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Validation of web service compositions
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Abstract: Web services support software architectures that can evolve dynamically. In particular, in
this paper the focus is on architectures where services are composed (orchestrated) through a work-
flow described in the business process execution language (BPEL). It is assumed that the resulting
composite service refers to external services through assertions that specify their expected functional
and non-functional properties. On the basis of these assertions, the composite service may be verified
at design time by checking that it ensures certain relevant properties. Because of the dynamic nature
of web services and the multiple stakeholders involved in their provision, however, the external ser-
vices may evolve dynamically, and even unexpectedly. They may become inconsistent with respect
to the assertions against which the workflow was verified during development. As a consequence,
validation of the composition must extend to run time. In this work, an assertion language, called
assertion language for BPEL process interactions (ALBERT), is introduced; it can be used to
specify both functional and non-functional properties. An environment which supports design-time
verification of ALBERT assertions for BPEL workflows via model checking is also described. At run
time, the assertions can be turned into checks that a software monitor performs on the composite
system to verify that it continues to guarantee its required properties. A TeleAssistance application

is provided as a running example to illustrate our validation framework.

1 Introduction

Service-oriented architectures (SoAs) recently emerged as a
useful architectural paradigm in new and innovative com-
puting domains, like ambient intelligence, context-aware
applications and pervasive computing [1]. Many current
technologies can be associated with SoAs, such as Jini
[2], OSGi [3] and so on. However, because of substantial
investments by important industrial players, such as BEA,
IBM, Microsoft and Oracle, important open-source commu-
nities such as Apache and a very active research commu-
nity, it is common to identify SoAs with the web-based
implementations that go under the term ‘web services’.
The research we describe here focuses on web services.
In particular, it deals with service compositions built
using the business process execution language (BPEL)
[4]. BPEL workflows (also called processes) may define
new, composite services by coordinating (‘orchestrating’)
external services, which are typically not under their juris-
diction. This leads to a distributed ownership of the compo-
site system, which is ultimately responsible for its overall
functionalities and quality of service (QoS). External
partner services, which affect both functionalities and QoS
of composite services, may in fact evolve independently,
and even unexpectedly, even after the system is deployed.
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When a composite service is designed, certain assump-
tions must be made on the external services which will be
orchestrated. Not only must the syntax of their interface
be considered, but also their semantics. In particular, the
designer must decide which properties must be fulfilled
by the external services and, in turn, based on these assump-
tions, which properties the composite service will guarantee
to its own users.

In the dynamic world of SoAs, however, what is guaran-
teed at development time, unfortunately, may not be true at
run time. The actual services to which the workflow is
bound may change dynamically (In BPEL, only the
implementation behind partner services can change, but
there are many proposals [5] to complement BPEL with
dynamic binding capabilities), possibly in an unexpected
way that may cause the implemented composition to
diverge from the assumptions made at design time.
Traditional approaches, which restrict validation to being
a design time activity, are no longer valid in this dynamic
setting. Besides performing design-time validation, it is
also necessary to perform continuous run-time validation
to ensure that the required properties are maintained by
the operational system. However, it is virtually impossible
to predict all the evolutions and changes that might occur
in the services we use, and the same is true for the environ-
ment. This leads us to consider monitoring as a defensive
means. Since it is currently unrealistic to believe that exter-
nal services will provide a formal and machine-readable
specification of their functionality and QoS, all we can
rely on are our process-side expectations of their function-
ality and QoS. Therefore monitoring allows us to take
notice of infringements of such expectations.

In this article we propose a framework for validating
BPEL processes that covers both design-time and run-time
validations. Properties are expressed in assertion language
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for BPEL process interactions (ALBERT). ALBERT asser-
tions can be used for two purposes. First, they can formally
specify the properties that partner services are required to
fulfil. Such properties formalise the assumptions on the
external services made at development time by the software
developer while designing the workflow. These are called
assumed assertions (AAs). Second, ALBERT assertions
can be used to state properties that the workflow should
satisfy, assuming that external services operate as specified.
Such assertions, which characterise the behaviour the com-
posite service should guarantee, are called guaranteed asser-
tions (GAs). The use of assume-guarantee reasoning is a
known technique in verification. It is used to support
‘divide and conquer’ and compositional reasoning [6]. AAs
and GAs can state both functional and non-functional prop-
erties. Because of this use of assertions, ALBERT promotes
‘design by contract’, as advocated by Meyer [7].

