
W. Zimmermann and B. Thalheim (Eds.): ASM 2004, LNCS 3052, pp. 78–94, 2004.
 Springer-Verlag Berlin Heidelberg 2004

Specification and Validation of the Business Process
Execution Language for Web Services*

Roozbeh Farahbod, Uwe Glässer, and Mona Vajihollahi

School of Computing Science
Simon Fraser University, Burnaby, B.C., Canada

{rfarahbo,glaesser,mvajihol}@cs.sfu.ca

Abstract. We formally define an abstract executable semantics for the Business
Process Execution Language for Web Services in terms of a distributed ASM.
The goal of this work is to support the design and standardization of the lan-
guage. “There is a need for formalism. It will allow us to not only reason about
the current specification and related issues, but also uncover issues that would
otherwise go unnoticed. Empirical deduction is not sufficient.” – Issue #42,
OASIS WSBPEL TC. The language definition assumes an infrastructure for
running Web services on some asynchronous communication architecture. A
business process is built on top of a collection of Web services performing con-
tinuous interactions with the outside world by sending and receiving messages
over a communication network. The underlying execution model is character-
ized by its concurrent and reactive behavior making it particularly difficult to
predict dynamic system properties with a sufficient degree of detail and preci-
sion under all circumstances.

1 Introduction

In this paper, we formally define an abstract operational semantics for the Business
Process Execution Language for Web Services—BPEL4WS (or BPEL) [6] – in terms
of a real-time distributed abstract state machine (DASM) [14], [12]. Version 1.1 of
the informal BPEL language description [6], henceforth called the language reference
manual or LRM, is a forthcoming industrial standard proposed by the OASIS Web
Services Business Process Execution Language Technical Committee [21]. Intui-
tively, BPEL is an XML based formal language for modeling and design of the net-
working protocols for automated business processes. As such, it builds on other exist-
ing standards for the Internet and World Wide Web and, in particular, is defined on
top of the service model of the Web Services Description Language (WSDL) [20]. A
BPEL process and its partners are considered as abstract WSDL services that interact
with each other by sending and receiving abstract messages as defined by the WSDL
model for service interaction.

Our work on BPEL builds on extensive experience from semantic modeling of
various industrial system design languages, including the ITU-T language SDL [11],
[7], [8] and the IEEE language VHDL [4], [3]. The goal of this work is twofold. For-
malization of language semantics serves two main purposes: (1) to eliminate deficien-

* Partly supported through grants from NSERC and SFU President’s Research Grant.

Specification and Validation of the Business Process Execution Language 79

cies hidden in natural language descriptions, for instance, such as ambiguities, loose
ends, and inconsistencies; (2) to establish a platform for experimental validation of
key language attributes by making abstract operational specifications executable on
real machines. For the development of BPEL, the responsible TC at OASIS lists about
seventy basic issues. “There is a need for formalism. It will allow us to not only rea-
son about the current specification and related issues, but also uncover issues that
would otherwise go unnoticed. Empirical deduction is not sufficient.” – Issue #42,
OASIS WSBPEL TC [21].

Formalization of language semantics based on informally specified requirements
faces the non-trivial problem of ‘turning English into mathematics’. Ideally, the for-
mal and the informal language definition should complement each other in the en-
deavor to sharpen requirements into specifications. That is, the formal model provides
the ultimate reference whenever the clarification of subtle language issues that are
difficult to articulate in plain English requires mathematical precision. In that respect,
a pragmatic orientation of formal software models and their use for practical purposes
such as standardization demands for a gradual formalization of the key language at-
tributes at different levels of abstraction and with a degree of detail and precision as
needed [11].

Our definition of the abstract operational semantics presented here forms a BPEL
Abstract Machine and is organized into three basic layers reflecting different levels of
abstraction. The top layer, called abstract model, provides an overview and defines
the modeling framework comprehensively. The second layer, called intermediate
model, specifies the relevant technical details and provides the full DASM model of
the core constructs of the language. Finally, the third layer, called execution model,
provides an abstract executable semantics of BPEL implemented in AsmL [18]. To
this end, the BPEL Abstract Machine model forms a hierarchy consisting of three
DASM ground models [1], [5] obtained as the result of stepwise refinements of the
abstract model. The execution model is complemented by a GUI facilitating experi-
mental validation through simulation and animation of abstract machine runs.

The paper is organized as follows. Section 2 briefly illustrates the concept of Web
services architecture and gives an overview of BPEL. Section 3 introduces the ab-
stract model, Section 4 the intermediate model, and Section 5 the execution model. In
Section 6, we discuss the verification of key language properties. Section 7 concludes
the paper.

2 Web Services Architecture

Several XML based Web standards have been introduced to define the Web services
space and facilitate interoperability between a variety of Web applications, for in-
stance, in e-commerce. Each of these standards targets a specific domain within the
Web services space. For example, the widely used Simple Object Access Protocol
(SOAP) [19] defines a standard message passing protocol, while WSDL provides a
standard way of describing Web services [20].

