
Abstract

Web Services form a new distributed computing
paradigm. Collaborative verification and validation
are important when Web Services from different
vendors are integrated together to carry out a
coherent task. This paper presents a new approach to
verify Web Services by model checking the process
model of OWL-S (Web Ontology Language for Web
Services) and to validate them by the test cases
automatically generated in the model checking
process. We extend the BLAST, a model checker that
handles control flow model naturally, to handle the
concurrency in OWL-S. We also propose enhancement
in OWL-S and PDDL (Planning Domain Definition
Language) to facilitate the automated test case
generation. Experiments on realistic examples are
provided to illustrate the process.

1. Introduction

Web Services (WS) receive significant research
recently from both academia and industry due to its
broad applications and flexible architecture supporting
re-composition and reconfiguration [23, 20]. As the
complexity of composition increases, verification and
validation (V&V) of the composite WS become a
sophisticated task that deserves and has received many
studies. Two major V&V approaches are automated
testing [22] and model checking [5, 6, 8]. The main
benefit of model checking is to provide an exhaustive
proof-style certificate that the model, if not the
software itself, satisfies some properties, such as
safety temporal properties. The violation of the
properties, e.g., deadlock, may be harmful; hence
complete elimination is desirable.

This paper presents an approach in a
Collaborative Verification and Validation (CV&V)
framework [24]. If any fault is found during the
verification phase, the WS will be re-composed. The
testing part is to validate whether the composite WS
exhibits the desired properties as guaranteed on the
model by verification phases and does not exhibits the
undesired properties. Hence both positive and negative
tests need to be employed.

Several existing approaches discussed model
checking composite WS. These studies adopt different
models, utilize different model checking approaches,
or check different types of properties [10, 11, 17, 25].
The majority of them adopt BPEL4WS (Business
Process Execution Language for Web Services) [1] or
a BPEL-like model to model WS, and utilize SPIN [15]
or CCS-based (Calculus of Communicating Systems)
model checker [17], e.g., CWB (CCS Workbench) [9],
to do the model checking. A common theme of
existing approaches is that they treat atomic WS as
black-box. The process-oriented models successfully
capture the temporal properties among atomic WS.
However, if the internal structure of each atomic WS
is blank in the model specification, it is inherently
hard to describe and check more delicate properties
involving the effect and output of each atomic WS.
For example, consider the property that a customer
must have at least one product in the cart before
invoking atomic WS checkout. Clearly we cannot
describe or check the property, unless we know that
the effect of other atomic WS, such as add-to-cart,
change the amount of products. Though we can still
check the temporal property that add-to-cart must
occur at least once before checkout, this property
cannot substitute the former one due to the subtle
difference between them. Formally, we name such
properties that at location l a variable holds certain
values as data-bound properties. The problem
becomes more complicated when the effect is

Automated Model Checking and Testing for Composite Web Services

Hai Huang Wei-Tek Tsai Raymond Paul* Yinong Chen
Dept. Computer Sci. & Eng., Arizona State University, Tempe, AZ, 85287-8809

{hai, wtsai, yinong}@asu.edu

*OSD NII, Department of Defense
raymond.paul@osd.mil

Hai
Text Box
In Proceedings of the 8th IEEE International Symposium on Object-oriented Real-time Distributed Computing, 2005, pages 300-307.

conditional with respect to the effects or the outputs of
previous atomic WS. Note that pure in-lining
technique may not be feasible here since a composite
WS could consist of atomic WS that are proprietary
from different parties.

Our model checking technique for composite WS
is based on the process model of OWL-S (Web
Ontology Language for Web Services) [3] and the
model checker BLAST [13]. Each atomic WS is no
longer a black-box because its behavior is bounded by
the OWL-S specification. The goal of OWL-S is to
enable automatic WS discovery, composition,
invocation, and monitoring. The process model of
OWL-S is a control flow model. The BLAST was
designed for handling control flow automata and
applies directly to C source code. The checkable
properties of BLAST include the predicate-bound
properties that at location l a predicate p holds a
certain truth value. The data-bound properties can be
translated to predicate-bound properties. Both the
control flow model and data-bound properties are
intuitive to software engineers. BLAST also generates
positive test cases automatically [14].