Our validation environment supports the software
designer at design time by verifying that GAs hold for a
given workflow, assuming that AAs hold. This verification
is achieved via model checking. We also provide a
run-time monitoring facility that checks whether the exter-
nal services satisfy the AAs and whether GAs also hold.

When designing our framework, we adhered to the fol-
lowing design principles:

e Use of standard technology. We decided to use standard
technology (e.g. BPEL, XML, XPath and so on) to favour
adoption of the proposed approach.

e Separation of concerns. The process designer should con-
centrate separately on the business logic implemented by
the workflow and on the validation properties expressed in
ALBERT. The two are kept in two separate documents.
This is also true for the enactment of the workflow. The
adoption of an aspect-oriented approach in the implemen-
tation allows the monitoring logic to be kept separate
from the business logic.

e Defensive design. Because external services can evolve
dynamically, the assumptions (AAs) made on the environ-
ment when the abstract workflow is statically validated
may be violated at run time. ALBERT can be used to
declaratively state the properties that must hold and then
to support the monitoring of these properties at run time.

The main contribution of this article is the description of
a complete and coherent framework for validating BPEL
process compositions. It consolidates our previous work
which investigated different aspects of SoAs, and in particu-
lar static and dynamic analysis of web services. The
ALBERT language and the overall validation framework
represent the novel contributions of the article. To the
best of our knowledge, although many existing research
efforts deal with different aspects of our approach, none pro-
vides a complete and coherent coverage of validation of
web service compositions and the specification of both
functional and non-functional properties.

The article is organised as follows. Section 2 gives an
overview of BPEL to make the reader familiar with the
language constructs which are then used throughout the
paper. Section 3 introduces a running example, which will
be used to illustrate the concepts and tools we provide.
Section 4 introduces the specification language ALBERT.
Section 5 describes the overall validation methodology and
how it fits into a complete development process. Section 6
describes our model checking approach and Section 7
describes how we achieve run-time monitoring. Section 8
surveys the state of the art. Finally, Section 9 draws some
conclusions and outlines future work directions.
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Fig. 1 Graphical notation of BPEL

2 Overview of BPEL

BPEL [4] is a high-level XML-based language for the defi-
nition and execution of business processes by means of web
service-based workflows. The definition of a process con-
tains a set of global variables and the workflow logic
expressed as a composition of activities (Fig. 1 shows the
graphical notation we use in the rest of the paper); variables
and activities can be defined at different visibility levels
within the process using the scope construct.

Activities include primitives for communicating with
other services (receive, invoke, reply), for executing assign-
ments (assign), for signalling faults (throw), for pausing
(waif) and for stopping the execution of the process
(terminate). The sequence, while and switch constructs
provide standard control structures to order activities,
define loops and branches.The pick construct is peculiar to
the domain of concurrent and distributed systems and
waits either for the first out of several incoming messages
to occur or for a time-out alarm to go off, to execute the
activities associated with such event.

The flow construct supports the concurrent execution of
activities. Synchronisation among the activities of a flow
may be expressed using the /ink construct; a /ink can have a
guard, which is called transitionCondition. Since an activity
can be the target of more than one /link, it may define a
joinCondition for evaluating the transitionCondition of each
incoming /ink. By default, if the joinCondition of an activity
evaluates to false, a fault is generated. Alternatively, BPEL
supports dead path elimination (DPE), to propagate a false
condition rather than a fault over a path, thus disabling the
activities along that path.

Each scope (including the top-level one) may contain the
definition of the following handlers:

e An event handler reacts to an event by executing —
concurrently with the main activity of the scope — the
activity specified in its body. In BPEL there are two types
of events: message events, associated with incoming mess-
ages, and alarms based on a timer.

o A fault handler catches faults in the local scope. If a suit-
able fault handler is not defined, the fault is propagated to
the enclosing scope.

e A compensation handler restores the effects of a pre-
viously completed transaction. The compensation handler
for a scope is invoked by using the compensate activity,
from a fault handler or compensation handler associated
with the parent scope.

