
A Model–Checking Verification Environment
for Mobile Processes

GIAN-LUIGI FERRARI
University of Pisa, Italy
STEFANIA GNESI
ISTI - C.N.R. Pisa, Italy
UGO MONTANARI
University of Pisa, Italy
and
MARCO PISTORE
University of Trento, Italy

This article presents a semantic-based environment for reasoning about the behavior of mobile
systems. The verification environment, called HAL, exploits a novel automata-like model that allows
finite-state verification of systems specified in the π -calculus. The HAL system is able to interface
with several efficient toolkits (e.g. model-checkers) to determine whether or not certain properties
hold for a given specification. We report experimental results on some case studies.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verifica-
tion—Formal methods, Model-checking; F.3.1 [Logics and Meaning of Programs]: Specifying and
Verifying and Reasoning about Programs—Specification techniques; F.3.2 [Logics and Meaning
of Programs]: Semantics of Programming Languages—Process models; D.2.1 [Software Engi-
neering]: Requirements/Specifications—Tools

General Terms: Verification

Additional Key Words and Phrases: Name-passing process calculi, transition systems, mobile pro-
cesses, modal logics, security

This research was partially supported by FET Projects IST-2001-33100 PROFUNDIS, IST-2001-
32747 AGILE and MIUR Projects COMETA and NAPOLI.
Authors’ addresses: G. Ferrari, Dipartimento di Informatica, Università di Pisa, Italy; email:
giangi@di.unipi.it; S. Gnesi, Istituto di Scienza e Tecnologie dell’Informazione, ISTI - C.N.R., Pisa,
Italy; email gnesi@isti.cnr.it; U. Montanari, Dipartimento di Informatica, Università di Pisa, Italy;
email:ugo@di.unipi.it; M. Pistore, Dipartimento di Informatica e Telecomunicazioni, Università di
Trento, Italy; pistore@.it.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2003 ACM 1049-331X/03/1000-0440 $5.00

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003, Pages 440–473.

A Model–Checking Verification Environment for Mobile Processes • 441

1. INTRODUCTION

A global computing system is defined as a network of stationary and mobile
components. The primary features of a global computing system are that its
components are autonomous, software versioning is highly dynamic, the net-
work’s coverage is variable and often its components reside over the nodes of
the network (WEB services), membership is dynamic and often ad hoc, with-
out a centralized authority. Global computing systems must be made very
robust since they are intended to operate in potentially hostile dynamic en-
vironments. This means that they are hard to construct correctly and very
difficult to test in a controlled way. In this area, formal analysis techniques
and the corresponding verification technologies are important to gain confi-
dence in correct behavior and to weed out bugs and security hazards before a
system is deployed. For instance, the growing demands on security have led
to the development of formal models that allow specification and verification
of cryptographic protocols (see Abadi and Gordon [1999], Clarke et al. [1998],
Focardi and Gorrieri [1997], and Lowe [1996], to cite a few). Although signif-
icant progress had been made in providing foundational models and effective
verification techniques to support formal verification of global computing sys-
tems, current software engineering technologies provide limited solutions to
some of the issues outlined above. The problem of formal verification of global
computing systems still requires considerable research and dissemination
efforts.

Automatic methods for verifying finite-state concurrent systems have been
shown to be surprisingly effective [Clarke and Wing 1996]. Indeed, finite-state
verification techniques have enjoyed substantial and growing use over the past
years. For instance, several communication protocols and hardware designs of
considerable complexity have been formalized and proved correct by exploiting
finite-state verification techniques.

Unfortunately, finite-state verification of global computing systems is much
more difficult. Indeed, in this case, even simple systems can generate infinite-
state spaces. An illustrative example is provided by the π -calculus [Milner et al.
1992]. The π-calculus primitives are simple but expressive: channel names can
be created and communicated (thus giving the possibility of dynamically recon-
figuring process acquaintances), and they are subjected to sophisticated scoping
rules. The π-calculus is the archetype of name-passing or nominal process cal-
culi. Name-passing process calculi emphasize the principle that name mech-
anisms (e.g. local name generation, name exchanges, etc.) provide a suitable
abstraction to formally explain a wide range of phenomena of global computing
systems (see e.g. Sewell [2000], Gordon [2001]). The usefulness of names has
been also emphasized in practice. For instance, Needhan [1989] pointed out
the role of names for the security of distributed systems. The World Wide Web
provides an excellent (perhaps the most important) example of the power of
names and name binding/resolution.

Name-passing process calculi have greater expressive power than ordinary
process calculi, but the possibility of dynamically generating new names also
leads to a much more complicated theory. In particular, standard automata-like

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

442 • G.-L. Ferrari et al.

models are infinite-state and infinite branching, thus making verification a
difficult task.

History Dependent automata (HD-automata, in short) have been proposed
in Pistore [1999], and Montanari and Pistore [1995] as a new effective model
for name-passing calculi. Similar to ordinary automata, HD-automata are made
out of states and labeled transitions; their peculiarity resides in the fact that
states and transitions are equipped with names which are no longer dealt with
as syntactic components of labels, but become an explicit part of the operational
model. This allows one to explicitly model name creation/deallocation, and name
extrusion. These are the distinguishing mechanisms of name-passing calculi.

HD-automata can be abstractly understood as automata over a permutation
model whose ingredients are sets of names, and of permutations (renaming
substitutions) on these name sets. Names and name permutations have been
shown to play a fundamental role in describing and reasoning about formalisms
with name-binding operations. They have also been incorporated into various
kinds of theories that aim at providing syntax-free models of name-passing
calculi [Fiore et al. 1999; Gabbay and Pitts 1999; Honda 2000; Montanari and
Pistore 2000, 2003; Pitts and Gabbay 2000].

HD-automata provide an intermediate, syntax independent, format to repre-
sent calculi equipped with mobility and distribution primitives [Pistore 1999].
An important point is that for a wide class of processes (e.g. finitary π-calculus
agents), the resulting HD-automata are finite-state. Furthermore, it is possible
to construct for each HD-automaton an ordinary automaton in such a way that
equivalent HD-automata are mapped into equivalent ordinary automata, and
finite-state HD-automata are mapped into finite-state ordinary automata. As
a consequence, many practical and efficient verification techniques developed
for ordinary automata can be smoothly adapted to the case of mobile processes.
Indeed, the distinguishing feature of our approach is the reduction of a spe-
cific name-based theory to a specific nameless theory. This allows us to reuse
both verification principles and automatic methods specifically developed for
ordinary finite-state automata. We refer to Honda [2000] for the description of
a general algebraic framework that provides formal mechanisms to establish
representation theorems from name-based theories to nameless theories and
back.

In this article, we focus on the usage of HD-automata as a theoretical foun-
dation for an automata-based approach to the finite-state verification of name-
passing process calculi. In particular, we exploit this theory as a basis for the
design and development of effective and usable verification toolkits. This arti-
cle describes our experience experimenting in an environment, called the HD-
Automata Laboratory (HAL), for the finite-state verification of systems specified
in the π-calculus. The HAL environment includes modules that implement deci-
sion procedures to calculate behavioral equivalences and modules that support
verification by model-checking of properties expressed as formulae of suitable
temporal logics. The construction of the model-checker takes direct advantage
of the finite representation of π-calculus specifications presented in Montanari
and Pistore [1995]. In particular, we exploit a high level logic with modalities
indexed by π-calculus actions and we provide a mapping that translates these

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

A Model–Checking Verification Environment for Mobile Processes • 443

logical formulae into a classical modal logic for standard automata. The distin-
guishing and innovative feature of our approach is that the translation mapping
is driven by the finite-state representation of the system (theπ-calculus process)
to be verified.

To illustrate the effectiveness and usability of our approach, we consider case
studies that allow us to demonstrate some common verification patterns that
arise frequently when reasoning about π-calculus specifications.

The article is organized as follows. Section 2 reviews the π-calculus and
the modal logic we use to express behavioral properties of π-calculus agents.
This section introduces the main notations and definitions that will be used
throughout the article. We then proceed to introduce the translation mapping
from π-calculus agents to HD-automata, and from HD-automata to ordinary
automata. The translation mapping from the higher order logic to the bare
logic is presented in Section 4. Section 5 describes the main modules of the
verification environment. Finally, Section 6 illustrates our experiments on some
case studies.

2. BACKGROUND

In this section we present an overview of the main concepts and notations that
we will use throughout the article.

2.1 Ordinary Automata

Automata (or labeled transition systems) have been defined in several ways.
We choose the following definition since it is rather natural and it can be easily
modified to introduce HD-automata.

Definition 2.1. An ordinary automaton is a 4-tuple A = (Q , q0, L, R),
where:

—Q is a finite set of states;
—q0 is the initial state;
— L is a finite set of action labels;
— R ⊆ Q × Act× Q is the transition relation. Whenever (q, λ, q′) ∈ R, we will

write q
λ−→ q′.

Several notions of behavioral preorders and equivalences have been defined
on automata. Here, we review the notion of bisimilarity [Milner 1989; Park
1981].

Definition 2.2. Let A1 and A2 be two automata on the same set L of labels.
A binary relation R ⊆ Q1 × Q2 is a simulation for A1 and A2 if, whenever
q1 R q2, we have that:

for all t1 : q1
λ−→ q′1 of A1 there exists t2 : q2

λ−→ q′2 of A2 such that
q′1 R q′2.

Relation R is a bisimulation if both R and R−1 are simulations.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

444 • G.-L. Ferrari et al.