Table 1. Expressiveness of OWL-S, BPEL4WS,
and WSCDL

 Internal logic
OWL-S Conditional and unconditional Input,

Output, Parameter, and Effect (IOPE)
BPEL4WS N/A
WSCDL State change and alignment among WS
 Variable and data
OWL-S Lack the connection from data to

predicates
BPEL4WS Support integral expression (all values

are integer)
WSCDL States (only support state transition)
 Control logic
OWL-S Sequence / if-then-else / choice one /

concurrent execution (split + join) /
unordered / loop (iteration, repeat-while,
repeat-until)

BEPL4WS Sequence / switch / while / pick m out of
n / fault handler / event handler /
concurrent execution

WSCDL State transition
 Exception handling
OWL-S N/A
BPEL4WS Fault handler
WSCDL N/A

Table 1 compares the expressiveness of OWL-S,
BPEL4WS, and WSCDL (Web Services

Choreography Description Language). The
expressiveness breaks further into four sub criteria:
internal logic of each atomic WS, variable and data,
control logic, and exception handling.

The contribution of this paper include (1)
applying BLAST to WS and evaluating atomic WS
while previous approaches treat atomic WS as a black
box; (2) extension of BLAST to handle concurrency in
precise OWL-S semantics; (3) extension of OWL-S
and PDDL (Planning Domain Definition Language)
[12] to better facilitate both positive and negative test
case generation.

This paper is organized as follows. Section 2
presents the process through an example. Section 3
elaborates the conversion from OWL-S process model
to the input of BLAST. Section 4 presents the
extension of BLAST to handle the concurrency
semantics in OWL-S. Section 5 discusses how to
automatically embed to-be-checked properties. Section
6 studies test case generation and presents some
experimental data. Section 7 concludes this paper.

2. The overall process

This section uses an example to illustrate the
process of automated model checking and testing on
OWL-S process model. The process consists of the
following steps: (1) convert OWL-S model to a C-like
specification language; (2) embed properties to be
checked into the specification language; (3) feed the
specification language into BLAST; (4) model
checking and positive test case generation; and (5)
negative test case generation. The process is shown in
Figure 1.

Figure 1. Automated model checking process

2.1. Online shopping

The example is a process model shown in Figure
2. We avoid the verbose XML (Extensible Markup
Language) specification here for the sake of clarity.

Instead, we denote the types of the structural
constructs on the links among atomic WS.

As shown in Figure 2, a customer must first login.
If login succeeds, the customer has a choice to add a
product to the cart, remove a product from the cart, or
place an order. After placing an order, the product will
be shipped to the customer and the customer’s credit
card will be charged. The split and join means that
shipping and charging credit card are concurrently
executed. The repeat-until construct means that the
user can keep adding or removing products before
placing the order.

Figure 2. Online shopping WS

Although the control flow diagram resembles the
control flow automata for BLAST, translating it to the
C-like language is not straightforward. The challenges
are: (1) extract proper Input, Output, Precondition, and
Effect (IOPE) information from the XML
specification, without which, certain properties are not
checkable. For example, we need to know that the
effect of AddProductToCart to check the data-bound
property, i.e., when placing an order, there must be at
least one product in the cart; (2) certain structural
constructs, such as choice and split + join, are not
recognizable to BLAST; (3) BLAST cannot handle the
OWL-S concurrency semantics, such as the
computation between split and join.

