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Abstract. We formally define an abstract executable semantics for the Business 
Process Execution Language for Web Services in terms of a distributed ASM. 
The goal of this work is to support the design and standardization of the lan-
guage. “There is a need for formalism. It will allow us to not only reason about 
the current specification and related issues, but also uncover issues that would 
otherwise go unnoticed. Empirical deduction is not sufficient.” – Issue #42, 
OASIS WSBPEL TC. The language definition assumes an infrastructure for 
running Web services on some asynchronous communication architecture. A 
business process is built on top of a collection of Web services performing con-
tinuous interactions with the outside world by sending and receiving messages 
over a communication network. The underlying execution model is character-
ized by its concurrent and reactive behavior making it particularly difficult to 
predict dynamic system properties with a sufficient degree of detail and preci-
sion under all circumstances. 

1   Introduction 

In this paper, we formally define an abstract operational semantics for the Business 
Process Execution Language for Web Services—BPEL4WS (or BPEL) [6] – in terms 
of a real-time distributed abstract state machine (DASM) [14], [12]. Version 1.1 of 
the informal BPEL language description [6], henceforth called the language reference 
manual or LRM, is a forthcoming industrial standard proposed by the OASIS Web 
Services Business Process Execution Language Technical Committee [21]. Intui-
tively, BPEL is an XML based formal language for modeling and design of the net-
working protocols for automated business processes. As such, it builds on other exist-
ing standards for the Internet and World Wide Web and, in particular, is defined on 
top of the service model of the Web Services Description Language (WSDL) [20]. A 
BPEL process and its partners are considered as abstract WSDL services that interact 
with each other by sending and receiving abstract messages as defined by the WSDL 
model for service interaction. 

Our work on BPEL builds on extensive experience from semantic modeling of 
various industrial system design languages, including the ITU-T language SDL [11], 
[7], [8] and the IEEE language VHDL [4], [3]. The goal of this work is twofold. For-
malization of language semantics serves two main purposes: (1) to eliminate deficien-
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cies hidden in natural language descriptions, for instance, such as ambiguities, loose 
ends, and inconsistencies; (2) to establish a platform for experimental validation of 
key language attributes by making abstract operational specifications executable on 
real machines. For the development of BPEL, the responsible TC at OASIS lists about 
seventy basic issues. “There is a need for formalism. It will allow us to not only rea-
son about the current specification and related issues, but also uncover issues that 
would otherwise go unnoticed. Empirical deduction is not sufficient.” – Issue #42, 
OASIS WSBPEL TC [21]. 

Formalization of language semantics based on informally specified requirements 
faces the non-trivial problem of ‘turning English into mathematics’. Ideally, the for-
mal and the informal language definition should complement each other in the en-
deavor to sharpen requirements into specifications. That is, the formal model provides 
the ultimate reference whenever the clarification of subtle language issues that are 
difficult to articulate in plain English requires mathematical precision. In that respect, 
a pragmatic orientation of formal software models and their use for practical purposes 
such as standardization demands for a gradual formalization of the key language at-
tributes at different levels of abstraction and with a degree of detail and precision as 
needed [11]. 

Our definition of the abstract operational semantics presented here forms a BPEL 
Abstract Machine and is organized into three basic layers reflecting different levels of 
abstraction. The top layer, called abstract model, provides an overview and defines 
the modeling framework comprehensively. The second layer, called intermediate 
model, specifies the relevant technical details and provides the full DASM model of 
the core constructs of the language. Finally, the third layer, called execution model, 
provides an abstract executable semantics of BPEL implemented in AsmL [18]. To 
this end, the BPEL Abstract Machine model forms a hierarchy consisting of three 
DASM ground models [1], [5] obtained as the result of stepwise refinements of the 
abstract model. The execution model is complemented by a GUI facilitating experi-
mental validation through simulation and animation of abstract machine runs. 

The paper is organized as follows. Section 2 briefly illustrates the concept of Web 
services architecture and gives an overview of BPEL. Section 3 introduces the ab-
stract model, Section 4 the intermediate model, and Section 5 the execution model. In 
Section 6, we discuss the verification of key language properties. Section 7 concludes 
the paper. 