These standards basically provide us with a structural view of Web services. They
enable us to view Web services as communication endpoints which interact with each
other by sending and receiving messages via a fixed collection of ports associated

80 Roozbeh Farahbod, Uwe Glässer, and Mona Vajihollahi

with each of the communication endpoints. To this end, WSDL and SOAP support a
stateless model of Web services.

The Business Process Execution Language for Web Services (BPEL) builds on top
of WSDL (and indirectly also on SOAP) effectively introducing a stateful interaction
model that allows to exchange sequences of messages between business partners (i.e.
Web services).

In April 2003, members of OASIS1, including IBM and Microsoft among other
leading companies in the e-commerce market, formed a Technical Committee [21] in
order to continue work on BPEL version 1.1 with the objective to establish a stan-
dardized modeling platform and language that enables and accelerates systems design
and IP exchange.

2.1 Overview of BPEL

A BPEL process and its partners are defined as abstract WSDL services, and they use
abstract messages defined by WSDL model for interaction. Figure 1 gives an overall
view of the general structure of a BPEL business process document. A process is
defined by specifying its partners (Web services that this process interacts with), a set
of variables that keep the state of the process and an activity defining the logic behind
the interaction between the process and its partners. This definition is just a template
for creating business process instances. At least one start activity2 must be defined in
the activity of such a template. Whenever a message arrives for a start activity, a new
instance of the business process is created and starts its execution. Therefore, process
creation in BPEL is always implicit.

2.2 Initial Example

To better understand the basic structure and some fundamental concepts of BPEL, we
will provide an example: a fictitious e-Book Store. The process of buying a book from
this online store is simple. A customer first sends the order to the e-Book Store. The
book store then sends the order to the publisher and also sends a shipping request to a
shipping company. The book store then waits to receive a callback from the shipping
company and upon receiving that callback, it replies back to the customer indicating
the order is received and processed successfully.

Figure 2 illustrates the structure of the interaction between publisher, shipping
company, and customer for the sample business process of our e-Book Store. A busi-
ness process interacts with other services through its ports, where each port is of a
certain port type specifying some set of operations. Operations can be either Input-
Only, Output-Only, or Input-Output.

An abstract schema of the e-Book Store business process can also be found in
Fig 2. The numbers show the order in which the events occur. The BPEL process
consists of 5 basic activities, two of which being executed concurrently (as indicated
by identical order numbers annotating these two events).

1 Organization for the Advancement of Structured Information Standards.
2 A start activity is either a receive or a pick activity that is annotated with ‘createInstance =

yes’ causing a new process instance being created whenever a matching message is received.

Specification and Validation of the Business Process Execution Language 81

Fig. 1. BPEL is defined on top of WSDL

Fig. 2. Inside the e-Book Store business process

2.3 Abstract Syntax Tree

A systematic approach to capture the complete structure of a BPEL process (focusing
on the relevant aspects rather than syntactical details) is its representation in the form
of an attributed abstract syntax tree [11]. Many times during this project we had to
refer to a precise and concise definition of the structure of a BPEL process. As the
language definition in the LRM is currently lacking an abstract syntax, we defined our
own abstract syntax, which is presented in [9].

2.4 Correlation

One of the main challenges in integrating Web services, and specifically business
processes, is to deal with stateful interactions. Business processes normally act ac-
cording to a history of external interactions. Therefore, it is necessary to keep track of
the state of each business process instance. Since we have different instances of a

82 Roozbeh Farahbod, Uwe Glässer, and Mona Vajihollahi

business process, messages need to be delivered not only to the correct port, but also
to the correct instance of the business process. To ensure global interoperability and
avoid implementation dependencies, the mechanism required for dynamic binding of
messages needs to be defined in a generic manner rather than leaving this to the indi-
vidual implementations [6].

The need for such a mechanism can be easily seen in our e-Book Store example.
Each order that is sent by the customer is handled by an e-Book Store business proc-
ess instance. For each order that is sent from this process instance to the publisher,
there is also one business process instance at the publisher side. These pairs of process
instances need to interact with each other and as a result they need to “know” each
other. Therefore, there must be a mechanism to route the messages to the correct
process instances. One standard approach to this problem is to carry a business token
(e.g. an order number) in all transactions between e-Book Store and the publisher. In
this way, all the messages that arrive for a specific process instance should carry the
desired business token.

Such a mechanism is supported in BPEL by providing the ability to define a set of
such correlation tokens; i.e. a set of tokens shared by all messages in a correlation
group. This set is called a correlation set. Once a correlation set is initiated, the corre-
lation tokens are identical for all the messages in that correlation group. In this way,
an application-level conversation between business process instances is identified.

2.5 Activities

Activities that can be performed by a business process instance are categorized into
basic activities and structured activities. Basic activities perform simple operations
like receive, reply, invoke, assign, throw, terminate, wait, and empty. Structured
activities impose an execution order to a collection of basic activities. It is important
that structured activities can be nested. Structured activities include sequence, switch,
flow, pick and while. Sequence structures a collection of activities to take place one
after another. Switch provides the ability to choose among a collection of activities.
Flow enables concurrent execution of a set of activities. Pick waits on a set of events
for one of them to occur and executes its corresponding activity. Finally, while exe-
cutes an activity repeatedly until its condition is no longer true.