The IOPE information is encoded as logical
formulas in OWL-S [3]. Candidate languages for
logical formulas are PDDL [12] and KIF (Knowledge
Interchange Format) [2]. The problem with KIF and
previous versions of PDDL is the lack of capability of
specifying how variables acquire values. This problem
is solved by PDDL2.1 with the assign operator. To
properly support model checking, we utilized
PDDL2.1. Figure 3 lists the sample specification of
atomic WS Login, AddProductToCart, and
RemoveProductFromCart in PDDL2.1.

Figure 3. Sample PDDL 2.1 specification and
corresponding C-like code

The names starting with “?” are variables. The
specification simply says that Login will set the cart to
empty; AddProductToCart will increase ?item by 1;
while RemoveProductFromCart will decrease ?item
by 1. Most structural constructs, except choice and
split + join, can be translated into C-like code directly.
For choice, we implement it by a sequence of if-then-
else if-…-else statements.

There is no corresponding C construct for split +
join. We thus generate all effective interleaving of
concurrent execution. In other words, BLAST will
check two copies of C-like code with both interleaving
of ShipProduct and ChangeCreditCard. Actually the
interleaving algorithm is integrated in the BLAST to
avoid duplicated checking on the same non-concurrent
part.

Next we need to embed the to-be-checked
properties into the C-like code. Essentially, BLAST
computes a reachability set on statements during
model checking process. By introducing an ERROR
statement, all checkable properties can be translated to
the reachability of certain ERROR statements.
Suppose we want to check two properties: (1) a data-
bound property, when placing order, there must be at
least one product in the cart; and (2) a temporal
property, we must charge the credit card before
shipping the product. The properties are translated into
ERROR statement as shown in Figure 4.

Figure 4. Embedding to-be-checked properties

The inserted code for to-be-checked properties is
highlighted. Note that we introduce a new variable
shipped to indicate whether ShipProduct is executed.
Clearly, property (1) is violated if and only if the first
ERROR is reached, and analogously to property (2)
and the second ERROR. Embedding the properties
and interleaving exploration are two independent steps.

In reality, embedding happens before interleaving as
interleaving is integrated with the BLAST model
checker. We present the different order to reveal the
ERROR immediately.

Now we can feed the code into BLAST. For each
violation, BLAST will return a counterexample. In this
case, we will have a counterexample:

Login, RemoveProductFromCart, PlaceOrder,

which violates property (1), and counterexample

Login, AddProductToCart, PlaceOrder, ShipProduct,
ChargeCreditCard,

which violates property (2).
If no property is violated, BLAST will generate

positive test cases. Negative test cases can be
selectively generated by using the technique presented
in [24]. Both positive and negative test cases are
applied to verify the WS.

3. Convert OWL-S to C-Like code

This section presents the translation from OWL-S
process model to the C-like specification language for
BLAST. The translation is divided into two sub-
problems: converting structural constructs into OWL-
S and converting logical formulas into PDDL2.1.

3.1. Convert structural constructs

According to OWL-S 1.1 beta version [3], the
process model supports the following structural
constructs: sequence, split, split + join, unordered,
choice, if-then-else, iterate, repeat-while, and repeat-
until. Most constructs have natural correspondence in
our C-like language and thus the translation is
straightforward. Hence we focus on split, split + join,
choice, and unordered. Some constructs has a
condition associated with it, such as if-then-else,
repeat-while, and repeat-until. The conditions are in
logical formulas, and their translations will be
discussed in Section 3.2.

Choice: The choice is significantly scaled down
to choose one from multiple choices. We implement
this by introducing a dummy variable, choice_m, and a
sequence of if-then-else if-else if-…-else that relies on
choice. The value of variable choice_m is not specified,
to force BLAST to explore all branches. Formally,
choosing one from branchi, i ∈ [n], is translated into
the code listed in Figure 5. The postfix _m is to
differentiate the different choices.