Table I. Early Operational Semantics

TAU tau.P
tau−→ P OUT x! y .P

x! y−→ P IN x?(y).P
x?z−→ P{z/ y}

SUM P1
µ−→ P ′

P1 + P2
µ−→ P ′

PAR
P1

µ−→ P ′1
P1‖P2

µ−→ P ′1‖P2
if bn(µ) ∩ fn(P2) = ∅

COM
P1

x! y−→ P ′1 P2
x? y−→ P ′2

P1‖P2
tau−→ P ′1‖P ′2

CLOSE
P1

x!(y)−→ P ′1 P2
x? y−→ P ′2

P1‖P2
tau−→ (y)(P ′1‖P ′2)

if y 6∈ fn(P2)

RES P
µ−→ P ′

(x)P
µ−→ (x)P ′

if x 6∈ n(µ) OPEN P
x! y−→ P ′

(y)P
x!(z)−→ P ′{z/ y}

if x 6= y , z 6∈ fn((y)P ′)

MATCH P
µ−→ P ′

[x = x]P
µ−→ P ′

IDE PA{ y1/x1, . . . , yr(A)/xr(A)} µ−→ P ′

A(y1, . . . , yr(A))
µ−→ P ′

Two automata A1 and A2 are bisimilar, written A1 ∼ A2, if their initial states
q0

1 , q0
2 are bisimilar, namely q0

1 R q0
2 for some bisimulation R.

2.2 The π-Calculus

Given a denumerable infinite set N of names (denoted by a, . . . , z), the set of
π-calculus agents over N are defined by the syntax1:

P ::= nil
∣∣ α.P ∣∣ P1‖P2

∣∣ P1 + P2
∣∣ (x)P

∣∣ [x = y]P
∣∣ A(x1, . . . , xr(A))

where actions α agents can perform are given by the following syntax

α ::= tau
∣∣ x! y

∣∣ x?(y)

and r(A) is the range of the agent identifier A. The occurrences of y in x?(y).P
and (y)P are bound; free names are defined as usual and fn(P) indicates
the set of free names of agent P . For each identifier A, there is a definition
A(y1, . . . , yr(A)) := PA (with yi all distinct and fn(PA) ⊆ { y1 . . . yr(A)}) and we
assume that each identifier in PA is in the scope of a prefix (guarded recursion).

The observable actions that agents can perform are defined by the following
syntax:

µ ::= tau
∣∣ x! y

∣∣ x!(z)
∣∣ x? y

where x and y are free names of µ (fn(µ)), whereas z is a bound name (bn(µ));
finally n(µ) = fn(µ) ∪ bn(µ).

The rules for the early operational semantics are defined in Table I. As usual,
operational rules are defined modulo structural congruence, hence the symmet-
ric versions of rules have been omitted.

Several bisimulation equivalences have been introduced for the π-calculus
[Sangiorgi and Walker 2002]; they are based on direct comparison of the observ-
able actions π -agents can perform. They can be strong or weak, early [Milner
et al. 1993], late [Milner et al. 1992] or open [Sangiorgi 1993]. In this article, we

1For convenience, we adopt the syntax that is used in the HAL framework to input π-calculus
specifications. We use (x)P for the restriction, x?(y).P for input prefixes, and x! y .P for output
prefixes. The syntax of the other operators is standard.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

A Model–Checking Verification Environment for Mobile Processes • 445

consider early bisimilarity since it provides the simplest setting for presenting
the basic results of our framework. However, it is possible to also treat other
behavioral equivalences and other dialects of the π-calculus (e.g. asynchronous
π-calculus) [Pistore 1999].

Definition 2.3. A binary relation B over a set of agents is a strong early
simulation if, whenever P B Q , we have that:

—if P
µ−→ P ′ and fn(P, Q)∩bn(µ) = ∅, then there exists Q ′ such that Q

µ−→ Q ′

and P ′ B Q ′.

Relation B is a strong early bisimulation if both B abd B−1 are simulations.
Two agents are said to be strong early bisimilar, written P ' Q , if there

exists a bisimulation B such that P B Q .

2.3 A Temporal Logic for π-Calculus Agents

The standard approach to capturing correctness of π-calculus specification is
through the use of a bisimulation equivalence. However, in some cases, it could
be more useful to check whether crucial properties (such as a variety of safety
and liveness properties) hold. This raises the obvious question of how the logic
behaves with respect to a bisimulation equivalence. Usually, the logic behaves
well, provided that it is adequate with respect to the bisimulation equiva-
lence: two processes are bisimilar if they satisfy exactly the same set of logical
formulae.

Several programming logics have been proposed to express and verify proper-
ties of π-calculus agents (e.g. Dam [1996] and Milner et al. [1993]). These logical
formalisms are extensions, with π-calculus actions, name quantifications, and
parameterizations of standard action-based logics [Hennessy and Milner 1985;
Kozen 1983].

We now introduce the logic we exploit to specify behavioral properties of π-
calculus agents. The logic, called π -logic, extends the modal logic introduced
in Milner et al. [1993] with some expressive modalities. Besides the strong
next modality EX{µ} φ of Milner et al. [1993], the π -logic also includes two
eventually temporal operators (notation EF φ and EF{χ}φ) that permit the
expression of liveness and safety properties. The meaning of EF φ is that φ
must be true sometimes in a possible future, and the meaning of EF{χ} φ
is that the truth of φ must be preceded by the occurrence of a sequence of
actions χ . Derived temporal operators include a weak next modality <µ> φ,
whose meaning is that a number of unobservable tau actions can be exe-
cuted before the action µ,2 and the always operators AG φ, whose meaning
is that φ is true now and always in the future, and AG{χ} φ, whose meaning is
that φ is true now and in all future states reachable performing sequences of
actions χ .

2The notation < > is generally used in the framework of modal logics to denote the strong next
modality, while ¿ À is used for the weak next modality. Here we denote instead, the strong next
by EX and the weak next by < >.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

446 • G.-L. Ferrari et al.

The syntax of the π -logic is given by:

φ ::= true
∣∣ ∼φ ∣∣ φ & φ′

∣∣ EX{µ}φ ∣∣ EF φ
∣∣ EF{χ}φ

where χ could beµ,∼µ, or
∨

i∈Iµi and where I is a finite set. We remark that we
allow for a richer syntax of actions in EF{χ}φ since this is useful for expressing
constraints on the actions that can appear along the path.

The interpretation of the logic formulae is the following:

— P |= true holds always;
— P |= ∼φ if and only if not P |= φ;
— P |= φ & φ′ if and only if P |= φ and P |= φ′;
— P |= EX{µ}φ if and only if there exists P ′ such that P

µ−→ P ′ and P ′ |= φ;
— P |= EF φ if and only if there exist P0, . . . , Pn and µ1, . . . , µn, with n ≥ 0,

such that P = P0
µ1−→ P1 . . .

µn−→ Pn and Pn |= φ.
— P |= EF{χ}φ if and only if there exist P0, . . . , Pn and ν1, . . . , νn, with n ≥ 0,

such that P = P0
ν1−→ P1 . . .

νn−→ Pn, Pn |= φ and:
—χ = µ: for all 1 ≤ j ≤ n, ν j = µ or ν j = tau;
—χ = ∼µ: for all 1 ≤ j ≤ n, ν j 6= µ or ν j = tau;
—χ =∨i∈I µi: for all 1 ≤ j ≤ n, ν j = µi for some i ∈ I or ν j = tau.

The following derived operators can be defined:

—φ ∨ φ′ stands for ∼(∼φ & ∼φ′);
— AX {µ}φ stands for ∼EX{µ}∼φ. This is the dual version of the strong next

operator;
—<µ>φ stands for EF{tau}EX{µ}φ. This is the weak next operator.
—[µ]φ stands for ∼<µ>∼φ. This is the dual version of the weak next operator;
— AG φ stands for ∼EF∼φ and AG{χ} φ stands for ∼EF{χ} ∼φ. These are the

always operators.

Standard results ensure that liveness and safety properties can be naturally
expressed by means of π -logic formulae. Moreover, it has been proved [Gnesi
and Ristori 2000] that the π -logic is adequate with respect to strong early bisim-
ulation equivalence. This means that two π-calculus agents are early bisimilar,
provided that they satisfy the same properties that can be expressed in the
π -logic.

The π -logic comes equipped with a model-checking algorithm to determine
whether or not that properties expressed as π -logic formulae hold for a π-
calculus specification. The construction of the model-checker for the π -logic ex-
ploits and reuses the model-checker implemented for the ACTL logic [De Nicola
and Vaandrager 1990; De Nicola et al. 1993]. The branching time temporal logic
ACTL is the action-based version of CTL [Emerson and Halpern 1986]. ACTL is
well suited to describe the behavior of a system in terms of the actions it per-
forms at its working time. The complete definition of ACTL syntax and semantics
is presented in the Appendix.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

A Model–Checking Verification Environment for Mobile Processes • 447

3. FROM π-CALCULUS AGENTS TO ORDINARY AUTOMATA

In this section, we outline the translation steps that permit, given a π-calculus
agent, the generation of the finite-state and finitely branching ordinary au-
tomaton, representing the agent’s behavior. The generation of the ordinary au-
tomaton associated with a π-calculus agent consists of two stages. The first
stage constructs an intermediate representation of the agent’s behavior taking
advantage of the notion of HD-automaton. The second stage builds the ordinary
automaton, starting from the HD-automaton. The generation of the ordinary
automaton has been split into these two steps to achieve modularity in the struc-
ture of the verification environment. Moreover, the intermediate representation
allows for a more efficient implementation of the second translation step.

3.1 From π-Calculus Agents to HD-Automata

HD-automata have been introduced in Montanari and Pistore [1995], with the
name of π -automata, as a convenient structure for describing in a compact way,
the operational behaviors of π-calculus agents. HD-automata have been further
generalized to deal with name-passing process calculi, process calculi equipped
with location or causality, and Petri Nets [Pistore 1999; Montanari and Pistore
2000, 2003].

Due to the mechanism of input, the ordinary operational semantics of the
π-calculus requires an infinite number of states ever for very simple agents.
The creation of a new name gives rise to an infinite set of transitions, one for
each choice of the new name. To handle this problems in HD-automata, names
appear explicitly in states, transitions, and labels. Indeed, it is convenient to
assume that the names that appear in a state, a transition, or a label of a
HD-automaton are local names and do not have a global identity. In this way,
for instance, a single state of the HD-automaton can be used to represent all
the states of a system that differ just for a bijective renaming. However, each
transition is required to represent explicitly the correspondences between the
names of the source, target, and label.