2.6 Long-Running Business Process, Compensation Behavior

Business processes are meant to define the interactions between several partners that
are based on certain business logic. These processes usually have long durations and
include asynchronous message passing between the partners. Consequently, error
handling in such an environment is not easy. It is done by compensation, i.e. “appli-
cation specific activities that attempt to reverse the effects of a previous activity that
was carried out as a part of larger unit of work that is being abandoned” [6, Section
13.2]. This ability of compensating exceptions in an application-specific manner en-
ables business processes to have so-called Long-Running (Business) Transactions
(LRTs). Further information on the LRTs and their formal specification is beyond the
scope of this paper. Nevertheless, we have considered this concept as an important
extension to the core model as is described in [9].

Specification and Validation of the Business Process Execution Language 83

3 Formalization of the Web Services Architecture

We formalize the key functional attributes of the BPEL Web services architecture
based on the asynchronous computation model of distributed ASMs [14]. The primary
focus is on the concurrent and reactive behavior of Web services and their interaction
through communication networks. This includes concurrent control structures, com-
munication primitives, event handling mechanisms, compensation handling, and dy-
namic creation and termination of services. For dealing with real time aspects, we
define an abstract notion of global system time and impose additional constraints on
the runs defining the behavior of our BPEL abstract machine.

Logically, the architecture splits into two basically different components, namely:
(1) the TCP/IP communication network, and (2) the BPEL services residing at the
communication endpoints. We separate the behavior of the network from the behavior
of services by decomposing our architecture model of the BPEL abstract machine into
two sub-models, each of which in turn is a distributed ASM, or DASM.

Fig. 3. A Three Level Approach: From formal documentation to the executable model

In this paper, we concentrate on the service abstract machine model, whereas a
network abstract machine model is defined in [12]. The composition of these two
machine models is well defined by the underlying semantics of the DASM computa-
tion model. Any interaction between these models is restricted to actions and events
occurring at well-identified interfaces, i.e. the ports at the communication endpoints
via which services send and receive messages.

The overall organization of the BPEL abstract machine splits into three different
layers as illustrated in Figure 3. The abstract model is introduced below; the complete
formal model and the executable model are presented in Section 4 and Section 5.

3.1 DASM Computation Model

A DASM Μ is defined over a given vocabulary V with a program ΠΜ and a non-
empty set IΜ of initial states. An initial state specifies a possible interpretation of V
over some potentially infinite base set X. Intuitively, Μ consists of a collection of
autonomously operating agents from some finite set AGENT. This set changes dy-

84 Roozbeh Farahbod, Uwe Glässer, and Mona Vajihollahi

namically over runs of Μ as required to model varying computational resources. The
behavior of an agent a, in a given state S of Μ, is defined by the program pro-
gramS(a). An agent a can be terminated by resetting programS(a) to undef (not repre-
senting a valid program). To introduce a new agent b in state S, a valid program has to
be assigned to programS(b).

The creation and the termination of an agent a is stated by the following two opera-
tions which, at the same time, also update the (sub-)domain of agents to which a be-
longs.

���������〈������〉��		�
��������������������������〈������〉������������������	�

��������� 		����
��	��

To cope with partial updates of sets, we follow the solution proposed in [16] and
use the following operations for adding/removing an element to/from a set.

�		��������

�� 		��������������������
��

�����

��������

� 		�������������������������

In every state S reachable from an initial state of Μ, the set AGENT is well defined
as follows.

AGENTS ≡ { x ∈ Χ : programS (x) ≠ undef }

The statically defined collection of all the programs that agents of Μ potentially
can execute forms the distributed program ΠΜ.

Concurrency and Real Time. Intuitively, the agents of Μ model the concurrent control
threads in the execution of ΠΜ. Agents interact with each other by reading and writing
shared locations of global machine states. The underlying semantic model regulates
such interactions so that potential conflicts are resolved according to the definition of
partially ordered runs [14]. Real time behavior imposes additional constraints on
DASM runs ensuring that the agents react instantaneously [15]. For details see our
technical report [9].

3.2 BPEL Abstract Model

The top layer of the BPEL abstract machine, called abstract model, provides an over-
view of the architecture and defines the underlying modeling framework. A BPEL
document abstractly defines a Web service consisting of a collection of business
process instances. A process instance maintains a continuous interaction with the
external world (i.e., the communication network) through two interface components,
called inbox manager and outbox manager, as shown in Fig. 4.

The inbox manager takes care of all the messages that arrive at the Web service.
For each such message, the inbox manager is responsible to find a process instance
that is waiting for that message, and assigns the message to this instance. The outbox
manager, on the other hand, delivers output messages from process instances to the
network. Inbox managers, outbox managers, and process instances are modeled by
three different types of DASM agents. Additionally, we introduce two further agent
types, activity agents and handler agents. Each process agent is responsible to execute

Specification and Validation of the Business Process Execution Language 85

a single process instance; it uses dynamically created activity agents for executing
complex (structured) activities. Handler agents are responsible for compensation
handling or fault handling during the execution of a process instance.