2   Web Services Architecture 

Several XML based Web standards have been introduced to define the Web services 
space and facilitate interoperability between a variety of Web applications, for in-
stance, in e-commerce. Each of these standards targets a specific domain within the 
Web services space. For example, the widely used Simple Object Access Protocol 
(SOAP) [19] defines a standard message passing protocol, while WSDL provides a 
standard way of describing Web services [20]. 

These standards basically provide us with a structural view of Web services. They 
enable us to view Web services as communication endpoints which interact with each 
other by sending and receiving messages via a fixed collection of ports associated 
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with each of the communication endpoints. To this end, WSDL and SOAP support a 
stateless model of Web services.  

The Business Process Execution Language for Web Services (BPEL) builds on top 
of WSDL (and indirectly also on SOAP) effectively introducing a stateful interaction 
model that allows to exchange sequences of messages between business partners (i.e. 
Web services). 

In April 2003, members of OASIS1, including IBM and Microsoft among other 
leading companies in the e-commerce market, formed a Technical Committee [21] in 
order to continue work on BPEL version 1.1 with the objective to establish a stan-
dardized modeling platform and language that enables and accelerates systems design 
and IP exchange.  

2.1   Overview of BPEL 

A BPEL process and its partners are defined as abstract WSDL services, and they use 
abstract messages defined by WSDL model for interaction. Figure 1 gives an overall 
view of the general structure of a BPEL business process document. A process is 
defined by specifying its partners (Web services that this process interacts with), a set 
of variables that keep the state of the process and an activity defining the logic behind 
the interaction between the process and its partners. This definition is just a template 
for creating business process instances. At least one start activity2 must be defined in 
the activity of such a template. Whenever a message arrives for a start activity, a new 
instance of the business process is created and starts its execution. Therefore, process 
creation in BPEL is always implicit. 

2.2   Initial Example 

To better understand the basic structure and some fundamental concepts of BPEL, we 
will provide an example: a fictitious e-Book Store. The process of buying a book from 
this online store is simple. A customer first sends the order to the e-Book Store. The 
book store then sends the order to the publisher and also sends a shipping request to a 
shipping company. The book store then waits to receive a callback from the shipping 
company and upon receiving that callback, it replies back to the customer indicating 
the order is received and processed successfully. 

Figure 2 illustrates the structure of the interaction between publisher, shipping 
company, and customer for the sample business process of our e-Book Store. A busi-
ness process interacts with other services through its ports, where each port is of a 
certain port type specifying some set of operations. Operations can be either Input-
Only, Output-Only, or Input-Output.  

An abstract schema of the e-Book Store business process can also be found in 
Fig 2. The numbers show the order in which the events occur. The BPEL process 
consists of 5 basic activities, two of which being executed concurrently (as indicated 
by identical order numbers annotating these two events). 

                                                           
1  Organization for the Advancement of Structured Information Standards. 
2  A start activity is either a receive or a pick activity that is annotated with ‘createInstance = 

yes’ causing a new process instance being created whenever a matching message is received. 
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Fig. 1. BPEL is defined on top of WSDL 

 

Fig. 2. Inside the e-Book Store business process 

2.3   Abstract Syntax Tree 

A systematic approach to capture the complete structure of a BPEL process (focusing 
on the relevant aspects rather than syntactical details) is its representation in the form 
of an attributed abstract syntax tree [11]. Many times during this project we had to 
refer to a precise and concise definition of the structure of a BPEL process. As the 
language definition in the LRM is currently lacking an abstract syntax, we defined our 
own abstract syntax, which is presented in [9]. 

2.4   Correlation 

One of the main challenges in integrating Web services, and specifically business 
processes, is to deal with stateful interactions. Business processes normally act ac-
cording to a history of external interactions. Therefore, it is necessary to keep track of 
the state of each business process instance. Since we have different instances of a 
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business process, messages need to be delivered not only to the correct port, but also 
to the correct instance of the business process. To ensure global interoperability and 
avoid implementation dependencies, the mechanism required for dynamic binding of 
messages needs to be defined in a generic manner rather than leaving this to the indi-
vidual implementations [6].   