3 Running example

TeleAssistance (TA) is a small company in the business of
remote assistance to patients. Its server runs the BPEL
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Fig. 2 The TeleAssistance service

process shown in Fig. 2 to assist its clients. The process starts
as soon as a Patient (PA) enables the home device supplied
by TA, which sends a message to the process’ receive activity
startAssistance. Then, it enters an infinite loop: every
iteration is a pick activity that suspends the execution and
waits for one of the following three messages:

e vitalParamsMsg. The home device (e.g. a gluc-
ometer) sends the patient’s vital parameters (which are
saved in the variable vitalParams, which has a field
named glucose, containing the measured glucose level).
This message enables the corresponding execution path,
in which the vital parameters are sent to the service
Medical Laboratory (LAB), by invoking operation
analyzeData. The LAB is in charge of analysing the
data and replies by sending a result value stored in a vari-
able analysisResult. This variable contains a field
suggestion whose value can be ‘changeDrug’,
'changeDoses’ or 'sendAlarm’. In the last case,
the TA process invokes service First-aid Squad (FAS).
This service coordinates a group of doctors, nurses and
paramedics who assist patients day-by-day and visit them
at home in case of emergency. To alert the squad, the TA
process invokes the operation alarm on the FAS, by
passing the id of the patient and the severity level of the
alarm (‘mild’ in this case).

e pButtonMsg. The patient can press a panic button,
causing an alarm message to be sent to the TA process. If
the patient feels sick, he or she can issue a request for
immediate assistance. The TA process alerts the FAS with
an alarm, whose severity level is “high’.

e stopMsg. The patient may decide to cancel the TA
service.

We assume that the TA process uses a variable
alarmNotif to send an alarm notification to the FAS.
This variable contains a field 1evel, which can be set to
'mild’ or 'high’, and a field pID which represents
the patient identification code.

If the patient needs special-purpose assistance, the FAS
transfers the patient to the closest hospital. Upon arrival,
the FAS notifies TA that the patient has been hospitalized
by sending a message (patHospitalizedMsg), which
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is received through an appropriate event handler, saving
the parameter in variable patHospitalized. The
current instance of the TA process then terminates.

4 ALBERT

ALBERT is an assertion language for BPEL processes. It is
a reminiscent of assertion languages that were designed for
specific programming languages such as ANNA [8], an
annotation language for Ada, and the Java modelling
language (JML) [9]. ALBERT supports the definition of
AA and GA that state both functional and non-functional
properties of BPEL processes.

For example, in our TA process we may define a number
of assertions (AAs) that state the assumptions made on the
partner services, upon which we base the design of
the process. One of such properties (referred to as
VitalParams) specifies that ‘the glucose value sent by
the patient’s remote device to the process is between
40 and 300mg/dL’. Another AA (referred to as
FASConfirmHospitalization) specifies that ‘if the FAS
is invoked three times over a week, witha ‘high’ severity
level alarm for a certain patient, it must notify the TA,
within one day that the patient has been hospitalised.’

The language can also specify assertions (GAs) that must
be satisfied by the workflow, assuming that external services
behave as specified by AAs. One such property (referred to
as FASInvokeMildAlarm) specifies that ‘after receiving a
message from the LAB, indicating that an alarm must be
issued to the FAS, the TA process must invoke the FAS
service within 4 h, passing a ‘'mild’ alarm notification’.

Another example of a GA (referred to as
MDCheckUp) specifies that ‘if a certain patient sends
the pButtonMsg three times during a span of a week,
the FAS must hospitalise the patient within one day’.
Intuitively, the truth of this assertion is assured by the
AA FASConfirmHospitalization, combined with the
structure of the workflow, shown in Fig. 2.

4.1 Variables

Variables used in ALBERT assertions can be of two kinds:
internal and external. Internal variables consist of
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elementary data (i.e. a number, a string or a boolean) that
are extracted from BPEL variables. For example, we can
refer to a patient’s glucose level as (SvitalParams/
glucose). In this expression, $vitalParams indicates
the BPEL variable from which we are extracting an elemen-
tary value, and /glucose is the XPath expression used to
extract the desired value.

ALBERT also provides means to predicate on variables
whose values originate outside the process. This is useful
when the correctness of a property can only be established
by referring to contextual data provided by external data
sources, such as the time and/or place of execution.
These are called external variables. For example, an exter-
nal variable can be used to define the following AA prop-
erty: ‘The new drug sent by the LAB service through
variable analysisResult must be amongst those in
the list of drugs approved by the Food and Drug
Administration (FDA)’. To check if the drug is valid, one
needs to refer to an external variable that is provided by
querying the FDA online registry, an external service
which is not part of the workflow. In our example the exter-
nal variable could be defined as FDA: : inList (ins) /
result, where FDA: :inList is the invoked remote
method, ins the input message for the method (in our
example it contains the name of the drug) and /result
the XPath expression used to extract the desired datum.