������≡����� !"�����#�∪��$��� !"�����#�∪�%#�&����∪��&��'��(!�����∪��
��������������)��*+�#!������

In the initial DASM state, there are only three DASM agents: the inbox manager,

the outbox manager and a dummy process. This dummy process instance simplifies
the method of creating new process instances. There is always one and only one such
process instance waiting on its start activity. By receiving the first matching message,
the dummy process instance becomes a normal running process instance and a new
dummy process instance will be created automatically by the inbox manager. The
DASM program given below specifies the behavior of the inbox manager agent.

	�����
"�������
��,�-���
������� !"�����#���"������.���
�
���� "�����#%#��#�"�≡�

 �����,�-���
�/����0�≠�∅
����

 ������

��∈�%#�&���1���∈���,�-���
�/����0
����
��
�/�1��0
��	
������/�0

� � � ������!"������/�1��0�
� � � �����2��3���%��
���������
� � � � ���
���*3������%#�&����
� � � � � �3���%��
�����2����*3����

The predicate ��
�� /�: %#�&���1��: "������0 checks whether message � can be

delivered to process � or not, trying to match message type and correlation informa-
tion between the waiting process and the incoming message.

In general, a BPEL program combines two different types of activities: basic ac-
tivities and structured activities. Structured activities impose an execution order to a
collection of basic activities. The execution of each structured activity inside a proc-
ess instance is modeled by a single DASM agent of type activity agent. Figure 5
shows the control structure of DASM activity agents where one can associate one
branch from the root to a leaf with each single process instance.

Fig. 4. High-level structure of our BPEL model

86 Roozbeh Farahbod, Uwe Glässer, and Mona Vajihollahi

Fig. 5. Control structure of DASM activity agents

Below is the DASM program that abstractly specifies the behavior of process
agents. In this abstract model, we do not provide the definition of Execute_Activity.

#$�����!������≡�%#�&����$��&��'��(!�������
		#$�����!����������������������������-�
3��/�3�0�����
����4�
������-�
3�����%#�&���������+�����������������		����������3���������
		��������������������
������������������-�
3���������4�
�3���������#$�����!�����������+�������������		����������3���������
		�������������3�������������������������
����������,������-�
3��4�
�
%#�&���%#��#�"�≡�

 ��
��3�������/����0�����

 ����������-�
3���/����0������

 ������-�
3���/����0��2��3���
� � � �3�������/����0��2��3��

 ����

� � � �������������

 ����

� � �-�
3�!�
����/��
����/����0�0�

4 Complete Formal Model

By refining the abstract model of Section 3.3, we obtain the intermediate model,
which provides the full DASM model of the core constructs of BPEL. The intermedi-
ate model forms the basis for deriving the executable model in Section 5.

The previous section described how a %#�&��� agent executes its main activity, but
we did not define �-�
3�!�
�����at that level. Following the definition in BPEL, an
activity can be any of the structured or basic activities, as follows:

	�����
#�%+(�
	�����
#�&��'��
	�����
5+�6�
	�����
��7$��&�

�&��'��(�≡�#�%+(�∪�#�&��'��∪�5+�6�∪���7$��&��∪�8���
		�8���������������
�������������

To execute a basic activity the corresponding rule is invoked. For executing a

structured activity, a new activity agent is created to handle that specific activity.

Specification and Validation of the Business Process Execution Language 87

	�����
5+�6!������
	�����
��7$��&�!������
	������5+�6!�)#��*!������
�&��'��(!������≡�5+�6!������∪���7$��&�!������∪�5+�6!�)#��*!������∪�8��
		�8��������������������������3
3�����
�������

		������������������3��1���������
�������
�������������������������������
		����
�����9�������������
����,������
��
3������
������4���������������������
		�
��3����������
��������������������,��
��
:����
������
���������,�������
		��-�
3��������
����4�5���,�����1������
������������������,���
�����4�
�
		������������������3��,���������������������3���
�-�
3�!�
����/�
��������&��'��(0�≡�
� �������:��3�*�����������

� � ���;���&�������������
� � � �����
�����∈�#�&��'�������
� � � � �-�
3�!#�
����/�
����0�
� � � �

� � � 8�		�������������,���
��
�������
� � � �

� � � ����
�����∈�5+�6������
� � � � ���������������/�
����0�2�3����������
� � � � � ��������5+�6!������
� � � � � � ������������/�
����0��2���
� � � � � � �������9�/�1��
����0�
� � � 8		���������������3
3�����
�������

 ����

 8
		<���&����������������4�����3��/;���5���3��0���������4

 ����

 8�		�����������������
����������:����������
��������������
���������������		������������������-�
3���4����������1�����
�����
������,���-�
3�����4�

� �����

 ���:��3�*�������≡�81�;���&��������≡�8�

In connection with structured activities, we define a function parentAgent for linking

the parent agent and the subordinate activity agent. A process instance may have a
number of subordinate agents that handle the structured activities inside the process
instance. For each activity agent, a derived dynamic function rootProcess is defined that
returns the process instance to which the agent belongs. Furthermore, the root process
has to keep track of all its subordinate agents. SubordinateAgentSet is another derived
dynamic function which provides the set of subordinate agents of a process instance.
These functions are defined as follows.