Split and split + join: These constructs specify the
concurrent executions of threads. We translate
concurrent executions of threadi, i ∈ [n], into the code
listed in Figure 5. There are two types of threads,

join_thread and thread. A join_thread indicates that
after the thread is finished, the control will return to
the synchronization point specified by the join in
OWL-S, while thread has no such restriction, which
correspondents to the loose restriction on
synchronization of split in OWL-S. Note that OWL-S
supports partial synchronization, i.e., only “join” some
threads. Hence it is possible that in the scope of the
parallel, not all threads are join_thread. The
interleaving exploration algorithm presented in
Section 4 will process the code and generate all
meaningful interleaving.

Figure 5. C-like code for choice, split, and join

Unordered: Unordered is implemented in the
same way with split + join to explore all meaningful
execution orders, as it requires the completion of all
components.

3.2. Convert logical formulas

We assume logical formulas are expressed in
PDDL2.1 [12]. The assign operator in PDDL2.1 links
variables to values. We support the Action (and related)
syntax listed in Appendix 2 in [12], which includes
arithmetic operators, numeric functions, numeric
comparison operators, predicates, and conditional
effects. We do not support the forall and exists in
PDDL2.1 yet, and they can be added later. The
conversion of formulas is straightforward though the
formulas in PDDL2.1 are in pre-order while in C it is
in in-order.

4. BLAST for concurrency in OWL-S

This section presents an enhancement on BLAST
to check concurrency in OWL-S. BLAST bears
capability to model checking concurrent threads [14].
However, the synchronization semantics in split + join
is not supported by C grammar, we enhance BLAST
to directly exhaust every interleaving of the concurrent
threads that matters. We extend the partial order
reduction approach traditionally developed for state
transition system [8] to control flow automata. We
incorporate the summarizing technique [19] to reduce

the complexity of the interleaving. The enhancement
includes 1) single forward pass (without backward
tracking) algorithm for interleaving exploration; and 2)
amenable for the NEXT operator in LTL (Linear
Temporal Logic).

An atomic WS is a WS whose process is virtually
transparent, which is the fundamental unit for model
checking concurrent execution of composite WS. Due
to the transparency of atomic WS, only the order of
atomic WS matters during model checking. Let w1 and
w2 be two atomic WS, W be the set of all atomic WS.
Let S be the set of global states defined by the
combination of all parameters except the local
parameters of atomic WS in W. Define independency
relation I ⊆ W × W be a binary relation, (w1, w2) ∈ I if
for any state s, there exists a state s’, such that both the
ordered execution (w1, w2) and (w2, w1) transit s to s’,
without violating any properties that consists of
NEXT operator. The two atomic WS w1 and w2 are
independent, if (w1, w2) ∈ I. Clearly, the execution
order of independent atomic WS does not affect the
model checking, thus we can execute them in any
order.

Define RW(•): W → 2P to be the read-write set of
an atomic WS, where P is the set of all global
parameters. For a parameter p ∈ P, if p is referenced
by the IOPEs of a WS w, then p ∈ RW(w). Let N ⊆ P
× P be a binary relation, such that (p, p’) ∈ N if there
exists a property to be model checked, the property
contains NEXT operator, p occurs to one side of the
NEXT operator, and q occurs to the other side of the
NEXT operator. The following Lemma presents a
simple criterion to identify independent atomic WS.

Lemma 1 Let w1 and w2 be two atomic WS. If RW(w1)
∩ RW(w2) = ∅, and for any p ∈ RW(w1) and p’ ∈
RW(w2), (p, p’) ∉ N, then w1 and w2 are independent.

The proof is straightforward and hence omitted.
Note that Lemma 1 takes care of the NEXT operator.
During model checking, we need only to exhaust all
the orders among dependent atomic WS. We remark
that counting all read-write parameters is sufficient but
sometimes overapproximating. We remark that a fine-
grained read-write, write-read, and write-write
analysis may further reduce the complexity.

We incorporate concurrent summarizing
technique [19] into our analysis. The concurrent
summarizing technique can be viewed as a precise
inter-procedural data-flow analysis for concurrent
threads. It represents the execution of statements
inside a transaction (atomic WS) by a single state
transition to reduce the model checking effort when
the transaction is visited again in the model checking
process.