Definition 3.1. A history-dependent automaton (HD-automaton) is a struc-
ture A = (Q , q0, L, ω, q

λ−→
σ

q′), where:

—Q is a finite set of states;
—q0 is the initial state;
— L is a set of action labels;
—ω is a function associating (finite sets of local) names to states:
ω : Q −→ P f (N);

—q
λ−→
σ

q′ is the transition relation where σ : ω(q′) −→ ω(q) ∪ {∗} is the

(injective) embedding function, and ∗ is a distinguished name.

Function σ embeds the names of the target state in the names of the source
state of the transition. The distinctive symbol ∗ is used to handle the creation
of a new name: the name created during the transition is associated to ∗. Notice
that the names that appear in the source, but not in the target of the transition,

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

448 • G.-L. Ferrari et al.

(/).*-+,
map:{a 7→out,b7→∗}

��

in?(∗)

map:{a 7→out,b7→in}

qq

in?in

in?out

map:{a 7→out}

##GGGGGGGGGGGGGGGGGGGGGG

names : {in, out}
P (in, out)

(/).*-+,
a!b

##GGGGGGGGGGGGGGGGGGGGGGa!b.nil
names : {a, b}

(/).*-+,
a!a

{{wwwwwwwwwwwwwwwwwwwwww
a!a.nil

names : {a}

(/).*-+,
nil

names : {}
Fig. 1. The HD-automaton corresponding to the agent P (in, out) := in?(x).out!x.nil.

are discarded in the evolution. In HD-automata, name creation must be handled
explicitly, using ∗, whereas name discarding can occur silently.

As pointed out in Montanari and Pistore [1995], the usage of local names
allows modeling execution of input prefixes by a finite number of transitions, it
is enough to consider as input values all names that appear free in the source
state, plus just one fresh name. In other words, in the case of the HD-automata,
it does not make sense to have more transitions that differ just in the choice of
the fresh name.

Example 3.2. Consider agent P (in, out) := in?(x).out!x.nil. Figure 1 illus-
trates the corresponding HD-automaton. Local names of states (i.e. the result
of function ω) are graphically represented by the finite set called names. The
names that are used as input values in the transition of P , are in and out (i.e.
the local names of the initial state) and the fresh name ∗. Moreover, labels of
the form in?(∗) are used to denote the input of a fresh name.

The meaning of the names changes along the transitions (i.e. the embedding
function from the names of the target state to the name of the source state) is
represented by the function map labeling the transition. For instance, consider
the transition

P (in, out)
in?(∗)−→

map:{a 7→out,b7→∗}
a!b.nil

of Figure 1. The corresponding embedding function σ : {a, b} −→ {in, out, ∗} is
defined as σ (a) = out, σ (b) = ∗. Finally, in the HD-automaton of Figure 1, the
targets of two input transitions originated from the initial state (namely, the in-
put of a new name and the input of the name in) are merged. The corresponding
agents differ for an injective substitution only.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

A Model–Checking Verification Environment for Mobile Processes • 449

In Montanari and Pistore [1995], it has been proved that finite-state HD-
automata can be built for the class of finitary agents. An agent is finitary if
there is a bound to the number of parallel components of all the agents reachable
from it. In particular, all the finite control agents, that is the agents without
parallel composition inside recursion, are finitary.

Due to the private nature of the names appearing in the states of HD-
automata, bisimulations cannot simply be defined as relations over states but
they must also deal with name correspondences. A HD-bisimulation is a set of
triples of the form 〈q1, δ, q2〉 where q1 and q2 are states of the HD-automata,
and δ is a partial bijection between the names of the states. The bijection is
partial since we allow states with different numbers of names to be equiva-
lent. (In general, equivalent π-calculus agents can have different sets of free
names.)

Suppose that we want to check if states q1 and q2 are (strongly) bisimilar via
the partial bijection δ. Furthermore, suppose that q1 can perform a transition
t1 : q1

λ1−→
σ1

q′1. To check bisimilarity, we have to find a transition t2 : q2
λ2−→
σ2

q′2
that matches t1, that is the two transitions must have the same label according
to bijection δ, and the target states must be bisimilar via the partial bijection
δ′ that is built from δ and from the transition embeddings σ1 and σ2.

Definition 3.3. Let A1 and A2 be two HD-automata on the same set L of
labels. An HD-simulation for A1 and A2 is a set of triples

R ⊆ {〈q1, δ, q2〉 | q1 ∈ Q1, q2 ∈ Q2, δ : partial bijection of w1(q1) and w2(q2)}
such that, whenever 〈q1, δ, q2〉 ∈ R we have:

—for each t1 : q1
λ1−→
σ1

q′1 there is some t2 : q2
λ2−→
σ2

q′2, and:

—λ2 = δ∗(λ1), where δ∗ is a partial bijection between w1(q1)∪{∗} and w2(q2)∪
{∗} such that δ∗(x) = δ(x) if δ∗(x) ∈ w2(q2);

—〈q′1, δ′, q′2〉 ∈ R, where δ′ = σ−1
2 ◦ δ∗ ◦ σ1.

RelationR is an HD-bisimulation if bothR andR−1 = {〈q2, δ−1, q1〉 | 〈q1, δ, q2〉 ∈
R} are HD-simulations.

Two HD-automata, A1 and A2, are HD-bisimilar, written A1 ∼ A2, if their
initial states are bisimilar according to the partial bijection that is the identity
on w1(q0

1) ∩w2(q0
2).

We will briefly comment on the previous definition. The mapping δ∗ allows one
to extend δ either by mapping the special symbol ∗ in t1 into ∗ in t2, or by
mapping into ∗ a name of w1(q1) not covered by δ. This second case is nec-
essary since q1 and q2 may have different sets of free names, and, hence,
different sets of input transitions. For instance, let us consider the agent
Q(in, out, w) := in?(x).out!x.nil. This agent has the same behavior of P (in, out)
but contains an extra name w. According to the definition of HD-bisimulation,
the transition Q(in, out, w)

in?w−→ out!w.nil can be matched by the transition of
P (in, out) corresponding to the input of special symbol ∗.

In Montanari and Pistore [1995] and Pistore [1999] it has been shown
that the definition of HD-bisimilarity applied to HD-automata obtained from

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

450 • G.-L. Ferrari et al.

π-calculus agents induces over π-calculus agents an equivalence relation which
coincides with strong early bisimilarity.

3.2 From HD-Automata to Ordinary Automata

The theory of HD-automata ensures that they provide a finite-state faithful
semantical representation of the behavior of π-calculus agents. Indeed, it is
possible to extract from the HD-automaton of a π-calculus agent its ordinary
early operational semantics. This is done by a simple algorithm, basically a
visit to the HD-automaton, which maintains the global meaning of the local
names of the reached states.

Intuitively, the algorithm behaves as follows. When a fresh name is intro-
duced by a transition of the HD-automaton, a global instantiation has to be
chosen for that name. For instance, suppose we are visiting the HD-automaton
of Figure 1, starting from the initial state. Furthermore, assume that the global
meaning of local names is the identity function (i.e. the function mapping local
names in and out into global names in and out, respectively). If we choose the
transition in?(∗), we have to give a global meaning, say v, to the fresh name ∗.
Then, we reach the state !ab.nil, where the global meaning of names a and b is
out and v, respectively. It is immediately apparent that this corresponds to the
π-calculus transition P (in, out)

in?(v)−→ out!v.nil.3 Clearly, we have a transition
for all the possible choices of the fresh name v. In other words, this procedure
yields an infinite-state automaton. To obtain a finite-state automaton, it suf-
fices to take as a fresh name the first name which has been not already used. In
this way, a finite-state automaton is obtained from each finite HD-automaton.

The ordinary automaton obtained from the HD-automaton of Figure 1 is
displayed in Figure 2. In the ordinary automata, labels of transitions appear in
quotation marks to stress the fact that they are just strings.

To sum up, we outlined a procedure to map (a significant class of) π-calculus
agents into finite-state automata. It is not true in general, however, that bisimi-
lar π-calculus agents are mapped into bisimilar ordinary automata. Indeed, due
to the mechanism for generating fresh names, this is true only if we can guar-
antee that two bisimilar agents have the same set of free names. To guarantee
this property, the HD-automaton has to be made irredundant in a preprocessing
phase. The irredundant construction discards all the names which appear in the
states of the HD-automaton but do not play any active role in the computations
from that state.

For instance, in the case of agent Q(in, out, w) := in?(x).out!x.nil, one can
see that name w does not play an active role and can, therefore, be removed
from the state of the HD-automaton corresponding to Q . As a consequence, the
transition Q(in, out, w)

in?w−→ out!w.nil also disappears, yielding an irredundant
automaton. The irredundant HD-automaton is more compact than the starting
“redundant” HD-automaton, but describes the same behaviors.

In Montanari and Pistore [1995], a simple and efficient algorithm is de-
scribed to make irredundant the HD-automata corresponding to π-calculus

3Notice that parentheses have been added around the name v in order to stress that v is used as a
fresh name in the transition.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

A Model–Checking Verification Environment for Mobile Processes • 451

(/).*-+,
“in?(a)′′

{{wwwwwwwwwwwwwwwwwwwwww

“in?in′′

��

“in?out ′′

##GGGGGGGGGGGGGGGGGGGGGG

P (in, out)

(/).*-+,
“out!a′′

##GGGGGGGGGGGGGGGGGGGGGGout!a.nil (/).*-+,
“out!in′′

��

out!in.nil (/).*-+,
“out!out ′′

{{wwwwwwwwwwwwwwwwwwwwww out!out.nil

(/).*-+,
nil

Fig. 2. The ordinary automaton corresponding to the HD-automaton of Figure 1.

agents without matching. HAL exploits an extension of this algorithm which
is also able to handle a limited form of matching.4

In Montanari and Pistore [1995] and Pistore [1999], it has been shown that
the standard definition of bisimulation applied to ordinary automata obtained
from irredundant HD-automata induces on the HD-automata a relation that co-
incides with HD-bisimilarity. This yields a procedure for checking the bisimilar-
ity of two π-calculus agents. The two agents are translated into HD-automata.
These are made irredundant and translated into ordinary automata. Finally,
standard bisimilarity checking algorithms are exploited on the ordinary au-
tomata. The theoretical results of Montanari and Pistore [1995] and Pistore
[1999] ensure the correctness of this procedure.