The need for such a mechanism can be easily seen in our e-Book Store example. 
Each order that is sent by the customer is handled by an e-Book Store business proc-
ess instance. For each order that is sent from this process instance to the publisher, 
there is also one business process instance at the publisher side. These pairs of process 
instances need to interact with each other and as a result they need to “know” each 
other. Therefore, there must be a mechanism to route the messages to the correct 
process instances. One standard approach to this problem is to carry a business token 
(e.g. an order number) in all transactions between e-Book Store and the publisher. In 
this way, all the messages that arrive for a specific process instance should carry the 
desired business token.  

Such a mechanism is supported in BPEL by providing the ability to define a set of 
such correlation tokens; i.e. a set of tokens shared by all messages in a correlation 
group. This set is called a correlation set. Once a correlation set is initiated, the corre-
lation tokens are identical for all the messages in that correlation group.  In this way, 
an application-level conversation between business process instances is identified.  

2.5   Activities 

Activities that can be performed by a business process instance are categorized into 
basic activities and structured activities. Basic activities perform simple operations 
like receive, reply, invoke, assign, throw, terminate, wait, and empty.  Structured 
activities impose an execution order to a collection of basic activities. It is important 
that structured activities can be nested. Structured activities include sequence, switch, 
flow, pick and while. Sequence structures a collection of activities to take place one 
after another. Switch provides the ability to choose among a collection of activities. 
Flow enables concurrent execution of a set of activities. Pick waits on a set of events 
for one of them to occur and executes its corresponding activity. Finally, while exe-
cutes an activity repeatedly until its condition is no longer true.  

2.6   Long-Running Business Process, Compensation Behavior 

Business processes are meant to define the interactions between several partners that 
are based on certain business logic. These processes usually have long durations and 
include asynchronous message passing between the partners. Consequently, error 
handling in such an environment is not easy. It is done by compensation, i.e. “appli-
cation specific activities that attempt to reverse the effects of a previous activity that 
was carried out as a part of larger unit of work that is being abandoned” [6, Section 
13.2]. This ability of compensating exceptions in an application-specific manner en-
ables business processes to have so-called Long-Running (Business) Transactions 
(LRTs). Further information on the LRTs and their formal specification is beyond the 
scope of this paper. Nevertheless, we have considered this concept as an important 
extension to the core model as is described in [9].  
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3   Formalization of the Web Services Architecture 

We formalize the key functional attributes of the BPEL Web services architecture 
based on the asynchronous computation model of distributed ASMs [14]. The primary 
focus is on the concurrent and reactive behavior of Web services and their interaction 
through communication networks. This includes concurrent control structures, com-
munication primitives, event handling mechanisms, compensation handling, and dy-
namic creation and termination of services. For dealing with real time aspects, we 
define an abstract notion of global system time and impose additional constraints on 
the runs defining the behavior of our BPEL abstract machine. 

Logically, the architecture splits into two basically different components, namely: 
(1) the TCP/IP communication network, and (2) the BPEL services residing at the 
communication endpoints. We separate the behavior of the network from the behavior 
of services by decomposing our architecture model of the BPEL abstract machine into 
two sub-models, each of which in turn is a distributed ASM, or DASM. 

 

 

Fig. 3. A Three Level Approach: From formal documentation to the executable model 

In this paper, we concentrate on the service abstract machine model, whereas a 
network abstract machine model is defined in [12]. The composition of these two 
machine models is well defined by the underlying semantics of the DASM computa-
tion model. Any interaction between these models is restricted to actions and events 
occurring at well-identified interfaces, i.e. the ports at the communication endpoints 
via which services send and receive messages. 

The overall organization of the BPEL abstract machine splits into three different 
layers as illustrated in Figure 3. The abstract model is introduced below; the complete 
formal model and the executable model are presented in Section 4 and Section 5.  

3.1   DASM Computation Model 

A DASM Μ is defined over a given vocabulary V with a program ΠΜ  and a non-
empty set IΜ of initial states. An initial state specifies a possible interpretation of V 
over some potentially infinite base set X. Intuitively, Μ consists of a collection of 
autonomously operating agents from some finite set AGENT. This set changes dy-
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namically over runs of Μ as required to model varying computational resources. The 
behavior of an agent a, in a given state S of Μ, is defined by the program pro-
gramS(a). An agent a can be terminated by resetting programS(a) to undef (not repre-
senting a valid program). To introduce a new agent b in state S, a valid program has to 
be assigned to programS(b).  