The transaction boundary partitions each thread
into two parts. Instead of applying summarizing
technique to the transactions, which is inside the
atomic WS and cannot help us much in our case, we
apply summarizing technique to the partition outside
the transitions, which expands the independency
relation to B × B, where B is the set of basic blocks of
atomic WS. Two basic blocks b and b’ are
independent if for any w ∈ b and w’ ∈ b’, w and w’
are independent. When exploring all the possible
interleaving, we can advance on a thread one
independent basic block instead one atomic WS in
each step. We also summarize dependent atomic WS
to the independent basic block following it, to be a
dependent basic block. The above summarizing
enables the single-forward-pass algorithm because it
guarantees no meaningful interleaving will be missed
in the forward exploration (detailed in the proof of
Theorem 1).

We devise an interleaving exploration algorithm
to facilitate BLAST to exhaust all possible concurrent
execution sequences. The algorithm is relatively
independent of the LazyAbstraction algorithm [13].
The decoupling process facilitates the correctness
analysis and the implementation of the algorithm. We
first present an example, and then the algorithm.

Figure 6. Sample control flow automata

Consider the control flow automata in Figure 6. It
contains two concurrent threads (c, d) and (c’, d’) are
concurrent. The dotted line between d and d’ means
that d and d’ are dependent. During the single thread
part (a, b), we just apply the LazyAbstraction
algorithm of BLAST to explore atomic WS one-by-
one and check whether any properties are violated. In
order to handle concurrency, we introduce a frontier
set F that marks the choices of the atomic WS to be
explored in the next step. When arriving at the split
point b, there are two choices in F = {c, c’}. Since c
and c’ are independent, we pick up an arbitrary one,
say, c in this example. The interesting part is when it
reaches the point where F = {d, d’}. Since d and d’ are
dependent, we need to explore all possible orders. We
achieve this by spawning two successors, one with d
picked up, the other with d’ picked up. Finally we

explored the two possible interleaving (d, d’) and (d’,
d). We remark that this will not change the structure of
LazyAbstraction, since it already maintains a
reachability tree and we just spawn more successors.

Algorithm 1 (Interleaving Exploration)
Initial Phase
1. Identify all dependent atomic WS
2. Summarize all sequential independent

atomic WS into basic blocks
3. F ← ∅
Main Loop
1. If no dependent basic blocks in F, choose

one basic block b; extend the current path
with b; F F – {b} + {successor of b}

2. Else //exists dependent basic blocks in F
3. Foreach dependent basic block b
4. Spawn a successor b and attach to the

current reachability tree
5. On b, attach F – {b}+ {successor of b}
6. End Foreach
7. End If

In the line 1 and 5 in the main loop, only after all
the basic blocks in all join_threads are explored, could
we continue on that following the join point. This is to
guarantee the correctness on the synchronization of
OWL-S. The spawned basic block b may consist of
more than one atomic WS, which will guide the
LazyAbstraction to explore the atomic WS in the basic
block first. Embedding Algorithm 1 into
LazyAbstraction is straight forward. The Initial Phase
goes to that of LazyAbstraction. The Main Loop of
Algorithm 1 is embedded into the main loop of
LazyAbstraction. LazyAbstraction will explore the
atomic WS in its current basic block spawned by
Algorithm 1 first.

Theorem 1 Algorithm 1 enumerates all orders of
dependent basic blocks with no duplication.

Proof (sketch) Prove by induction on number of
threads. If there are two threads, each with only one
dependent basic block, it is straight forward to show
that both orders are produced. The interesting part is
when one thread is (a), the other is (a’, b’), where a is
dependent on both a’ and b’. We need to generate the
order (b’, a). This is achieved by first choose a’, and
then in the next iteration, at step 1, F will be updated
to be {a, b’}, and b’ has the chance to be chosen first
and generate the order (b’, a). Note that we will not
encounter the case that one thread is (a), the other is
(a’, c’, b’), where a is dependent on both a’ and b’, but
not c’, since we summarized a’ and c’ together.