������������&��'��(!��������#$�����!������
		�%����������/�����������,����������
����������0������������
���%��
�����#$�����!�������%#�&����
		�#�3����������
��������������
�������3�����������,������4��
�3,���������������%#�&�������&��'��(!�����.���
		�#�3��������������
������������������,����
�������������:��
		�3�����
����������������
���4�
�
���%��
���/���#$�����!�����0�≡�
�
�
�3,�������������/���%#�&���0�≡�=��>���∈��&��'��(!���������������%��
���/�0�2��?���

 ∈

��������4���/�00�/����������%��
��
%#�&���1���

88 Roozbeh Farahbod, Uwe Glässer, and Mona Vajihollahi

%�������� relation is maintained by calling an �������9� rule. Whenever a new activ-
ity agent is created (either in an �-�
3�!�
���� rule or inside activity agents like flow
agent) the following rule is called. This rule also updates ,����
����, the activity that
must be executed by this activity agent.

��������9�/�������&��'��(!�����1��
�������&��'��(0�≡�
� ���������/����0��2������
� ,����
����/����0��2��
�����

Going entirely through the complete formal model is outside of the space limita-
tions of this paper. Sections 4.1 and 4.2 thus focus on two representative examples for
illustrating the BPEL abstract machine model, a basic activity and a structured activ-
ity. For further details and complementary parts of the model see [9].

4.1 A Basic Activity: Receive

As is described in [6, Section 11.4], receive activity plays an important role for a
business process both in its life cycle3 and in its service providing to partners.

In order to execute a receive activity for a given process instance, the inbox man-
ager has to be informed that this process instance (or one of its subordinate agents) is
waiting for a message. This is done by adding an ���3*��
����� to the ������5��"��.
���� set of the root process. ���3*��
����� contains sufficient information about the
required message and the agent that is waiting for that message. In this way the inbox
manager can inspect this list and check whether any of the desired messages is re-
ceived, and if so, assigns it to the matching process instance. Therefore, the agent has
to wait until the inbox manager assigns a message to it. The Boolean function ��
����.
"��� is used to distinguish between the initialization mode and the waiting mode. The
���3*��
����� is removed from the set as soon as a message is assigned to its corre-
sponding activity. Thus, the agent will be informed about the assignment and can
proceed with processing the message.

��
����"�����#$�����!�����������+���		����������3���������
������5��"��������%#�&������@#$�����!�����1��&��'��(A.����
		�5�����
�����
���1������������
��������
���������������������������4�
�
�-�
3�!#�
�����/�
������#�&��'�0�≡�
� ���
���3*��
������2�@����1��
����A����
� � ���B��
����"���/����0�������
� � � ��
����"���/����0��2���3��		������3��������������������
��������������4�
� � � �		����3*��
������������������
� � ����

� � � ������3*��
������∉�����������������
�����������������������		����3����
����������������1��������������
�����4�
� � � � ��
����"���/����0��2�������
� � � � �3�������/����0��2�������		#�������������4�
� ���������������2�������5��"������/����%��
���/����0�0�

3 “The only way to instantiate a business process in BPEL is to annotate a receive [or pick]

activity with the createInstance attribute set to "yes".” [6, section 11.4]

Specification and Validation of the Business Process Execution Language 89

4.2 A Structured Activity: Flow

A flow activity groups a set of activities and enables their concurrent execution. A
flow completes when all the activities in the flow have completed [6].

For each structured activity, there is an activity agent for executing it. Flow agent
is responsible for executing a flow activity. To concurrently execute the activities
declared inside the flow activity, the flow agent creates a set of flow thread agents.
Each flow thread agent is responsible for executing one such activity. When all the
threads have finished, the flow agent releases its parent and terminates itself.�

�����
��������5+�6����&��'��(.���
		���������������
��
3������
����������3�������������5+�6��
�����
������������5+�6!��������5+�6!�)#��*!�����.���		�����������3���∅�
�
5+�6%#��#�"�≡�
� ���B�3�������/����0�����

 ������		�&���������������
��
3��������-�
3���
����������3������������������4��
� � ��������
�����∈������
������/����0�� �
� � � ��������������5+�6!�)#��*!������
� � � � �������9�/�������1��
����0�
� � � � �		
����������
����������/����0��
� � �3�������/����0��2��3��
� ����

� � �������������/����0�2�∅�����
		��������������������1�������
��������
�������4��
� � � �3�������/���������/����00��2�������		���������������������������4�
� � � ����������

A flow thread agent executes a single activity. Thus, its program is very similar to
a process agent, except that when the execution of the activity is completed, the flow
thread agent informs the flow agent by removing itself from the flow agent set.