The creation and the termination of an agent a is stated by the following two opera-
tions which, at the same time, also update the (sub-)domain of agents to which a be-
longs. 

���������〈������〉��		�
��������������������������〈������〉������������������	�

��������� 		����
��������������������������������������������������������	��

To cope with partial updates of sets, we follow the solution proposed in [16] and 
use the following operations for adding/removing an element to/from a set.  

�		��������

�� 		��������������������
��

�����

��������


� 		�������������������������
 
 

In every state S reachable from an initial state of Μ, the set AGENT is well defined 
as follows.  

AGENTS  ≡ { x ∈ Χ : programS (x) ≠ undef } 

The statically defined collection of all the programs that agents of Μ  potentially 
can execute forms the distributed program ΠΜ.  
 
Concurrency and Real Time. Intuitively, the agents of Μ model the concurrent control 
threads in the execution of ΠΜ. Agents interact with each other by reading and writing 
shared locations of global machine states. The underlying semantic model regulates 
such interactions so that potential conflicts are resolved according to the definition of 
partially ordered runs [14]. Real time behavior imposes additional constraints on 
DASM runs ensuring that the agents react instantaneously [15]. For details see our 
technical report [9]. 

3.2   BPEL Abstract Model  

The top layer of the BPEL abstract machine, called abstract model, provides an over-
view of the architecture and defines the underlying modeling framework. A BPEL 
document abstractly defines a Web service consisting of a collection of business 
process instances. A process instance maintains a continuous interaction with the 
external world (i.e., the communication network) through two interface components, 
called inbox manager and outbox manager, as shown in Fig. 4. 

The inbox manager takes care of all the messages that arrive at the Web service. 
For each such message, the inbox manager is responsible to find a process instance 
that is waiting for that message, and assigns the message to this instance.  The outbox 
manager, on the other hand, delivers output messages from process instances to the 
network. Inbox managers, outbox managers, and process instances are modeled by 
three different types of DASM agents. Additionally, we introduce two further agent 
types, activity agents and handler agents. Each process agent is responsible to execute 
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a single process instance; it uses dynamically created activity agents for executing 
complex (structured) activities. Handler agents are responsible for compensation 
handling or fault handling during the execution of a process instance. 

 
������≡����� !"�����#�∪��$��� !"�����#�∪�%#�&����∪��&��'��(!�����∪��
��������������)��*+�#!������
 
In the initial DASM state, there are only three DASM agents: the inbox manager, 

the outbox manager and a dummy process. This dummy process instance simplifies 
the method of creating new process instances. There is always one and only one such 
process instance waiting on its start activity. By receiving the first matching message, 
the dummy process instance becomes a normal running process instance and a new 
dummy process instance will be created automatically by the inbox manager. The 
DASM program given below specifies the behavior of the inbox manager agent. 
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� � � � � �3���%��
�����2����*3����
 
The predicate ��
�� /�: %#�&���1��: "������0 checks whether message � can be 

delivered to process � or not, trying to match message type and correlation informa-
tion between the waiting process and the incoming message. 

In general, a BPEL program combines two different types of activities: basic ac-
tivities and structured activities. Structured activities impose an execution order to a 
collection of basic activities. The execution of each structured activity inside a proc-
ess instance is modeled by a single DASM agent of type activity agent. Figure 5 
shows the control structure of DASM activity agents where one can associate one 
branch from the root to a leaf with each single process instance. 
 

 

Fig. 4. High-level structure of our BPEL model 
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Fig. 5. Control structure of DASM activity agents 

Below is the DASM program that abstractly specifies the behavior of process 
agents. In this abstract model, we do not provide the definition of Execute_Activity. 
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4   Complete Formal Model  

By refining the abstract model of Section 3.3, we obtain the intermediate model, 
which provides the full DASM model of the core constructs of BPEL. The intermedi-
ate model forms the basis for deriving the executable model in Section 5. 