Suppose Theorem 1 holds for k threads, prove for
k+1. The loop at step 3 will pick up basic block from
each of the k+1 threads. After that either we fall back

to the k thread cases or we apply a second induction on
the number of basic blocks. €

Corollary 1 Algorithm LazyAbstraction with
Algorithm 1 embedded is correct. If LazyAbstraction
terminates on each thread, then LazyAbstraction with
Algorithm 1 embedded terminates.

Corollary 1 guarantees the correctness and the
termination of our enhancement to BLAST.

5. Embed properties

This section presents how to embed to-be-checked
properties into the C-like code. First we formally
define the checkable properties.

Let s be a statement and S be the set of all
statements. Define Reach ⊆ S to be the reachability set.
A reachability property is defined as to determine
whether s ∈ Reach, for any given s ∈ S.

Let f be any formulas on predicates p ∈ P with
Boolean operators and, or, and not, and temporal
operators NEXT, FUTURE, ALWAYS, UNTIL, and
RELEASE with universal quantifier as shared by
various types of temporal logic in [8]. A safety
temporal property is defined to determine whether f
holds universally. Note that we can encode the
temporal relation on statement s by introducing a
predicate executed(s), which will be false before the
statement is executed, and true afterwards, and express
the formulas in terms of executed(s).

Let g be any formulas on predicates p ∈ P with
Boolean operators and, or, and not. Let l ∈ V be a
location in the control flow automata, where V is the
set of nodes of the control flow automata. A predicate-
bound property is defined as to determine whether at
location l, g (or not g) holds.

The essential algorithm of BLAST is reachability
computation that computes the set of statements which
is reachable in the program. Hence reachability
properties are naturally handled by BLAST.

Now we convert a predicate-bound property to
reachability computation. Consider the property: at
location l, g holds. Define an ERROR statement and
embed the following segment of code at location l.

if (not g) ERROR

Then the property is violated if and only if the
corresponding ERROR statement is reached.
Predicate-bound property, at location l, not p holds,
can be handled analogously.

Now consider safety temporal properties.
According to [8], all temporal operators can be
expressed by NEXT and UNTIL, thus we only
address these two operators.

f NEXT g: the semantics is that f holds at the
current location and then g holds at the very next
location. We construct the function Check_NEXT.

bool Check_NEXT (f, g)
{
 static bool armed = false
 if (armed and not g) ERROR
 if (f) armed = true
 return armed
}

We embed it following each statement where
either f or g is at the left hand side of an assignment.
Clearly that Check_NEXT encounters ERROR if and
only if f NEXT g is violated. Note that Check_NEXT
is a Boolean function, so we can nest in another
formula. For example, f NEXT (g NEXT h) can be
checked by

Check_NEXT_F_G(f, Check_NEXT_G_H(g, h))

The additional postfixes are to differentiate the static
variable armed in Check_NEXT.

f UNTIL g: the semantics is that f holds until g
holds, and g holds at some location. Similarly, we
translate it to the function Check_UNTIL.

bool Check_UNTIL (f, g, start, end)
{
 static bool armed = false
 if (armed and ((not f and not g) or end))

ERROR
 if (start) armed = true
 return armed
}

We embed it at each location where either f or g is
at the left hand side of an assignment, and the end of
the entire code. The last occurrence of Check_UNTIL
will be invoked with end = true. The parameter start
indicates when we start to check the property.

6. Test case generation

BLAST can generate positive test cases to exhibit
the properties [7] if the properties hold. By applying
the negative test case generation in [24], we can
generate corresponding negative test cases. The
negative test cases will strengthen the validation of the
composite WS in the sense that it not only exhibits the
desired properties, but also does not exhibit any
properties not desired.