4.2 Constructs

In this section we provide an introduction to the main con-
structs of the ALBERT language. The language defines for-
mulae which specify invariant assertions for the workflow.
Formulae are defined by the grammar shown in Fig. 3.

In the grammar id is an identifier, var an internal or
external variable, onEvent an event predicate, Becomes,
Until, Between and Within the temporal predicates, count,
elapsed, past and all the functions derivable from the non-
terminal fun the temporal functions of the language.
Parameter w identifies the start or the end of an invoke or
receive activity, the reception of a message by a pick or
an event handler, or the execution of any other BPEL
activity. K is a positive real number, n a natural number
and const a constant.

The grammar in Fig. 3 defines the core of the language.
To improve its expressiveness, other constructs are also pro-
vided, including the obvious logical connectives, which can
be trivially derived from — and A and the temporal oper-
ators Always and Eventually, which can be derived from
Until. Although, in principle, universal and existential quan-
tifiers should not be part of the core of the language, because
they predicate over finite sets of data values, we introduce
for notational convenience and use them extensively in
the rest of the paper.

Here we present the semantics of the language infor-
mally, assuming that the workflow process does not
contain a flow activity. This is not a limitation of the
language; it allows us to simplify our presentation. The
formal semantics for the complete core language is reported
in Appendix A.

The informal meaning of ALBERT formulae can be
explained by referring to the sequences of (time-stamped)
states of the BPEL process. A state is a triple (V, i, t),
where V is a set of (variable, value) pairs, i a label of a
BPEL instruction and ¢ a time instant in the domain of posi-
tive real numbers. V is the set of (variable, value) pairs that
hold after executing the BPEL activity i, and 7 is the instant
at which the execution of the activity is completed. Two
states s; = (V}, ij, t;) and siy1 = (Vj1, ij+1, ti+1) are adja-
cent in the sequence if i is the activity that follows j; in
the control flow and the execution of i;;; on the variables
in V; terminates at time #., yielding Vj,;.

Boolean, relational and arithmetic operators have the
conventional meaning; the same is true for quantifiers.
Because ALBERT assertions are implicitly assumed to be
invariant for the BPEL process, they express properties
that must hold in all states. To express the fact that they
must hold when the execution reaches a given point of the
workflow, we need to use the predicate onEvent, which is
true when the corresponding event occurs. For example,
property VitalParams can be expressed as

onEvent(vitalParamsMsg) —
(svitalParams/glucose > 40A

$vitalParams/glucose < 300)

More precisely, in the case of assign, pick, event handler
and the end of invoke or receive activities, it is true in a
state whose label identifies the corresponding activity. In
the case of the start of an invoke or receive activity, it is
true in a state if the label of the next state in the sequence
identifies the corresponding activity. In the case of a while
or a switch activity, it is true in the state where the condition
is evaluated.

Temporal predicate Becomes is evaluated on two adja-
cent elements of the sequence of states. The formula is
true when its argument is true in the current state and
false in the previous. The temporal predicate Until(¢, &) is
true in a given state if £ is true in the current state, or even-
tually in a future state, and ¢ holds in all the states from the
current (included) until that state (excluded). The temporal
predicate Between(¢, & K) is true in a given state
s; =V}, ij, t;) if ¢ is true, for the first time, in a state
sy = (Vi, ix, t) such that #; > ¢;, and £ is true in a further
subsequent state s,, = (V,,, iy, t,,) such that ¢, —t; <K,
and for the successor state s,.1 = (Vit1, bwt1s bytl)s
tw+1 — t; > K. The temporal predicate Within(¢, K) is eval-
uated on a finite sequence of states, built from (and includ-
ing) the current state s; = (V,i;, #;) until we reach a
subsequent state s; = (Vi, ix, ) for which # — 4 <K,
and for the successor state sgr1 = (Vitt, iktls tit1)s
tis1 — t; > K. The predicate is true if ¢ is true at least in
one of these states.

