} + {successor of b} 

2. Else //exists dependent basic blocks in F 
3.     Foreach dependent basic block b 
4.         Spawn a successor b and attach to the 

current reachability tree 
5.         On b, attach F – {b}+ {successor of b} 
6.     End Foreach 
7. End If 

In the line 1 and 5 in the main loop, only after all 
the basic blocks in all join_threads are explored, could 
we continue on that following the join point. This is to 
guarantee the correctness on the synchronization of 
OWL-S. The spawned basic block b may consist of 
more than one atomic WS, which will guide the 
LazyAbstraction to explore the atomic WS in the basic 
block first. Embedding Algorithm 1 into 
LazyAbstraction is straight forward. The Initial Phase 
goes to that of LazyAbstraction. The Main Loop of 
Algorithm 1 is embedded into the main loop of 
LazyAbstraction. LazyAbstraction will explore the 
atomic WS in its current basic block spawned by 
Algorithm 1 first. 

Theorem 1 Algorithm 1 enumerates all orders of 
dependent basic blocks with no duplication. 

Proof (sketch) Prove by induction on number of 
threads. If there are two threads, each with only one 
dependent basic block, it is straight forward to show 
that both orders are produced. The interesting part is 
when one thread is (a), the other is (a’, b’), where a is 
dependent on both a’ and b’. We need to generate the 
order (b’, a). This is achieved by first choose a’, and 
then in the next iteration, at step 1, F will be updated 
to be {a, b’}, and b’ has the chance to be chosen first 
and generate the order (b’, a). Note that we will not 
encounter the case that one thread is (a), the other is 
(a’, c’, b’), where a is dependent on both a’ and b’, but 
not c’, since we summarized a’ and c’ together. 

Suppose Theorem 1 holds for k threads, prove for 
k+1. The loop at step 3 will pick up basic block from 
each of the k+1 threads. After that either we fall back 

to the k thread cases or we apply a second induction on 
the number of basic blocks.  € 

Corollary 1 Algorithm LazyAbstraction with 
Algorithm 1 embedded is correct. If LazyAbstraction 
terminates on each thread, then LazyAbstraction with 
Algorithm 1 embedded terminates. 

Corollary 1 guarantees the correctness and the 
termination of our enhancement to BLAST. 

5. Embed properties 

This section presents how to embed to-be-checked 
properties into the C-like code. First we formally 
define the checkable properties. 

Let s be a statement and S be the set of all 
statements. Define Reach ⊆ S to be the reachability set. 
A reachability property is defined as to determine 
whether s ∈ Reach, for any given s ∈ S. 

Let f be any formulas on predicates p ∈ P with 
Boolean operators and, or, and not, and temporal 
operators NEXT, FUTURE, ALWAYS, UNTIL, and 
RELEASE with universal quantifier as shared by 
various types of temporal logic in [8]. A safety 
temporal property is defined to determine whether f 
holds universally. Note that we can encode the 
temporal relation on statement s by introducing a 
predicate executed(s), which will be false before the 
statement is executed, and true afterwards, and express 
the formulas in terms of executed(s). 

Let g be any formulas on predicates p ∈ P with 
Boolean operators and, or, and not. Let l ∈ V be a 
location in the control flow automata, where V is the 
set of nodes of the control flow automata. A predicate-
bound property is defined as to determine whether at 
location l, g (or not g) holds. 

The essential algorithm of BLAST is reachability 
computation that computes the set of statements which 
is reachable in the program. Hence reachability 
properties are naturally handled by BLAST. 

Now we convert a predicate-bound property to 
reachability computation. Consider the property: at 
location l, g holds. Define an ERROR statement and 
embed the following segment of code at location l. 

if ( not g ) ERROR 

Then the property is violated if and only if the 
corresponding ERROR statement is reached. 
Predicate-bound property, at location l, not p holds, 
can be handled analogously. 