The typological algorithm [24] requires that we
know the complete positive condition to generate
negative test cases. The test vector generated by one
counterexample may contain only partial information
and hence is not complete. BLAST may generate

multiple copies of a node in the control flow for
different counterexamples. Each copy will be
associated with a region, which is the collection of
predicates that rule out the corresponding
counterexample. We aggregate all the regions returned
by BLAST to generate the complete positive
conditions. These conditions are used for selectively
generating positive test cases and negative test cases
by the technique proposed in [24].

Another problem is in the PDDL, there is a lack
of connection between the predicate and the data in the
PDDL. We propose a scheme similar to the effect
operator in PDDL to define the connection. The syntax
is as follows.

effect: (when ([not] <variable> <relop> <value>)
<predicate>) [type <type>]

The effect, when, not, and type are keywords. Note that
the not is optional. And <variable> is a variable name,
<value> is a numerical or string value, <relop> is one
of =, >, >=, <, and <=, <predicate> is the pair of
predicate name and truth value, and the <type> defines
the connection type. The type specification is optional.
Currently, our extension supports the following types:
boundary value, partition, random, and plain-sample.
Each corresponds to different type of test cases. Thus
when generating test cases, one can select different
testing methods, such as boundary testing, partition
testing, etc.

We conduct experiments on the corrected “online
shopping” example presented in Section 2.1. The
model checking phase verifies that the WS violates no
properties, and generates the complete positive test
vectors. Then we selectively generate negative test
cases, as listed in Table 2. We also categorize positive
test cases according to criticality.

Table 2 Test cases selection

 Proximity Degree Total Pass %
2 3 cases 100% Posi-

tive 1 7 cases 1 4 cases 7 cases 100%
3 1 cases 100% 1 8 cases 1 7 cases 100%

Nega
-tive

2 1 cases
9 cases

100%

Two factors affect the criticality of a test case, the
proximity to the opposite class, i.e., positive cases to
negative cases and vice versa, and the degree of
proximity, i.e., the number of proximate opposite
cases. The selection enables a time-based testing plan.
If we have less time, we test only on the most critical
test cases. Test cases are ordered according to their
criticality from top to bottom in Table 2.

7. Conclusion

This paper proposed an integrated process to
automatically translate OWL-S specification of
composite WS into a C-like specification language
that can be processed by BLAST model checker,
perform model checking of composite WS, generate
positive and negative test cases during model checking,
and test the WS using the test cases. The existing
techniques applied in this integrated process do not
meet the requirements of composite WS verification
and testing. We extended BLAST to handle concurrent
execution of threads in OWL-S. We extended OWL-S
and PDDL to connect predicates and data (values and
variables) to better facilitate test case generation. One
example is illustrated using the this integrated process
and the experiment results reveal the process was
effective.

8. References

[1] “Business Process Execution Language for Web
Services Version 1.1”, available at: http://www-
106.ibm.com/developerworks/library/ws-bpel/, 2003.

[2] “KIF, Knowledge Interchange Format: Draft proposed
American national Standard (dpans)”, Technical Report
22/98-004, ANS, 1998.

[3] “OWL-S: Semantic Markup for Web Services”,
available at: http://www.daml.org/services/owl-
s/1.1B/owl-s/owl-s.html.

[4] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers:
Principles, Techniques, and Tools. Addison-Wesley,
1986.

[5] T. Ball, B. Cook, V. Levin, and S. K. Rajamani,
“SLAM and Static Driver Verifier: Technology
Transfer of Formal Methods inside Microsoft”,
Technical Report: MSR-TR-2004-8, Microsoft
Research, 2004.

[6] T. Ball and S. K. Rajamani. “Automatically Validating
Temporal Safety Properties of Interfaces”, In
Proceedings of the 8th International SPIN Workshop on
Model checking of Software, 2001, pp. 103-122.