To conclude this section, we show the expressiveness of HD-automata in
handling bisimilarity.

Example 3.4. Consider the π-calculus agent

Q(in, out) := (z)(in?(x).z!x.nil ‖ z?(y).out! y .nil).

The standard π-calculus early operational semantics yields an infinite-state
and infinite branching labeled transtion system (see Figure 3(A)). The ordinary
automaton which results instead from the HD translation steps is displayed in
Figure 3(B). It is apparent that agent Q(in, out) is weakly bisimilar to agent
P (in, out) of Example 3.2.

4Intuitively, the names that appear in a matching must be bound and can never be the objects of
bound output transitions.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

452 • G.-L. Ferrari et al.

Fig. 3. State space representation of agent Q(in, out).

4. FROM π -LOGIC TO ACTL

Our purpose now is to define an automatic verification procedure to model-
check whether or not a π -logic formula holds for a π-calculus specification. In
Section 3, we have shown that it is possible to derive an ordinary automa-
ton for finitary π-calculus. Hence, if we were able to translate formulae of
the π -logic into “ordinary” logic formulae, it should be possible to use existing
model-checking algorithms to check the satisfiability of “ordinary” logic formu-
lae over ordinary automata. This translation is possible using ACTL [De Nicola
and Vaandrager 1990], for which an efficient model-checker has been imple-
mented [Ferro 1994] and for which a sound translation exists.

In the rest of this section, we present the translation function that associates
an ACTL formula with a formula of π -logic. The translation is defined by having
in mind a precise soundness result: we want aπ -logic formula to be satisfied by a
π-calculus agent P if and only if the finite-state ordinary automaton associated
with P satisfies the corresponding ACTL formula. The translation of a formula
is thus not unique, but depends on the agent P . Specifically, it depends on the
set S of the action labels that occur in the transitions of the ordinary automaton
associated with the agent P .

Definition 4.1. Let θ = { y ′/ y}. We define µθ as being the action µ′ ob-
tained from µ by replacing the occurrences of the name y with the name
y ′. Moreover, we define trueθ = true, (φ1&φ2)θ = φ1θ&φ2θ , (∼φ)θ = ∼φθ ,
(EX{µ}φ)θ = EX{µθ}φθ , (EFφ)θ = EFφθ and (EF{χ}φ)θ = EF{χθ}φθ .

Definition 4.2 (translation function). Given a π -logic formula φ and a set
of action labels S, the ACTL translation of φ is the ACTL formula TS(φ) defined
as follows:

—TS(true) = true
—TS(φ1&φ2) = TS(φ1)&TS(φ2)
—TS(∼φ) = ∼TS(φ)
—TS(EX{µ}φ) = ∨

µ′∈TS (µ)EX{µ′}TS(φθ) where θ = { y ′/ y} if bn(µ) = y and
bn(µ′) = y ′

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

A Model–Checking Verification Environment for Mobile Processes • 453

—TS(EFφ) = EFTS(φ)
—TS(EF{χ}φ) = E[true{∨µ′∈TS (χ)µ

′}UTS(φ)]

where:

—TS(tau) = {tau}
—TS(x! y) = {x! y}
—TS(x!(y)) = {x!(z) ∈ S | z is a name }
—TS(x? y) = {x? y} ∪ {x?(z) ∈ S | z is a name }
—TS(∼µ) = S r TS(µ)
—TS(

∨
i∈I µi) =

⋃
i∈I TS(µi).

Here, we assume that when S = ∅ then
∨
µ′∈TS (χ)φ = false. Notice that the

complexity of the translation has a worst case complexity which is exponential
in the number of actions appearing in set S.

Example 4.3. Let us consider agent P (in, out) introduced in Example 3.2.
Agent P satisfies the π -logic formula φ = EX{in?u}EX{out!u}true for each name
u, since P

in?u−→ for each name u and then it performs an out! action with the
corresponding name. We want to verify whether the ACTL translation of the
formula holds in the ordinary automaton associated with P , so we have to
consider the ACTL translation of the formula with respect to the set of actions
S used in the ordinary automaton of P . The translation of the formula is:

EX{in?u}EX{out!u}true ∨ EX{in?(a)}EX{out!a}true,

since the only bound input action in S is in?(a). Note that the resulting ACTL

formula holds in the ordinary automaton of P .
Assume now that S contains two bound input actions in?(a) and in?(b). In

this case the translation yields the formula:

EX{in?u}EX{out!u}true ∨ EX{in?(a)}EX{out!a}true
∨ EX{in?(b)}EX{out!b}true.

The correctness of the translation is shown in Gnesi and Ristori [2000].
More precisely, let P be a π-calculus agent and let A be the corresponding
ordinary automaton (namely, the automaton obtained by translating P into an
HD-automaton, by making the HD-automaton irredundant, and by translating
it into an ordinary automaton). Then P satisfies a π -logic formula φ, if and only
if, A satisfies the formula TS(φ), where S are the action labels of A. We remark
that ACTL is adequate with respect to the standard bisimulation on ordinary au-
tomata. Therefore, in the verification of formula TS(φ) it is possible to replace
automaton A with a bisimilar automaton. This makes it possible, for instance,
to minimize the automaton A before doing the actual verification.

We conclude this section observing that one of the advantages of model-
checking is that, if a formula is false, a counter-example is returned by the
verification engine. This counter-example can guide the user in detecting and
fixing the error. Currently, the counter-example is returned on the ordinary
automaton, and the user is responsible of reinterpreting it on the starting π-
calculus agent.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

454 • G.-L. Ferrari et al.

5. HAL ARCHITECTURE

The previous sections outlined the theoretical foundations of an automata-
based approach to the finite-state verification of name-passing process calculi.
It remains to be shown that this theory can be exploited as a basis for the
design and development of an effective and usable verification toolkit. This sec-
tion and the one following explore this issue by describing our experience in
experimenting in an environment, called HAL, for verifying finite-state mobile
systems represented in the π-calculus.

HAL has been implemented on top of the JACK environment [Bouali et al.
1994]. The idea behind JACK5 is to combine different specification and verifica-
tion toolkits [Madelaine and Vergamini 1990; Roy and De Simone 1990; Bouali
and De Simone 1992; Ferro 1994] around a common format for representing
ordinary automata: the FC2 file format [Bouali et al. 1996]. FC2 allows inter-
operability among JACK tools. Moreover, tools can easily be added to the JACK
system, thus extending its potential. An ordinary automaton is represented in
the FC2 format by means of a set of tables that keep the information about state
names, arc labels, and transition relations between states. The JACK front-
ends allow specifications to be described both in textual form and in graphical
form, by drawing automata. Moreover, JACK provides sophisticated graphical
procedures for the description of specifications as networks of processes. This
supports hierarchical specification development. Once the specification of a sys-
tem has been written, JACK permits the construction of the global automaton
corresponding to the behavior of the overall system. Moreover, automata can
be minimized with respect to several behavioral equivalences. Finally, ACTL can
be used to describe temporal properties and model-checking can be performed
to check whether systems (i.e. their models) satisfy the properties.

The HAL toolkit is the component of JACK that provide facilities to deal with
π-calculus specification by exploiting HD-automata. The goal of HAL is to verify
properties of mobile systems specified in the π-calculus. Exploiting HAL facili-
ties, π-calculus specifications are translated first into HD-automata, and then
into ordinary automata. Hence, the JACK bisimulation checkers can be used
to verify bisimilarity. Automata minimization, according to bisimulation is also
possible. HAL supports verification of logical formulae that describes properties
of the behavior of π-calculus specifications. The ACTL model-checker provided
by JACK can be used for verifying properties of π-calculus specifications after
the π -logic formulae expressing the properties have been translated into ACTL

formulae. Notice that the complexity of the model-checking algorithm depends
on the construction of the state-space of the π-calculus agent to be verified,
which is, in the worst case, exponential in the syntactic size of the agent.

The architecture of HAL is displayed in Figure 4. The current implemen-
tation consists of five main modules all integrated inside the JACK environ-
ment. Three of these modules handle the translations from π-calculus agents
to HD-automata, from HD-automata to ordinary automata, and from π -logic
formulae to ACTL formulae. The fourth module provides several routines that

5Detailed information about JACK are available at http://matrix.iei.pi.cnr.it/projects/JACK.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

A Model–Checking Verification Environment for Mobile Processes • 455

Fig. 4. The logical architecture of the HAL environment.

manipulate the internal representation of HD-automata. The routine for mak-
ing HD-automata irredundant (see Section 3.2) is contained in this module. The
last module provides HAL with a user-friendly Graphical User Interface (GUI).
The HAL user-interface is split into two sides, the Agent side and the Logical
side (see also Figures 5 and 6). The Agent side allows:

—the transformation of π -agents into HD-automata and then into ordinary
automata (options Build and Unfold),

—the verification of equivalence of ordinary automata (option Check).

The Logic side allows a π -logic formula to be translated into the corresponding
ACTL formula taking into account the specific automaton on which it will be
checked (option Translate), and its verification through model-checking (op-
tion Check).

Several optimizations have been implemented. These optimizations reduce
the state-space of HD-automata, thus allowing a more efficient generation of the
ordinary automata associated with π-calculus agents. An example of optimiza-
tion is given by the reduction of tau chains (that are unbranched sequences of
tau transitions) to simple tau transitions (option Reduce). Another optimiza-
tion consists of the introduction of constant declarations. Constant names are
names that cannot be used as objects of input or output actions (for instance,
names that represent stationary communication topologies, namely, communi-
cation topologies that cannot be modified when computations progress). Since
constant names are not considered as possible input values, the branching

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

456 • G.-L. Ferrari et al.