5+�6�)#��*%#��#�"�≡�
� ���B�3�������/����0���	�B������-�
3���/����0�����

 ������-�
3���/����0��2��3��
� � �3�������/����0��2��3��
� ����3�������/����0������
� � �-�
3�!�
����/,����
����/����00�
� ��
B�3�������/����0���	�������-�
3���/����0�����

 �����
��������������������/���������/����00�

 ���������

		���
���������-�
3������,����
����4�6����,����
��������
�������1������������������
		��4�

5 Execution Model

This section introduces an abstract executable semantics of BPEL obtained from the
intermediate model as the result of another refinement step. Experimental validation
of abstract requirements specifications provides us with an effective instrument to
further eliminate undesirable behavior and hidden side effects already in early design
stages [11]. In combination with analytical techniques, simulation and testing can
provide valuable feedback for establishing key system language attributes and explor-
ing alternative design choices. In our project, we use AsmL [18] for this purpose.

90 Roozbeh Farahbod, Uwe Glässer, and Mona Vajihollahi

5.1 AsmL

AsmL is a rich language and its advanced language constructs are definitely helpful in
rapid prototyping and object oriented software development. For the purpose of our
project, however, we have deliberately chosen a subset of the language, which is as
close as possible to ‘pure ASMs.’ To facilitate modeling of the BPEL semantics, a
tight relation between the full DASM model and the derived execution model is of
utmost importance. Though, in order to be executable, some changes and additions
were inevitable. A main weakness of AsmL is its lack of direct support for dealing
with concurrency. There are no built-in constructs for simulating concurrent control
threads; rather such an execution model needs to be hand coded. Ultimately, one
would even expect a distributed runtime system allowing to perform truly distributed
computations of DASM models encoded in AsmL.

5.2 The Model in AsmL

Intuitively, the AsmL encoding splits into four separate modules, each of which deals
with a basically different aspect: (1) the original model (2) the internal environment
(3) the refinement of the original model, and (4) GUI-related extensions.

The original model is basically the translation of the intermediate model to AsmL,
where the main challenge was to keep it close to the pure ASMs.

The internal environment acts as an interface between our abstract machine model
and the BPEL definition of the business process. In order to execute a process in-
stance, we need a way of accessing the definition of the business process. Normally,
each process instance is running an activity as defined in the BPEL process definition
and determined by the history of that specific instance. One option is to encapsulate
all the relevant information inside the respective entities of the model. For example,
we can keep partner, port type, operation, variable and correlation sets of a receive
activity inside it. Abstractly, we assumed that there is an oracle that provides this
information whenever we ask for it. In the execution model, we replace this oracle
with the internal environment.

In the stepwise refinement of the original model, abstract parts are refined depend-
ing on their role in the model, either by non-determinism or assigning clear determi-
nistic behavior to them. In some cases, complex substructures had to be introduced.
For example, in order to model the correlation behavior in a business process in-
stance, we need a structure for correlation sets, mapping properties to their values.
This structure completely complies with the definition of the correlation sets in BPEL.
Besides, a predicate is defined to check the compatibility of a message to a correlation
set, i.e. to check whether the message contains the required correlation tokens or not.

Specification and Validation of the Business Process Execution Language 91

Finally, an executable model needs a GUI that makes it a useful tool for user-
controlled simulation and testing. The GUI is written in Visual C# .NET4. By utilizing
AsmL’s APIs with C#, we were able to integrate the model with its GUI, by defining
an appropriate interface called View. For details of the execution model see [9].

5.3 Experimental Validation Results

A receive activity is a “blocking activity in the sense that it will not complete until a
matching message is received by the process instance.” [6, Section 11.4]. Therefore, it
is implicitly assumed that a matching message will arrive after the corresponding
receive activity has been executed. Consider the following activity in a business proc-
ess:

<sequence>

<activity1>

<activity2>

...

<receive partnerLink=”PL1” portType=”PT1” operation=”OP1”>

</sequence>

Suppose that when a process instance is executing �
����C, a message arrives from
partnerLink PL1, on portType PT1 and for operation OP1. Since the process instance
has NOT executed the receive activity yet, it is not waiting for this message. It is not
clear from the LRM what happens to such a message. Indeed, there could be multiple
choices:

• Buffer: The message can be stored in a buffer, so that the receive activity can fetch
it later.

• Discard: The message can simply be discarded, when there is no receive activity
waiting for it.

• Fault: A fault can be thrown since the Web service has received a message for
which no process instance is waiting.

It is certainly important for the LRM to distinguish among these choices, since it
will cause inconsistencies in the behavior of different implementations of the lan-
guage.

This problem was one of the problems discovered during experimental validation,
when our inbox manager received a message that no process instance was expecting
at the time.

6 Verification Aspects

In the current language definition, there are a number of open issues on how to estab-
lish certain key system attributes of Web services for business processes. Among
those are several abstract language properties that justify formal reasoning either to
prove that those properties indeed are implied by the language definition or to clarify

4 Microsoft Visual C# .NET, Microsoft Development Environment.

92 Roozbeh Farahbod, Uwe Glässer, and Mona Vajihollahi

the resulting implicit constraints on implementations of the language, the construction
of Web services, and the logic design of business processes. Two examples are dis-
cussed below.