[7] D. Beyer, A. J. Chlipala, and R. Majumadr,
“Generating Tests from Counterexamples”, In
Proceedings of the 26th International Conference on
Software Engineering, 2004, pp. 326-335.

[8] E. Clarke, O. Grumberg, and D. Peled, Model Checking,
MIT Press, 2002.

[9] R. Cleaveland, and S. Sims. “The NCSU concurrency
workbench”, In Proceedings of the 8th Conference on
Computer Aided Verification, volume 1102 of Lecture
Notes in Computer Science, 1996, pp. 394-397.

[10] X. Fu, T. Bultan, and J. Su, “Analysis of Interacting
BPEL Web Services”, In Proceeding of the 13th
International World Wide Web Conference, 2004, pp.
621-630.

[11] X. Fu, T. Bultan, and J. Su, “Model Checking
Interactions of Composite Web Services”, Technical

Report 2004-05, Computer Science Department,
University of California at Santa Barbara, 2004.

[12] M. Ghallab. “PDDL – The Planning Domain Definition
Language V. 2”. Technical Report, report CVC TR-98-
003 / DCS TR-1165, Yale Center for Computational
Vision and Control, 1998.

[13] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre,
“Lazy abstraction”, In Proceedings of the 29th Annual
Symposium on Principles of Programming Languages,
2002, pp. 58-70.

[14] T. A. Henzinger, R. Jhala, and R. Majumdar, Race
Checking by Context Inference, In Proceedings of
ACM SIGPLAN 2005 Conference on Programming
Language Design and Implementation, 2005, pp. 1-13.

[15] G. Holzmann, The Spin Model Checker, Addison-
Wesley, 2003.

[16] M. Koshkina, and F. van Breugel, “Modelling and
Verifying Web Service Orchestration by Means of the
Concurrency Workbench”, to appear in ACM
SIGSOFT Software Engineering Notes.

[17] R. Milner, A Calculus of Communicating Systems,
LNCS-92, Springer-Verlag, 1980.

[18] M. Paolucci, N. Srinivasan, K. Sycara, and T.
Nishimura, “Towards a Semantic Choreography of
Web Services: from WSDL to DAML-S”, available at:
http://pericles.cimds.ri.cmu.edu:8080/wsdl2owls/wsdl2
damls.pdf

[19] S. Qadeer, S. K. Rajamani and J. Rehof , “Summarizing
Procedures in Concurrent Programs”, In Proceedings of
the 31st ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, 2004, pp. 245-
255.

[20] W. Tsai, Z. Cao, Y. Chen, R. Paul, “Web Services-
based Collaborative and Cooperative Computing”, to
appear in Workshop on Cooperative Computing,
Internetworking, and Assurance Chengdu, China, April
5, 2005.

[21] W. Tsai, Y. Chen, Z. Cao, X. Bai, H. Huang, and Paul,
“Testing Web Services Using Progressive Group
Testing”, Advanced Conference on Content Computing,
Zhenjiang, November, LNCS 3309, 2004, pp. 314-322.

[22] W. Tsai, R. Paul, Z. Cao, L. Yu, A. Saimi, and B. Xiao,
“Verification of Web Services Using an Enhanced
UDDI Server”, Proc. of IEEE WORDS, 2003, pp. 131-
138.

[23] W. Tsai, W. Song, R. Paul, Z. Cao, H Hunag,
“Services-Oriented Dynamic Reconfiguration
Framework for Dependable Distributed Computing”,
COMPSAC, September 2004, pp. 554-559

[24] W. Tsai, X. Wei, Y. Chen, B. Xiao, R. Paul, and H.
Huang, “Developing and Assuring Trustworthy Web
Services”, to appear in Proceedings of the 7th
International Symposium on Autonomous
Decentralized Systems, Chengdu, April 2005.

[25] C. Walton, “Model Checking Multi-Agent Web
Services”, In Proceeding of AAAI Spring Symposium
on Semantic Web Services, Stanford, 2004.