Fig. 5. The Agent side of HAL.

structure of input transitions is reduced. The semantic handling of constants
is presented in Pistore [1999]. Constants have to be declared in the π-calculus
specifications.

The distinguishing feature of our approach is the reduction of a specific name-
based theory (the π-calculus) into an automata-like intermediate format (HD-
automata). Theoretical results ensure the soundness of this reduction. Further-
more, this allowed us the semantic reuse of both verification principles and au-
tomatic methods specifically developed for ordinary finite-state automata. The
main drawback of this approach is the generation of counterexamples when the
π-calculus specification does not satisfy some properties. Indeed, counterexam-
ples are generated by the JACK model-checker, but they are shown in the or-
dinary automata world. In other words, users are responsible of reinterpreting
them on the orginal π-calculus specifications. This can be done, for instance, by
exploiting the Autograph toolkit (a module of the JACK system) which provides
services to animate and visualize ordinary automata.

HAL is written in C++ and compiles with the GNU C++ compiler. The GUI is
written in Tcl/Tk. HAL is currently running on SUN stations (under SUN-OS)
and on PC stations (under Linux). Recently, the HAL toolkit has been restruc-
tured and made available as a Web service. By a few clicks in a browser at the
URL http://matrix.iei.pi.cnr.it:8080/halontheweb/, the HAL Web service
can be accessed remotely and its facilities can be exercised directly over the Web.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

A Model–Checking Verification Environment for Mobile Processes • 457

Fig. 6. The Logical side of HAL.

6. VERIFICATION CASE STUDIES

In this section, we discuss some experimental results of HAL in the analysis of
mobile systems specified in the π-calculus. The experiments have been run on a
PC with a Pentium 4 - 1.80GHz processor and 512 MB memory, running Linux
2.4.18.

The examples are available, along with the HAL bundle at URL: http://
matrix.iei.pi.cnr.it/projects/hal.

6.1 Data Structures

The first example concerns reasoning about data structures represented as
π-calculus processes. This is a simple exercise in reasoning about π-calculus
specifications and yet allows the demonstration of common verification patterns
which arise frequently when using π-calculus specifications.

To begin, let us consider the simplest example of a memory cell. A cell can
be represented as a (recursive) process of the form

define Cell(i,o) = i?(c).o!c.Cell(i,o).

A process can store a new value via the channel i and read the stored value
via the channel o. We shall exploit the Cell data structure to construct more
interesting data structures. Figure 7 illustrates the HAL specification of two
data structures: heap and buffer. For simplicity, we assume that the two data

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

458 • G.-L. Ferrari et al.

Fig. 7. Heap and buffer specifications.

structures have a fixed size, and that names in, out are constants. For com-
pleteness, we also report the build statements. These statements are used to
invoke the HAL facility that constructs the HD-automaton associated with a
π-calculus process.

We expect that the specifications above satisfy certain properties. A main
requirement is that whenever a value is inserted in the data structure, then

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

A Model–Checking Verification Environment for Mobile Processes • 459

Table II. Heap Specification: Model Construction

π -spec π -to-hd red-hd hd-to-aut aut-min
heap1 2 (0.00) 2 (0.00) 2 (0.00) 2 (0.00)
heap2 7 (0.01) 7 (0.01) 11 (0.00) 6 (0.00)
heap3 22 (0.04) 22 (0.02) 75 (0.05) 20 (0.00)
heap4 74 (0.17) 74 (0.03) 700 (0.62) 70 (0.12)
heap5 277 (1.04) 277 (0.15) 8476 (15.42) 252 (2.21)
heap6 1154 (6.66) 1154 (0.90) 126125 (715.28) 924 (141.96)
heap7 5294 (46.00) 5294 (5.66) — —
heap8 26441 (338.26) 26441 (35.62) — —

Table III. Heap Specification:
Model-Checking Results

π -spec property results
heap4 Memory OK (0.01)
heap4 NoDeadlock OK (0.00)
heap4 Order NO (0.01)

it is possible to make it available in output. The following formula represents
this property:

define Memory = AG([in?m]EF(<out!m>true))

Other interesting properties to be verified are

define NoDeadlock = AG(<in?*>true | <out!*>true)

(specifying that the evolution never reaches a deadlock state) and

define Order = AG([in?m][in?n] ~ (EF {~out!m} EX {out!n} true))

(specifying that the data structure adopts a FIFO policy, namely that, if name m
is received before name n, then there is no path along which name n is emitted
before name m).

Table II illustrates the results of the model creation for heap specifications.
The model is computed by generating the HD-automaton associated to the π-
calculus specification (column π -to-hd), the resulting HD-automaton is then
made irredundant (column red-hd), the irredundant HD-automata is trans-
formed into an ordinary automaton (column hd-to-aut) and then minimized
(column min-aut). The numerical entries of the table give the number of states
of the automaton and the construction time (in seconds). Notice that we were
not able to construct the ordinary automata corresponding to heap7 and heap8
specifications because of state explosion. Table III illustrates the results of the
model-checking activity for the heap4 specification. Tables IV and V illustrate
the results of our experiments for the buffer specifications. We note that prop-
erty Order is true only for buffers, while the other two properties are true for
both structures.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

460 • G.-L. Ferrari et al.

Table IV. Buffer Specification: Model Construction

π -spec π -to-hd red-hd hd-to-aut aut-min
buffer1 2 (0.00) 2 (0.00) 2 (0.00) 2 (0.00)
buffer2 7 (0.02) 5 (0.00) 8 (0.00) 7 (0.00)
buffer3 20 (0.03) 14 (0.00) 51 (0.02) 37 (0.00)
buffer4 67 (0.13) 51 (0.02) 504 (0.18) 297 (0.05)
buffer5 255 (0.80) 209 (0.08) 6370 (3.89) 3251 (3.26)
buffer6 1080 (4.88) 930 (0.38) 97473 (158.74) 45013 (1154.27)
buffer7 5017 (31.53) 4461 (2.02) — —
buffer8 25287 (213.58) 22977 (11.63) — —

6.2 λ-Calculi

Although based on simple primitives, the π-calculus is very expressive. It can
encode the λ-calculus and other functional programming formalisms. Similarly,
a variety of imperative, object-oriented and concurrent programming languages
have been reduced to the π-calculus. Moreover, several encodings of λ-calculus
evaluation strageties into the π-calculus have been developed. All these encod-
ings have three common features:

—function application is modeled as parallel composition,
—β-reduction is modeled as synchronization,
—the encoding is parameterized over a name which models the environment.

Here, we do not discuss the theories underlying the interpretation of λ-calculi
into the π-calculus (we refer to Sangiorgi and Walker [2002] for the detailed
treatment). Instead, we aim at showing how HAL can be exploited to reason
about such encodings.

Let us consider the following three simple λ-calculus terms:

— P = (λx.x),
— Q = (λx.x)(λx.x), and
— R = (λx.(xx))(λx.x).

Their π-calculus interpretation is as follows.

define P(u) = u?(p). p?(x). p?(v) . x!v . nil

define FIX_P(z) = z?(w). (FIX_P(z) | P(w))
define Q(u) = (v)(P(v) | (z)(p)(v!p. p!z. p!u. nil | FIX_P(z)))

define FIX_x(z,x) = z?(w). (FIX_x(z,x) | x!w.nil)
define Aux(u) = u?(p). p?(x). p?(v) .

(w)(x!w. nil | (z)(p) (w!p. p!z. p!v. nil | FIX_x(z,x)))
define R(u) = (v)(Aux(v) | (z)(p)(v!p. p!z. p!u. nil | FIX_P(z)))

Table VI illustrates the results of the model creation for the encoding (we only
report the construction time). Theoretical results guarantee that P is bisimilar
to Q and R. Checking the two bisimilarities in HAL takes 0.01 sec. and 0.02
sec., respectively.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

A Model–Checking Verification Environment for Mobile Processes • 461

Table V. Buffer Specification: Model
Checking Results

π -spec property results
buffer4 Memory OK (0.01)
buffer4 NoDeadlock OK (0.02)
buffer4 Order OK (0.03)

Table VI. Interpreting λ Terms: Model Construction

π -encoding π -to-hd red-hd hd-to-aut aut-min
P 0.00 0.00 0.00 0.00
Q 0.02 0.00 0.00 0.00
R 0.03 0.00 0.00 0.00

In order to experiment with HAL and λ-calculus encodings, we introduce a
“wrong” encoding into the π-calculus of the three λ terms previously presented.

define P(u) = u?(p). p?(x). p?(v) . x!v . nil

define Q(u) = (v)(P(v) | (z)(p)(v!p. p!z. p!u. nil | z?(w). P(w)))

define Aux(u) = u?(p). p?(x). p?(v) .
(w)(x!w. nil | (z)(p) (w!p. p!z. p!v. nil | z?(w). x!w. nil))

define R(u) = (v)(Aux(v) | (z)(p)(v!p. p!z. p!u. nil | z?(w). P(w)))

Exploiting HAL facilities, we compute that this encoding is not correct: P is
bisimilar to Q (0.03 sec.), but is not bisimilar to R (0.01 sec.).

6.3 Security Protocols

Cryptography is an important mechanism for achieving security in distributed
systems. The creation of unique names (nonces) is an essential primitive to
identify sessions or to timestamp freshness of a message in security protocols.
The generation of nonces is an instance of the dynamic name generation pro-
vided by the π-calculus. This observation has led to modeling keys as names,
key generation as restriction, and communication on a cryptographic channel
as communication on its key. For instance, the following π-calculus processes
provide a simple specification of a set of cryptographic primitives with symmet-
ric keys.

define CryptedMsg(cm,k,m) = cm?(x). (t)(k!t. t?(y). t?(r). [y=x] r!m.nil)

define Encrypt(r,k,m) = (cm)(r!cm. CryptedMsg(cm,k,m))

define Decrypt(r,k,cm) = (x)(cm!x.k?(t).t!x.t!r.nil)

Basically, this specification describes a ciphertext (a cryptographic message) as
an abstract object with the methods Encrypt and Decrypt.