The previous section described how a %#�&��� agent executes its main activity, but 
we did not define �-�
3�!�
�����at that level. Following the definition in BPEL, an 
activity can be any of the structured or basic activities, as follows:  
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To execute a basic activity the corresponding rule is invoked. For executing a 

structured activity, a new activity agent is created to handle that specific activity. 
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In connection with structured activities, we define a function parentAgent for linking 

the parent agent and the subordinate activity agent. A process instance may have a 
number of subordinate agents that handle the structured activities inside the process 
instance. For each activity agent, a derived dynamic function rootProcess is defined that 
returns the process instance to which the agent belongs. Furthermore, the root process 
has to keep track of all its subordinate agents. SubordinateAgentSet is another derived 
dynamic function which provides the set of subordinate agents of a process instance. 
These functions are defined as follows. 
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%�������� relation is maintained by calling an �������9� rule. Whenever a new activ-
ity agent is created (either in an �-�
3�!�
���� rule or inside activity agents like flow 
agent) the following rule is called. This rule also updates ,����
����, the activity that 
must be executed by this activity agent. 
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Going entirely through the complete formal model is outside of the space limita-
tions of this paper. Sections 4.1 and 4.2 thus focus on two representative examples for 
illustrating the BPEL abstract machine model, a basic activity and a structured activ-
ity. For further details and complementary parts of the model see [9]. 

4.1   A Basic Activity: Receive 

As is described in [6, Section 11.4], receive activity plays an important role for a 
business process both in its life cycle3 and in its service providing to partners. 

In order to execute a receive activity for a given process instance, the inbox man-
ager has to be informed that this process instance (or one of its subordinate agents) is 
waiting for a message. This is done by adding an ���3*��
����� to the ������5��"��.
���� set of the root process. ���3*��
����� contains sufficient information about the 
required message and the agent that is waiting for that message. In this way the inbox 
manager can inspect this list and check whether any of the desired messages is re-
ceived, and if so, assigns it to the matching process instance. Therefore, the agent has 
to wait until the inbox manager assigns a message to it. The Boolean function ��
����.
"��� is used to distinguish between the initialization mode and the waiting mode. The 
���3*��
����� is removed from the set as soon as a message is assigned to its corre-
sponding activity. Thus, the agent will be informed about the assignment and can 
proceed with processing the message. 
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3  “The only way to instantiate a business process in BPEL is to annotate a receive [or  pick] 

activity with the createInstance attribute set to "yes".” [6, section 11.4] 
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4.2   A Structured Activity: Flow  

A flow activity groups a set of activities and enables their concurrent execution. A 
flow completes when all the activities in the flow have completed [6].  

For each structured activity, there is an activity agent for executing it. Flow agent 
is responsible for executing a flow activity. To concurrently execute the activities 
declared inside the flow activity, the flow agent creates a set of flow thread agents. 
Each flow thread agent is responsible for executing one such activity. When all the 
threads have finished, the flow agent releases its parent and terminates itself.�
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A flow thread agent executes a single activity. Thus, its program is very similar to 
a process agent, except that when the execution of the activity is completed, the flow 
thread agent informs the flow agent by removing itself from the flow agent set. 
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5   Execution Model 

This section introduces an abstract executable semantics of BPEL obtained from the 
intermediate model as the result of another refinement step. Experimental validation 
of abstract requirements specifications provides us with an effective instrument to 
further eliminate undesirable behavior and hidden side effects already in early design 
stages [11]. In combination with analytical techniques, simulation and testing can 
provide valuable feedback for establishing key system language attributes and explor-
ing alternative design choices. In our project, we use AsmL [18] for this purpose. 
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5.1   AsmL 

AsmL is a rich language and its advanced language constructs are definitely helpful in 
rapid prototyping and object oriented software development. For the purpose of our 
project, however, we have deliberately chosen a subset of the language, which is as 
close as possible to ‘pure ASMs.’ To facilitate modeling of the BPEL semantics, a 
tight relation between the full DASM model and the derived execution model is of 
utmost importance. Though, in order to be executable, some changes and additions 
were inevitable. A main weakness of AsmL is its lack of direct support for dealing 
with concurrency. There are no built-in constructs for simulating concurrent control 
threads; rather such an execution model needs to be hand coded. Ultimately, one 
would even expect a distributed runtime system allowing to perform truly distributed 
computations of DASM models encoded in AsmL. 