Correlations
The LRM states that “After a correlation set is initiated, the values of the properties
for a correlation set must be identical for all the messages in all the operations that
carry the correlation set and occur within the corresponding scope until its comple-
tion” [6, Section 10.2]. Logically, the operations that carry the correlation sets can be
categorized into two basically different groups: input activities, including receive,
invoke, and pick, and output activities, including reply and invoke. Therefore, we can
decompose the above consistency constraint into two separate constraints: (1) the
property must hold on all input activities; (2) the property must hold on all output
activities.

To see that the first constraint is satisfied is trivial. The LRM clearly specifies that
a message must carry the required correlation tokens in order to be accepted by the
process instance. This is true for every input activity. In our model, the inbox manager
fulfils this duty. A message will be assigned to a process instance only if it “matches”
the process instance; thus, it must carry the correlation tokens.

The second property, however, requires a closer investigation. This property can it-
self be decomposed to two sub-properties: (2.1) the property must hold in all output
activities, where the correlation is instantiated by the same output activity; (2.2) the
property must hold in all output activities where the correlation set is already instanti-
ated.

(2.1) is confirmed by the LRM as well. The correlation set will be instantiated and
the correlation tokens get their values from the message that is to be sent out. For
(2.2), the language does not provide enough details to prove the second property.

In case of incoming messages, the business process is capable of filtering the mes-
sages; i.e. it will only pick those messages that match the correlation. On the other
hand, in case of outgoing messages, the business process has no responsibility other
than sending the message out. Although the LRM defines the semantics of a process
that violates this consistency constraint as undefined, it is not precisely mentioned that
output activities (like input activities) are blocking activities, and thus the loose end
leads to further problems as follows.

Synchronous Receive/Reply
According to the LRM “A reply activity is used to send a response to a request previ-
ously accepted through a receive activity. Such responses are only meaningful for
synchronous interactions.” [6, Section 11.4]. In order to clarify a request/response
interaction, BPEL LRM states that “The correlation between a request and the corre-
sponding reply is based on the constraint that more than one outstanding synchronous
request from a specific partner link for a particular portType, operation and correla-
tion set(s) MUST NOT be outstanding simultaneously.”[6, Section 11.4]. Although
the definition of “outstanding” is not elucidated in the LRM, according to its interpre-
tation by WSBPEL TC ([22, issue #26]), one can assume that an outstanding syn-
chronous receive is a receive activity for which the required message has arrived but
the reply is not sent out yet. Therefore, the following must be permissible:

Specification and Validation of the Business Process Execution Language 93

<receive partnerLink=”PL1” portType=”P1” operation=”O1” cor=”C1”>

<receive partnerLink=”PL1” portType=”P1” operation=”O1” cor=”C2”>

<reply partnerLink=”PL1” portType=”P1” opr=”O1”>

Assuming that operation O1 is an input-output operation, these two receive activi-
ties start two synchronous request/response transactions, and as the correlation sets of
these receive activities are different, these two transactions are valid to be outstanding
concurrently. The problem arises when a reply message is sent to the same partner
without specifying any correlation set. This is a valid reply. The problem in this case
is that it is impossible to determine to which receive activity this reply is coupled; it is
not clear which request/response is still outstanding and which one is not.

7 Conclusions and Future Work

Our formalization of the key semantic aspects of BPEL in terms of a hierarchically
defined BPEL Abstract Machine shows that the asynchronous DASM model indeed is
a natural choice for defining a precise semantic foundation. The resulting formal
model transforms the abstract language definition in two consecutive refinement steps
into an executable specification. In combination with inspection by analytical means,
e.g. the ability to formally reason about critical language properties, experimental
validation (through simulation and testing) clearly helps establishing coherence and
consistence of the semantics, thereby improving the quality of the language definition.
An advanced GUI facilitates such tasks (see also [9]).

A prerequisite for the feasibility of formalization when applied as a practical in-
strument in an industrial standardization context is conciseness, intelligibility and
robustness [11]. Standardization is an ongoing and potentially open-ended activity
which brings a high dynamics into the development and maintenance of a language.
Such dynamics demands for a robust formalization framework that serves pragmatic
needs. To this end, our abstract machine concept has already proven to be useful for
enhancing conciseness and robustness of the formal model. The proposed hierarchical
structuring of this model into three levels of abstraction reflects a clear separation of
concerns, enhances intelligibility, and enables a tighter integration of the formal and
the informal language description so that they effectively complement each other.

Our future work will concentrate on extending the BPEL Abstract Machine model
towards modeling and integration of compensation behavior and fault handling.

Acknowledgements

We thank the anonymous reviewers for their valuable comments and suggestions for
improvements. The idea of modeling design languages for automated business proc-
esses in terms of distributed real-time ASMs originates from joint work with Margus
Veanes while one of the authors visited Microsoft Research in 2001.