The spi calculus [Abadi and Gordon 1999] is an extension of the π-calculus
with basic primitives to represent ciphertexts, and constructs for generation of

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

462 • G.-L. Ferrari et al.

nonces and keys. Spi-like calculi have been used to specify and verify secrecy
and authenticity properties of several cryptographic protocols. Moreover, there
has been some work on designing and implementing toolkits to assist reasoning
about security protocols. Here, we do not discuss in detail the issues of name-
passing calculi for security, but we aim at showing the use of HAL facilities to
assist specification and verification of security protocols. We illustrate some ex-
amples for secure communication and key exchange. In all case we model check
properties over the models generated by the protocol specifications. Clearly, our
security protocol specifications are lower level than those of other formalisms
specifically designed to specify security protocols, since our goal is to illustrate
the usability of HAL to tackle a variety of specification issues of global computing
systems.

The following π-calculus specifications describe four simple security pro-
tocols. Processes SimpleSP1 and SimpleSP2 receive two plain-text messages
over channel in, SimpleSP1 encrypts the first message; SimpleSP2, instead,
encrypts the second message. The resulting cipher-text is sent along channel
out.

define SimpleSP1(in,out) =

(k)(in?(m1).in?(m2). (r)(Encrypt(r,k,m1) | r?(cm). out!cm.nil))

define SimpleSP2(in,out) =

(k)(in?(m1).in?(m2). (r)(Encrypt(r,k,m2) | r?(cm). out!cm.nil)).

Under the perfect encryption hypothesis, the external, hostile environment
is not able to decrypt the cipher text: the protocol does not leak the content of
the cipher text. This is the standard notion of leaking, formalized in terms of
bisimilarity. Indeed, the two π-calculus processes are bisimilar: HAL takes 0.01
sec. to check bisimilarity.

Let us now consider processes SimpleSP3 and SimpleSP4:

define SimpleSP3(in,out) =

(k)(in?(m1).in?(m2). (r)(Encrypt(r,k,m1) | r?(cm). out!cm.out!k.nil))

define SimpleSP4(in,out) =

(k)(in?(m1).in?(m2). (r)(Encrypt(r,k,m2) | r?(cm). out!cm.out!k.nil)).

In this case, the protocol does leak the encryption key k in the hostile environ-
ment, and HAL reports correctly that the two processes are not bisimilar.

We now consider other simple security protocols. Protocol SP1 models a cryp-
tographic communication along an unsecure channel between two principals
sharing a symmetric key. Protocol SP2 models a cryptographic communication
where the initiator of the protocol encrypts, using a symmetric key, the session
key. The message is then forwarded along the unsecure channel exploiting the
session key.

define P1(in,bus,k) =

in?(m). (r) (Encrypt(r,k,m) | r?(cm). bus!cm. nil)

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

A Model–Checking Verification Environment for Mobile Processes • 463

Table VII. Reasoning About Security Protocols

security protocol π -to-hd red-hd hd-to-aut aut-min
SP1 49 (0.09) 25 (0.00) 39 (0.01) 25 (0.00)
SP2 726 (4.56) 466 (0.12) 1329 (0.31) 270 (0.39)

security protocol property results computation time
SP1 AlwaysSuccess NO 0.00
SP1 PossibleSuccess OK 0.01
SP1 NoWrongOutput OK 0.00
SP2 AlwaysSuccess NO 0.02
SP2 PossibleSuccess OK 0.02
SP2 NoWrongOutput OK 0.03

define Q1(bus,out,k) =

bus?(cm). (r)(Decrypt(r,k,cm) | r?(m). out!m. nil)

define SP1(in,bus,out) = (k) (P1(in,bus,k) | Q1(bus,out,k))

define P2(in,bus,k1) = in?(m). (r1)(r2)(k2)

(Encrypt(r1,k1,k2) |

r1?(cm1). bus!cm1. Encrypt(r2,k2,m) | r2?(cm2). bus!cm2. nil)

define Q2(bus,out,k1) = bus?(cm1). bus?(cm2). (r1)

(Decrypt(r1,k1,cm1) |

r1?(k2). (r2)(Decrypt(r2,k2,cm2) | r2?(m). out!m. nil))

define SP2(in,bus,out) = (k1) (P2(in,bus,k1) | Q2(bus,out,k1))

To reason about these security protocols we consider the following properties
whose meaning is straightforward. Table VII illustrates the results of experi-
menting with HAL to verify these cryptographic protocols on properties:

define AlwaysSuccess = AG([in?n]<out!n>true)

define PossibleSuccess = AG([in?m]\ti{EF}(<out!m>true))

define NoWrongOutput = AG([in?n][out!m]false).

We see that it is not possible to ensure the success of communication (property
AlwaysSuccess), since messages flow on public channels that are unreliable (e.g.
messages can be intercepted). However, the communication may be successful
(property PossibleSuccess), and in this case, we can ensure the reception of
the right message (property NoWrongOutput).

To conclude this section, we consider a security protocol of larger size, the
well known Wide Mouth Frog (WMF) protocol [Burrow et al. 1989]. In the WMF
protocol, principal A transmits a secret message to principal B by a session key
k. The session key is exchanged through a trust server S. The keys kas, kbs
are secret keys for communicating from the server to principals A and B. The

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

464 • G.-L. Ferrari et al.

Table VIII. Reasoning on the WMF Protocol

security protocol π -to-hd red-hd hd-to-aut aut-min
WMF 2046 (24.89) 1079 (0.35) 4146 (1.39) 436 (1.72)

security protocol property results computation time
WMF AlwaysSuccess NO 0.05
WMF PossibleSuccess OK 0.05
WMF NoWrongOutput OK 0.03

specification of the WMF protocol below. Table VIII illustrates the experimental
results for the WMF protocol.

define A(kas,in,bus) =
in?(v).(k)(r)(Encrypt(r,kas,k) |

r?(ck). bus!ck. (r)(Encrypt(r,k,v) |
r?(cv). bus!cv. nil))

define B(kbs,out,bus) =
bus?(ck).(r)(Decrypt(r,kbs,ck) |

r?(k). bus?(cv). (r)(Decrypt(r,k,cv) |
r?(v). out!v. nil))

define S(kas,kbs,bus) =
bus?(ck).(r)(Decrypt(r,kas,ck) |

r?(k). (r)(Encrypt(r,kbs,k) |
r?(ck). bus!ck. nil))

define WMF(in,out,bus) =
(kas)(kbs)(A(kas,in,bus)|B(kbs,out,bus)|S(kas,kbs,bus))

6.4 The Handover Protocol for Mobile Telephones

The last case study concerns the specification of the core of the handover pro-
tocol for the GSM Public Land Mobile Network (GSM) proposed by the Eu-
ropean Telecommunication Standards Institute. The specification is borrowed
from that given in Victor and Moller [1994], which has been, in turn, derived
from that in Orava and Parrow [1992].

The π-calculus specification of the GSM protocol is

define GSM(in,out) =

(tca)(ta)(ga)(sa)(aa)(tcp)(tp)(gp)(sp)(ap)

|(Car(ta,sa,out),

Base(tca,ta,ga,sa,aa),

IdleBase(tcp,tp,gp,sp,ap),

Centre(in,tca,ta,ga,sa,aa,tcp,tp,gp,sp,ap)).

Centre receives messages from the environment on channel in; these input
actions are the only observable actions performed by Centre. Module Car sends

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

A Model–Checking Verification Environment for Mobile Processes • 465

Fig. 8. π-calculus specification of GSM modules.

the messages to the end-user along the channel out; these outputs are the only
visible actions performed by the Car. Modules Centre and Car interact via the
base corresponding to the cell in which the car is located. The specifications for
modules Car, Base, IdleBase, and Centre are reported in Figure 8. The behavior
of the four modules is briefly summarized:

—Car brings a MobileStation and travels across two different geographical
areas that provide services to end-users.

—Base and IdleBase are Base Station modules. They interconnect the Mo-
bileStation and the MobileSwitching Centre.

—Centre is a MobileSwitching centre which controls radio communications
within the whole area composed by the two cells.

The protocol starts when Car moves from one cell to the other. Indeed, Centre
communicates to the MobileStation the name of the base corresponding to the
new cell. The communication of the new channel name to the MobileStation is
performed via the current base. All the communications of messages between
the MobileSwitching centre and the MobileStation are suspended until the Mo-
bileStation receives the names of the new transmission channels. Then the base
corresponding to the new cell is activated, and the communications between the
MobileSwitching centre and the MobileStation continue through the new base.

The observable behavior of the GSM protocol can be abstracted by a three-
position buffer. The buffer queues the messages and is specified by the module
GSMbuffer as follows

define S0(in,out) =

in?(v). S1(in,out,v) + tau. S0(in,out)

define S1(in,out,v1) =

in?(v). S2(in,out,v1,v) + out!v1. S0(in,out) + tau. out!v1. S0(in,out)

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

466 • G.-L. Ferrari et al.

Fig. 9. Full specification of the GSM protocol.

define S2(in,out,v1,v2) =

in?(v). S3(in,out,v1,v2,v) + out!v1. S1(in,out,v2) +

tau. out!v1. out!v2. S0(in,out)

define S3(in,out,v1,v2,v3) =

out!v1. S2(in,out,v2,v3)

define GSMbuffer(in,out) = S0(in,out).

Figure 9 illustrates a version of the GSM protocol that models the
MobileSwitching and MobileStation modules in a more realistic way. Indeed,

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

A Model–Checking Verification Environment for Mobile Processes • 467

Table IX. GSM Protocol: Model Creation and Bisimilarity

protocol π -to-hd red-hd hd-to-aut aut-min
GSMbuffer 12 (0.00) 12 (0.00) 49 (0.02) 49 (0.02)
GSM 55 (0.33) 35 (0.02) 135 (0.03) 49 (0.01)
GSMfull 260 (3.07) 146 (0.03) 557 (0.12) 49 (0.05)

GSMbuffer ∼ GSM OK (0.14)
GSMbuffer ∼ GSMfull OK (0.14)

GSM ∼ GSMfull OK (0.13)

Table X. Model Creation without Constant Names

protocol π -to-hd red-hd hd-to-aut aut-min
GSMbuffer 65 (0.04) 65 (0.02) 164 (0.03) 163 (0.01)
GSM 211 (1.18) 167 (0.04) 407 (0.08) 163 (0.04)
GSMfull 960 (10.37) 676 (0.15) 1633 (0.31) 163 (0.15)

the ‘full’ version exploits a protocol for establishing whether or not the car is
crossing the boundary of a cell and entering the other cell.