5.2   The Model in AsmL 

Intuitively, the AsmL encoding splits into four separate modules, each of which deals 
with a basically different aspect: (1) the original model (2) the internal environment 
(3) the refinement of the original model, and (4) GUI-related extensions.  

The original model is basically the translation of the intermediate model to AsmL, 
where the main challenge was to keep it close to the pure ASMs.  

The internal environment acts as an interface between our abstract machine model 
and the BPEL definition of the business process. In order to execute a process in-
stance, we need a way of accessing the definition of the business process. Normally, 
each process instance is running an activity as defined in the BPEL process definition 
and determined by the history of that specific instance. One option is to encapsulate 
all the relevant information inside the respective entities of the model. For example, 
we can keep partner, port type, operation, variable and correlation sets of a receive 
activity inside it. Abstractly, we assumed that there is an oracle that provides this 
information whenever we ask for it. In the execution model, we replace this oracle 
with the internal environment.  

In the stepwise refinement of the original model, abstract parts are refined depend-
ing on their role in the model, either by non-determinism or assigning clear determi-
nistic behavior to them. In some cases, complex substructures had to be introduced. 
For example, in order to model the correlation behavior in a business process in-
stance, we need a structure for correlation sets, mapping properties to their values. 
This structure completely complies with the definition of the correlation sets in BPEL. 
Besides, a predicate is defined to check the compatibility of a message to a correlation 
set, i.e. to check whether the message contains the required correlation tokens or not. 
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Finally, an executable model needs a GUI that makes it a useful tool for user-
controlled simulation and testing. The GUI is written in Visual C# .NET4. By utilizing 
AsmL’s APIs with C#, we were able to integrate the model with its GUI, by defining 
an appropriate interface called View. For details of the execution model see [9]. 

5.3   Experimental Validation Results 

A receive activity is a “blocking activity in the sense that it will not complete until a 
matching message is received by the process instance.” [6, Section 11.4]. Therefore, it 
is implicitly assumed that a matching message will arrive after the corresponding 
receive activity has been executed. Consider the following activity in a business proc-
ess: 

 

<sequence> 

<activity1> 

<activity2> 

... 

<receive partnerLink=”PL1” portType=”PT1” operation=”OP1”>  

</sequence> 
 

Suppose that when a process instance is executing �
����C, a message arrives from 
partnerLink PL1, on portType PT1 and for operation OP1. Since the process instance 
has NOT executed the receive activity yet, it is not waiting for this message. It is not 
clear from the LRM what happens to such a message. Indeed, there could be multiple 
choices: 

 

• Buffer: The message can be stored in a buffer, so that the receive activity can fetch 
it later.  

• Discard: The message can simply be discarded, when there is no receive activity 
waiting for it.  

• Fault: A fault can be thrown since the Web service has received a message for 
which no process instance is waiting. 
 

It is certainly important for the LRM to distinguish among these choices, since it 
will cause inconsistencies in the behavior of different implementations of the lan-
guage.  

This problem was one of the problems discovered during experimental validation, 
when our inbox manager received a message that no process instance was expecting 
at the time.   

6   Verification Aspects 

In the current language definition, there are a number of open issues on how to estab-
lish certain key system attributes of Web services for business processes. Among 
those are several abstract language properties that justify formal reasoning either to 
prove that those properties indeed are implied by the language definition or to clarify 
                                                           
4  Microsoft Visual C# .NET, Microsoft Development Environment. 
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the resulting implicit constraints on implementations of the language, the construction 
of Web services, and the logic design of business processes. Two examples are dis-
cussed below. 
 
Correlations 
The LRM states that “After a correlation set is initiated, the values of the properties 
for a correlation set must be identical for all the messages in all the operations that 
carry the correlation set and occur within the corresponding scope until its comple-
tion” [6, Section 10.2]. Logically, the operations that carry the correlation sets can be 
categorized into two basically different groups: input activities, including receive, 
invoke, and pick, and output activities, including reply and invoke. Therefore, we can 
decompose the above consistency constraint into two separate constraints: (1) the 
property must hold on all input activities; (2) the property must hold on all output 
activities. 