94 Roozbeh Farahbod, Uwe Glässer, and Mona Vajihollahi

References

1. A. Benczur, U. Glässer and T. Lukovszki. Formal Description of a Distributed Location
Service for Ad Hoc Mobile Networks. In E. Börger, A. Gargantini, E. Riccobene (Eds.): Ab-
stract State Machines 2003 - Advances in Theory and Practice, vol. 2589 of LNCS, pages
204-217, Springer, 2003.

2. E. Börger. The Origins and the Development of the ASM Method for High Level System
Design and Analysis. Journal of Universal Computer Science, vol. 8, no. 1, pages 2-74,
2003.

3. E. Börger, U. Glässer and W. Müller. The Semantics of Behavioral VHDL’92 Descriptions.
In Proc. of EURO-VHDL'94, pages 500-505, Grenoble, France, Sep. 1994.

4. E. Börger, U. Glässer and W. Müller. Formal Definition of an Abstract VHDL’93 Simulator
by EA-Machines. In C. Delgado Kloos and Peter T. Breuer (Eds.): Formal Semantics for
VHDL, Kluwer Academic Publishers, 1995, 107-139.

5. E. Börger. and R. Stärk. Abstract State Machines: A Method for High-Level System Design
and Analysis. Springer, 2003.

6. Business Process Execution Language for Web Services Version 1.1, BEA Systems, Inter-
national Business Machines Corporation, Microsoft Corporation, SAP AG, Siebel Systems,
May 2003.

7. R. Eschbach , U. Glässer, R. Gotzhein, M. von Löwis and A. Prinz. Formal Definition of
SDL-2000 —Compiling and Running SDL Specifications as ASM Models. Journal of Uni-
versal Computer Science, 7 (11): 1025-1050, Springer Pub. Co., Nov. 2001.

8. R. Eschbach, U. Glässer, R. Gotzhein and A. Prinz. On the Formal Semantics of SDL-2000:
a Compilation Approach Based on an Abstract SDL Machine. In Y. Gurevich, P.W. Kutter,
M. Odersky and L. Thiele (Eds.): Abstract State Machines — Theory and Application, vol.
1912 of LNCS, pages 244-265, Springer-Verlag, 2000.

9. R. Farahbod, U. Glässer, M. Vajihollahi, Specification and Validation of the Business
Process Execution Language for Web Services, SFU-CMPT-TR-2003-06, Sep. 2003

10. N. E. Fuchs. Specifications are (Preferably) Executable. Software Engineering Journal,
September 1992, pp323-324

11. U. Glässer, R. Gotzhein and A. Prinz. Formal Semantics of SDL-2000: Status and Perspec-
tives. Computer Networks, Volume 42, Issue 3, pages 343-358 (June 2003), ITU-T System
Design Languages (SDL), Elsevier, 2003

12. U. Glässer, Y. Gurevich, and M. Veanes. An Abstract Communication Architecture for
Modeling Distributed Systems. Submitted to IEEE TSE, 2003.

13. U. Glässer and M. Veanes. Universal Plug and Play Machine Models: Modeling with Dis-
tributed Abstract State Machines. In B. Kleinjohann, K. H. Kim, L. Kleinjohann, A.
Rettberg (Eds.): Design and Analysis of Distributed Embedded Systems, Kluwer Academic
Publishers, 2002

14. Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Börger, editor, Specification and
Validation Methods, pages 9-36. Oxford University Press, 1995.

15. Y. Gurevich and J. Huggins. The Railroad Crossing Problem: An Experiment with Instan-
taneous Actions and Immediate Reactions. In H.K. Büning, editor, Computer Science
Logic, Springer LNCS volume 1092, pages 266-290, 1996.

16. Y. Gurevich and N. Tillmann. Partial Updates: Exploration. Springer J. of Universal Com-
puter Science. vol. 7, no. 11 (2001), pages 918-952.

17. I.J. Hayes, and C.B. Jones. Specifications are not (necessarily) executable. Software Engi-
neering Journal, 1989, 4, (6), pp. 330-338

18. Microsoft Research: AsmL, www.research.microsoft.com/foundations/AsmL
19. SOAP Version 1.2 Part 0: Primer, W3C Recommendation 24 June 2003,

www.w3c.org/TR/soap12-part0/
20. Web Services Description Language (WSDL) Version 1.2 Part 1: Core Language, W3C

Working Draft 11 June 2003, www.w3.org/TR/wsdl12
21. WSBPEL TC at the Organization of Advancement of Structured Information Standards

(OASIS), www.oasis-open.org.

	1 Introduction
	2 Web Services Architecture
	2.1 Overview of BPEL
	2.2 Initial Example
	2.3 Abstract Syntax Tree
	2.4 Correlation
	2.5 Activities
	2.6 Long-Running Business Process, Compensation Behavior

	3 Formalization of the Web Services Architecture
	3.1 DASM Computation Model
	3.2 BPEL Abstract Model

	4 Complete Formal Model
	4.1 A Basic Activity: Receive
	4.2 A Structured Activity: Flow

	5 Execution Model
	5.1 AsmL
	5.2 The Model in AsmL
	5.3 Experimental Validation Results

	6 Verification Aspects
	7 Conclusions and Future Work
	References