It is possible to check that GSM, GSMfull, and GSMbuffer have the same be-
havior. Indeed, GSM and GSMfull are proved to be weakly bisimilar to GSMbuffer.
Table IX gives the performance figures of the model creation and of the bisimu-
lation checks when in and out are assumed to be constant names. Table X gives
the figures of the model creation when in and out are not constant names.

We expect that the GSM specifications satisfy some properties. Namely, the
protocol is reliable: when a message has been sent, then it is possible to receive
it, and in-order delivery is guaranteed. The logical formulae:

Reliable1 = AG([in?n]EF<out!n>true)

Reliable2 = AG([in?m][in?n] ~ (EF {~out!m} EX {out!n} true))

specify this property. The first formula states that whenever a message m is
received from the external environment through the channel in, then it will be
eventually retransmitted to the end-user, via the channel out. The meaning of
the second formula is that if name m is received before n, then there is no path
along which name n is emitted before m.

We also expect that the formula

FastTransmission = AG([in?m1][in?m2][in?m3]
([out!m2]false &

[out!m3]false & <out!m1>true & [in?*]false))

will be satisfied. This formula states that whenever three messages are received
in sequence through the channel in, then the first message will be retransmitted
soon to the end-user through the channel out, before performing any input from
channel in.

Other logical formulae expressing propeties are

NoStop = AG(EX{*?*}true | EX{*!*}true | EX{} true)

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

468 • G.-L. Ferrari et al.

Table XI. Model-Checking GSM
Properties

GSMbuffer
π -logic-to-actl (0.02)
Reliable1 OK (0.00)
Reliable2 OK (0.00)
FastTrasmission OK (0.01)
NoStop OK (0.00)
NoWait NO (0.00)

GSM
π -logic-to-actl (0.00)
Reliable1 OK (0.00)
Reliable2 OK (0.00)
FastTrasmission OK (0.02)
NoStop OK (0.00)
NoWait NO (0.00)

GSMfull
π -logic-to-actl (0.00)
Reliable1 OK (0.00)
Reliable2 OK (0.02)
FastTrasmission OK (0.00)
NoStop OK (0.00)
NoWait NO (0.00)

(that states that the protocol is always running) and

NoWait = AG(<in?*>true)

(that states that input operations have higher priority than the other operations
of the protocol).

Notice that in the previous formulae the shorthand {*?*} is used to indicate
any input action and in?* is used to denote the reception of any name.

Assuming, that in and out are constant names, the performance figures of the
model-checking are given in Table XI. All the properties are true, except NoWait
(the handover phase has higher priority than the input of new messages).

7. CONCLUDING REMARKS

We have described HAL, an automata-based verification environment for the
π-calculus. We illustrated the usability of HAL by reasoning on a variety of spec-
ifications. Our approach differs from others in that we do not place emphasis
on a specification language, but rather we exploit the intermediate, syntax-
independent format provided by HD-automata. HD-automata give the basis to
handle finite-state verification in the case of modern specification calculi for
global computing systems, like π-calculus, spi-calculus and so forth.

Our current research activity proceeds mainly on two fronts. The first line
of reasearch aims at extending HAL to work directly on HD-automata without
requiring the mapping to ordinary automata for verification. In particular, we

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

A Model–Checking Verification Environment for Mobile Processes • 469

are developing a module able to directly minimize HD-automata. Foundational
results [Montanari and Pistore 2000, 2003; Ferrari et al. 2002] guarantee the
existence of minimal HD-automata. Moreover, the development of verification
algorithms that work directly on HD-automata would also have the advantage
of presenting the results of the verification (e.g. the counter-examples) in a
form that is nearer to the π-calculus notations. Currently, counter-examples
are returned in the ordinary automaton world, and the user is responsible for
reinterpreting them on the original π-calculus specifications.

In the second line of research, we are extending the theory of HD-automata
in several ways. We plan to extend the basic model to endow states with a struc-
ture intended to describe and observe the spatial organization of systems in a
broad sense. In particular, we are exploiting HD-automata as a general model
for spatial logics Cardelli and Caires [2002, 2003], where typically one is able to
express that if a state has a certain structure, then it satisfies some properties.
Another research activity concerns the development of abstraction and com-
position techniques for HD-automata to avoid the state explosion problem on
specifications of complex global computing systems. To this purpose, we plan to
investigate how the techniques developed in Chaki et al. [2002] can be applied
to our framework.

To end the article, we make a more detailed comparison with the Mobility
Workbench (MWB) [Victor and Moller 1994]. In the MWB, the verification of
bisimulation equivalence between (finite control) π-calculus agents is made on
the fly [Fernandez and Mounier 1991], that is, the state spaces of the agents
are built during the construction of the bisimulation relation. Checking bisim-
ilarity is, in the worst case, exponential in the syntactical size of the agents
to be checked. The model-checking functionality offered by the MWB is based
on the implementation of a tableau-based proof system [Dam 1996, 2003] for
the Propositional µ-calculus with name-passing (an extension of µ-calculus in
which it is possible to express name parameterization and quantifications over
the communication objects). In the largest example we considered, the GSM
protocol, the time required by MWB for checking bisimilarity (running on a
Pentium4/2GHz machine) of GSMfull and GSMbuffer is similar to the time re-
quired by HAL: MWB requires about 5 seconds, while HAL requires about 11
seconds.

There are several differences between our approach and the one adopted in
the MWB that make it difficult to perform a precise comparison of the two veri-
fication environments. For instance, in HAL the state space of a π-calculus agent
is built only once. Hence, it can be minimized with respect to some minimiza-
tion criteria, and then used for behavioral verifications and for model-checking
of logical properties. The π -logic, although expressive enough to describe in-
teresting safety and liveness properties of π-calculus agents, is less expressive
than the Propositional µ-calculus with name-passing, used in the MWB.

The main difference between the two approaches is methodological. HAL
has been designed in order to be largely language independent: to handle a
formalism different from the π-calculus, one needs to construct a translation
module mapping the new formalism into HD-automata. The structure of the
MWB, in contrast, is tailored to the language.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

470 • G.-L. Ferrari et al.

APPENDIX

ACTL [De Nicola and Vaandrager 1990] is a branching time temporal logic suit-
able to express properties of reactive systems whose behavior is characterized
by the actions they perform. Indeed, ACTL embeds the idea of “evolution in
time by actions” and logical formulae take their meaning on labeled transition
systems.

Given a set of observable actions Act, the language AF (Act) of the action
formulae on Act is defined as follows:

χ ::= true
∣∣ b

∣∣ ∼χ ∣∣ χ & χ

where b ranges over Act. As usual, false abbreviates∼true andχ∨χ ′ abbreviates
∼(∼χ & ∼χ ′).

ACTL is a branching time temporal logic of state formulae (denoted by φ), in
which a path quantifier prefixes an arbitrary path formula (denoted by π).

Definition 1.1. The syntax of the ACTL formulae is given by the grammar
below:

φ ::= true
∣∣ φ & φ

∣∣ ∼φ ∣∣ Eπ
∣∣ Aπ

π ::= X {χ}φ ∣∣ X {tau}φ ∣∣ [φ{χ}Uφ]
∣∣ [φ{χ}U {χ ′}φ]

where χ , χ ′ range over action formulae, E and A are path quantifiers, and X
and U are the next and the until operators, respectively.

As usual, false abbreviates∼true and φ∨φ′ abbreviates∼(∼φ & ∼φ′). Moreover,
we define the following derived operators:

—EFφ stands for E[true{true}Uφ].
— AGφ stands for ∼EF∼φ.
—< a > φ stands for E[true{false}U {a}φ].
—< tau > φ stands for E[true{false}Uφ].

In order to present the ACTL semantics, we need to introduce the notion of
paths over an ordinary automaton.

Definition 1.2. Let A = (Q , q0, Act ∪ {tau}, R) be an ordinary automaton.

—σ is a path from r0 ∈ Q if either σ = r0 (the empty path from r0) or σ is a
(possibly infinite) sequence (r0, α1, r1)(r1, α2, r2) . . . such that (ri, αi+1, ri+1) ∈
R.

—The concatenation of paths is denoted by juxtaposition. The concatenation
σ1σ2 is a partial operation: it is defined only if σ1 is finite and its last state
coincides with the initial state of σ2. The concatenation of paths is associative
and has identities. Actually, σ1(σ2σ3) = (σ1σ2)σ3, and if r0 is the first state of
σ and rn is its last state, then we have r0σ = σrn = σ .

—A path σ is called maximal if either it is infinite or it is finite and its last
state has no successor states. The set of the maximal paths from r0 will be
denoted by 5(r0).

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

A Model–Checking Verification Environment for Mobile Processes • 471

—If σ is infinite, then |σ | = ω.
If σ = r0, then |σ | = 0.
If σ = (r0, α1, r1)(r1, α2, r2) . . . (rn, αn+1, rn+1), n ≥ 0, then |σ | = n+1. Moreover,
we will denote the ith state in the sequence, i.e. ri, by σ (i).

Definition 1.3. The satisfaction relation |= for action formulae is defined as
follows:

—a |= true always,
—a |= b iff a = b,
—a |= ∼χ iff not a |= χ ,
—a |= χ & χ ′ iff a |= χ and a |= χ ′.