Now consider safety temporal properties. 
According to [8], all temporal operators can be 
expressed by NEXT and UNTIL, thus we only 
address these two operators. 



f NEXT g: the semantics is that f holds at the 
current location and then g holds at the very next 
location. We construct the function Check_NEXT.  

bool Check_NEXT (f, g) 
{ 
 static bool armed = false 
 if ( armed and not g ) ERROR 
 if ( f ) armed = true 
 return armed 
} 

We embed it following each statement where 
either f or g is at the left hand side of an assignment. 
Clearly that Check_NEXT encounters ERROR if and 
only if f NEXT g is violated. Note that Check_NEXT 
is a Boolean function, so we can nest in another 
formula. For example, f NEXT (g NEXT h) can be 
checked by  

Check_NEXT_F_G(f, Check_NEXT_G_H(g, h)) 

The additional postfixes are to differentiate the static 
variable armed in Check_NEXT. 

f UNTIL g: the semantics is that f holds until g 
holds, and g holds at some location. Similarly, we 
translate it to the function Check_UNTIL.  

bool Check_UNTIL (f, g, start, end) 
{ 
 static bool armed = false 
 if ( armed and ((not f and not g) or end) ) 

ERROR 
 if ( start ) armed = true 
 return armed 
} 

We embed it at each location where either f or g is 
at the left hand side of an assignment, and the end of 
the entire code. The last occurrence of Check_UNTIL 
will be invoked with end = true. The parameter start 
indicates when we start to check the property. 

6. Test case generation 

BLAST can generate positive test cases to exhibit 
the properties [7] if the properties hold. By applying 
the negative test case generation in [24], we can 
generate corresponding negative test cases. The 
negative test cases will strengthen the validation of the 
composite WS in the sense that it not only exhibits the 
desired properties, but also does not exhibit any 
properties not desired. 

The typological algorithm [24] requires that we 
know the complete positive condition to generate 
negative test cases. The test vector generated by one 
counterexample may contain only partial information 
and hence is not complete. BLAST may generate 

multiple copies of a node in the control flow for 
different counterexamples. Each copy will be 
associated with a region, which is the collection of 
predicates that rule out the corresponding 
counterexample. We aggregate all the regions returned 
by BLAST to generate the complete positive 
conditions. These conditions are used for selectively 
generating positive test cases and negative test cases 
by the technique proposed in [24]. 

Another problem is in the PDDL, there is a lack 
of connection between the predicate and the data in the 
PDDL. We propose a scheme similar to the effect 
operator in PDDL to define the connection. The syntax 
is as follows. 

effect: ( when ( [not] <variable> <relop> <value> ) 
<predicate> ) [type <type>] 

The effect, when, not, and type are keywords. Note that 
the not is optional. And <variable> is a variable name, 
<value> is a numerical or string value, <relop> is one 
of =, >, >=, <, and <=, <predicate> is the pair of 
predicate name and truth value, and the <type> defines 
the connection type. The type specification is optional. 
Currently, our extension supports the following types: 
boundary value, partition, random, and plain-sample. 
Each corresponds to different type of test cases. Thus 
when generating test cases, one can select different 
testing methods, such as boundary testing, partition 
testing, etc. 

We conduct experiments on the corrected “online 
shopping” example presented in Section 2.1. The 
model checking phase verifies that the WS violates no 
properties, and generates the complete positive test 
vectors. Then we selectively generate negative test 
cases, as listed in Table 2. We also categorize positive 
test cases according to criticality. 

Table 2 Test cases selection 

 Proximity Degree Total Pass % 
2 3 cases 100% Posi-

tive 1 7 cases 1 4 cases 7 cases 100% 
3 1 cases 100% 1 8 cases 1 7 cases 100% 

Nega
-tive 

2 1 cases  
9 cases 

100% 

Two factors affect the criticality of a test case, the 
proximity to the opposite class, i.e., positive cases to 
negative cases and vice versa, and the degree of 
proximity, i.e., the number of proximate opposite 
cases. The selection enables a time-based testing plan. 
If we have less time, we test only on the most critical 
test cases. Test cases are ordered according to their 
criticality from top to bottom in Table 2.  



7. Conclusion 

This paper proposed an integrated process to 
automatically translate OWL-S specification of 
composite WS into a C-like specification language 
that can be processed by BLAST model checker, 
perform model checking of composite WS, generate 
positive and negative test cases during model checking, 
and test the WS using the test cases. The existing 
techniques applied in this integrated process do not 
meet the requirements of composite WS verification 
and testing. We extended BLAST to handle concurrent 
execution of threads in OWL-S. We extended OWL-S 
and PDDL to connect predicates and data (values and 
variables) to better facilitate test case generation. One 
example is illustrated using the this integrated process 
and the experiment results reveal the process was 
effective. 
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