To see that the first constraint is satisfied is trivial. The LRM clearly specifies that 
a message must carry the required correlation tokens in order to be accepted by the 
process instance. This is true for every input activity. In our model, the inbox manager 
fulfils this duty. A message will be assigned to a process instance only if it “matches” 
the process instance; thus, it must carry the correlation tokens. 

The second property, however, requires a closer investigation. This property can it-
self be decomposed to two sub-properties: (2.1) the property must hold in all output 
activities, where the correlation is instantiated by the same output activity; (2.2) the 
property must hold in all output activities where the correlation set is already instanti-
ated.  

(2.1) is confirmed by the LRM as well. The correlation set will be instantiated and 
the correlation tokens get their values from the message that is to be sent out. For 
(2.2), the language does not provide enough details to prove the second property.  

In case of incoming messages, the business process is capable of filtering the mes-
sages; i.e. it will only pick those messages that match the correlation. On the other 
hand, in case of outgoing messages, the business process has no responsibility other 
than sending the message out. Although the LRM defines the semantics of a process 
that violates this consistency constraint as undefined, it is not precisely mentioned that 
output activities (like input activities) are blocking activities, and thus the loose end 
leads to further problems as follows. 

 
Synchronous Receive/Reply 
According to the LRM “A reply activity is used to send a response to a request previ-
ously accepted through a receive activity. Such responses are only meaningful for 
synchronous interactions.” [6, Section 11.4]. In order to clarify a request/response 
interaction, BPEL LRM states that “The correlation between a request and the corre-
sponding reply is based on the constraint that more than one outstanding synchronous 
request from a specific partner link for a particular portType, operation and correla-
tion set(s) MUST NOT be outstanding simultaneously.”[6, Section 11.4]. Although 
the definition of “outstanding” is not elucidated in the LRM, according to its interpre-
tation by WSBPEL TC ([22, issue #26]), one can assume that an outstanding syn-
chronous receive is a receive activity for which the required message has arrived but 
the reply is not sent out yet. Therefore, the following must be permissible: 
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<receive partnerLink=”PL1” portType=”P1” operation=”O1” cor=”C1”> 

<receive partnerLink=”PL1” portType=”P1” operation=”O1” cor=”C2”> 

<reply partnerLink=”PL1” portType=”P1” opr=”O1”> 
 

Assuming that operation O1 is an input-output operation, these two receive activi-
ties start two synchronous request/response transactions, and as the correlation sets of 
these receive activities are different, these two transactions are valid to be outstanding 
concurrently. The problem arises when a reply message is sent to the same partner 
without specifying any correlation set. This is a valid reply. The problem in this case 
is that it is impossible to determine to which receive activity this reply is coupled; it is 
not clear which request/response is still outstanding and which one is not.  

7   Conclusions and Future Work 

Our formalization of the key semantic aspects of BPEL in terms of a hierarchically 
defined BPEL Abstract Machine shows that the asynchronous DASM model indeed is 
a natural choice for defining a precise semantic foundation. The resulting formal 
model transforms the abstract language definition in two consecutive refinement steps 
into an executable specification. In combination with inspection by analytical means, 
e.g. the ability to formally reason about critical language properties, experimental 
validation (through simulation and testing) clearly helps establishing coherence and 
consistence of the semantics, thereby improving the quality of the language definition. 
An advanced GUI facilitates such tasks (see also [9]). 

A prerequisite for the feasibility of formalization when applied as a practical in-
strument in an industrial standardization context is conciseness, intelligibility and 
robustness [11]. Standardization is an ongoing and potentially open-ended activity 
which brings a high dynamics into the development and maintenance of a language. 
Such dynamics demands for a robust formalization framework that serves pragmatic 
needs. To this end, our abstract machine concept has already proven to be useful for 
enhancing conciseness and robustness of the formal model. The proposed hierarchical 
structuring of this model into three levels of abstraction reflects a clear separation of 
concerns, enhances intelligibility, and enables a tighter integration of the formal and 
the informal language description so that they effectively complement each other. 

Our future work will concentrate on extending the BPEL Abstract Machine model 
towards modeling and integration of compensation behavior and fault handling. 
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