Definition 1.4. Let A = (Q , q0, Act ∪ {tau}, R) be an ordinary automaton.
Let s ∈ Q and σ be a path. The satisfaction relation for ACTL formulae is defined
in the following way:

—s |= true always
—s |= φ & φ′ iff s |= φ and s |= φ′
—s |= ∼φ iff not s |= φ
—s |= Eπ iff there exists σ ∈ 5(s) such that σ |= π
—s |= Aπ iff for all σ ∈ 5(s), σ |= π
—σ |= X {χ}φ iff σ = (σ (0), α1, σ (1))σ ′, and α1 |= χ , and σ (1) |= φ
—σ |= X {tau}φ iff σ = (σ (0), tau, σ (1))σ ′, and σ (1) |= φ
—σ |= [φ{χ}Uφ′] iff there exists i ≥ 0 such that σ (i) |= φ′, and for all 0 ≤ j < i:
σ = σ ′(σ (j), α j+1, σ (j + 1))σ ′′ implies σ (j) |= φ, and α j+1 = tau or α j+1 |= χ

—σ |= [φ{χ}U {χ ′}φ′] iff there exists i ≥ 1 such that σ = σ ′(σ (i − 1), αi, σ (i))σ ′′,
and σ (i) |= φ′, and σ (i − 1) |= φ, and αi |= χ ′, and for all 0 < j < i: σ =
σ ′j (σ (j − 1), α j , σ (j))σ ′′j implies σ (j − 1) |= φ and α j = tau or α j |= χ
ACTL logic can be used to define liveness (something good eventually happens)

and safety (nothing bad can happen) properties of concurrent systems. More-
over, ACTL logic is adequate with respect to strong bisimulation equivalence on
ordinary automata [De Nicola and Vaandrager 1990]. Adequacy means that
two ordinary automata A1 and A2 are strongly bisimilar if and only if F1 = F2,
where Fi = {ψ ∈ ACTL : Ai satisfies ψ}, i = 1, 2.

ACKNOWLEDGMENTS

We thank Emilio Tuosto, Bjorn Victor, and the anonymous reviewers for their
suggestions.

REFERENCES

ABADI, M. AND GORDON, A. 1999. A calculus for cryptographic protocols: The spi calculus. Inf.
Comput. 148, 1, pp. 1–70.

BOUALI, A. AND DE SIMONE, R. 1992. Symbolic bisimulation minimization. In Computer Aided Veri-
fication (CAV). Lecture Notes in Computer Science, Vol. 663. Springer, pp. 96–108.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

472 • G.-L. Ferrari et al.

BOUALI, A., GNESI, S., AND LAROSA, S. 1994. The integration project for the jack environment.
In Bulletin of EATCS, Vol. 54. Centrum voor Wiskunde en Informatica (CWI), pp. 207–223.

BOUALI, A., RESSOUCHE, A., ROY, V., AND DE SIMONE, R. 1996. The fc2 tools set. In Computer Aided
Verification (CAV). Lecture Notes in Computer Science, Vol. 1102. Springer, pp. 441–445.

BURROW, M., ABADI, M., AND NEEDHAM, R. 1989. A logic of authentication. Vol. 246. Proceedings of
the Royal Society of London, pp. 233–271.

CARDELLI, L. AND CAIRES, L. 2002. A spatial logic for concurrency (part ii). In CONCUR’02. Lecture
Notes in Computer Science, Vol. 2421. Springer, pp. 209–225.

CARDELLI, L. AND CAIRES, L. 2003. A spatial logic for concurrency (part i). Inf. Comput. 186, 2, pp.
194–235.

CHAKI, S., RAJAMANI, S., AND REHOF, J. 2002. Types as models: Model checking message-passing
programs. In the 29th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POP’02). ACM Press, pp. 45–57.

CLARKE, E., JHA, S., AND MARRERO, W. 1998. Using state space exploration and a natural deduction
style message derivation engine to verify security protocols. In the IFIP Working Conference on
Programming Concepts and Methods (PROCOMET).

CLARKE, E. AND WING, J. 1996. Formal methods: State of the art and future directions.
ACMCS 28, 4, pp. 626–643.

DAM, M. 1996. Model checking mobile processes. Inf. Computa. 129, 1, pp. 35–51.
DAM, M. 2003. Proof systems for π-calculus logics. Trends in Logic, Ed. R. de Queiroz. Kluwer,

pp. 407–419.
DE NICOLA, R., FANTECHI, A., GNESI, S., AND RISTORI, G. 1993. An action-based framework for ver-

ifying logical and behavioral properties of concurrent systems. Comput. Netw. ISDN Syst. 25, 7,
pp. 761–778.

DE NICOLA, R. AND VAANDRAGER, F. 1990. Action versus state-based logics for transition systems.
In Ecole de Printemps on Semantics of Concurrency. Lecture Notes in Computer Science, Vol.
469. Springer.

EMERSON, E. AND HALPERN, J. 1986. Sometimes and not never revisited: on branching time versus
linear time temporal logic. J. ACM 33, 1, pp. 151–178.

FERNANDEZ, J. AND MOUNIER, L. 1991. On the fly verification of behavioral equivalences and pre-
orders. In Computer Aided Verification. Lecture Notes in Computer Science, Vol. 575. Springer,
pp. 181–191.

FERRARI, G., MONTANARI, U., AND PISTORE, M. 2002. Minimizing transition systems for name-
passing calculi: A co-algebraic formulation. In FOSSACS’02. Lecture Notes in Computer Science,
Vol. 2303. Springer, pp. 129–143.

FERRO, G. 1994. Amc: Actl model checker. reference manual. Tech. Rep. B4-47, IEI-CNR Internal
Report, Pisa Italy.

FIORE, M., PLOTKIN, G., AND TURI, D. 1999. Abstract syntax and variable binding. In the 14th Logics
in Computer Science (LICS). IEEE Computer Science Press, pp. 193–202.

FOCARDI, R. AND GORRIERI, R. 1997. The compositional security checker: A tool for the verification
of information flow security properties. IEEE Trans. Softw. Eng. 23, 9, pp. 550–571.

GABBAY, M. AND PITTS, A. 1999. A new approach to abstract syntax involving binders. In the 14th
Annual Symposium on Logic in Computer Science. IEEE Computer Society Press, pp. 214–224.

GNESI, S. AND RISTORI, G. 2000. A Model Checking Algorithm for π-calculus Agents. Applied Logic
Series, Vol. 16. Kluwer, pp. 339–358.

GORDON, A. 2001. Notes on nominal calculi for security and mobility. In FOSAD Summer School.
Lecture Notes in Computer Science, Vol. 2171. Springer, pp. 262–330.

HENNESSY, M. AND MILNER, R. 1985. Algebraic laws for nondeterminism and concurrency. J.
ACM 32, 1, pp. 137–161.

HONDA, K. 2000. Elementary structures for process theory (1): Sets with renaming. Math. Struct.
Comp. Sci. 10, pp. 617–633.

KOZEN, D. 1983. Results on the propositional µ-calculus. Theoret. Comp. Sci. 27, pp. 333–354.
LOWE, M. 1996. Breaking and fixing the needham-schroeder public-key protocol using fdr. In

TACAS’96. Lecture Notes in Computer Science, Vol. 1055. Springer, pp. 147–166.
MADELAINE, E. AND VERGAMINI, D. 1990. AUTO: A verification Tool for Distributed Systems Using

Reduction of Finite Automata Networks. Formal Description Techniques (II). North Holland.

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

A Model–Checking Verification Environment for Mobile Processes • 473

MILNER, R. 1989. Communication and Concurrency. Prentice Hall.
MILNER, R., PARROW, J., AND WALKER, D. 1992. A calculus of mobile processes. Inf. Comput. 100,

pp. 1–77.
MILNER, R., PARROW, J., AND WALKER, D. 1993. Modal logics for mobile processes. Theoret. Comp.

Sci. 114, pp. 149–171.
MONTANARI, U. AND PISTORE, M. 1995. Checking bisimilarity for finitary π-calculus. In CON-

CUR’95. Lecture Notes in Computer Science, Vol. 962. Springer, pp. 42–56.
MONTANARI, U. AND PISTORE, M. 2000. π-calculus, structured coalgebras and minimal hd-automata.

In MFCS’2000. Lecture Notes in Computer Science, Vol. 1893. Springer, pp. 669–578.
MONTANARI, U. AND PISTORE, M. 2003. Structured coalgebras and minimal hd-automata for the
π-calculus. Theoret. Comp. Sci. (to appear).

NEEDHAN, R. 1989. Names. (Mullender Ed.) Addison-Wesley.
ORAVA, F. AND PARROW, J. 1992. An algebraic verification of a mobile network. Form. Asp. Comp. 4,

pp. 497–543.
PARK, D. 1981. Concurrency and automata on infinite sequences. In 5 GI-Conference. Lecture

Notes in Computer Science, Vol. 104. Springer, pp. 167–183.
PISTORE, M. 1999. History dependent automata. Ph.D. Thesis, Dipartimento di Informatica, Univ.

Pisa, TD-5/99.
PITTS, A. AND GABBAY, M. 2000. A metalanguage for programming with bound names modulo re-

naming. In Mathematics of Program Construction (MPC’00). Lecture Notes in Computer Science,
Vol. 1837. Springer, pp. 230–255.

ROY, V. AND DE SIMONE, R. 1990. AUTO and autograph. In CAV’90. Lecture Notes in Computer
Science, Vol. 531. Springer, pp. 65–75.

SANGIORGI, D. 1993. A theory of bisimulation for the π-calculus. In CONCUR’93. Lecture Notes
in Computer Science, Vol. 715. Springer, pp. 127–142.

SANGIORGI, D. AND WALKER, D. 2002. The π-calculus: a Theory of Mobile Processes. Cambridge
University Press.

SEWELL, P. 2000. Applied pi—a brief tutorial. Technical Report 498, Computer Laboratory, Uni-
versity of Cambridge (UK).

VICTOR, B. AND MOLLER, F. 1994. The mobility workbench—a tool for the π-calculus. In CAV’94.
Lecture Notes in Computer Science, Vol. 818. Springer, pp. 428–440.

Received December 2001; revised April 2003; accepted November 2003

ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 4, October 2003.