Function past(i, onEvent(w), n) is computed on a histori-
cal sequence of states, built backwards from (and exclud-
ing) the current state. The sequence must contain 7 states
in which onEvent(w) is true. The function returns the
value of ¢ in the state of the sequence with the smallest ¢.
The function is undefined if such a sequence cannot be

¢u=trelopy| ~d|dAd|(opid in var; @) onEvent(u)|Becomes(d)|Until(¢,d )|Between(d, ¢, K )|Within{g, K)
¥ = varly arop |const| past (1, onEvent{),n)|count (¢, K )|count (¢, onEvent (1), K )|fun (1, K )| fun(s, onEvent(p), K )lelapsed (onEveni(p))

relop 1= <|<|=[>|>
op:=foralllexists
arop == +|— | x|+

fun ::= sum|avg|min|max]. ..

Fig. 3 Grammar of ALBERT formulae
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found. Function count(¢, K) is also computed on a finite
historical sequence of states, built backwards from (and
including) the current state s; = (V}, i;, t;) until we reach a
state sy = (V%, ir, t) for which #; — #; < K, and for the pre-
decessor state sg—1 = (Vi—1, fk—1, ti—1), j — tr—1 > K. The
function returns the number of elements in this sequence
in which ¢ holds. The overloaded version of the function
(count(¢d, onEvent(n), K) only considers states in which
onEvent(w) is true (The overloaded version does not add
expressive power. Indeed, count(¢p, onEvent(n), K) is
equivalent to count(¢ A onEvent(w), K). The overloaded
version is kept to simplify the specification of formulae).

The placeholder fun stands for any function (e.g.
average, sum, minimum, maximum ...) that can be
applied to sets of numerical values. As for count, there
are two overloaded cases. fun(i, K) is computed on a
finite historical sequence of states, built backwards from
(and including) the current state s; = (V}, i, £;) until we
reach a state sy = (Vy, i, #;) for which #, — #; < K, and
for the predecessor state sg_; = (Vi—1, ix—1, ti—1),
t; —ty—1 > K. The function returns the value resulting
from the application of function fun to all values of the
expression ¢ in all states of the sequence. The overloaded
version, which only considers states in which onEvent(w)
is true, as before, does not add expressive power to the
language. Function elapsed(onEvent(w)) is computed on a
finite historical sequence of states, built backwards from
(and including) the current state s; = (V}, ij, ;) until we
reach the first state sy = (Vy, ir, #;) in which onEvent(u)
is true. The function returns #; — #;. The function is unde-
fined if such a sequence cannot be found.

ALBERT can be used to specify both AAs and GAs for
BPEL processes. However, when defining AAs: formulae
should only refer to the BPEL activities that are responsible
for interacting with external services. Typically, AAs
express properties that must hold after the workflow has
completed an interaction with an external service. The fol-
lowing formulae are common templates for AAs.

onEvent(w) — ¢

past(y', onEvent(u), n) =  — ¢
Becomes(count(¢/, onEvent(w), K) = i) — ¢
Becomes(fun(y’, onEvent(un), K) = ) — ¢

where ¢ and ¢’ are ALBERT formulae, u identifies the start
or the end of an invoke or receive activity or the reception of
a message by a pick or an event handler. y and ' are
ALBERT expressions, 7 a natural number and K a positive
real number.

These templates limit the states on which ¢ needs to be true
to satisfy the formula. More precisely, the first template checks
the truth value of ¢ only in the states in which onEvent(w) is
true; that is in the states preceding or following an interaction
with an external service. In the second template, the fact that a
property is checked depends on past interactions with the
outside world. More precisely, we check ¢ only if, in associ-
ation with a past interaction with an external service
(onEvent(u)), ' was equal to . In the third template, the
property is checked if past interactions with the outside
world have led to a certain number of specific events. More
precisely, we are interested in checking ¢ in a state s, if, in s,
it becomes true that, in the last K time instants, ¢’ is true s
times. Notice that, when counting, we consider only states
that are related to interactions with external services
(onEvent(1)), meaning that we count the number of times in
which, in relation to these interactions, ¢’ is true. In the last
template, the property is checked if past interactions with the
outside world have led to a certain value of an aggregate
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function. In more detail, we are interested in checking ¢ in a
state s, if, in s, it becomes true that fun, calculated over the
values of i/, obtained from states associated with interactions
with external services (onEvent(u)) over the last K time
instants, is ¢. In all four cases, the decision to check &
depends on interactions with external services.

4.3 Examples

Referring to the example of Fig. 2, a non-functional asser-
tion (hereafter referred to as LabServiceTime) could be
‘After sending the patient’s data to the LAB service, it
should reply within 1 h’. This is an AA on the response
time of the external LAB service that can be expressed as

onEvent(start_analyzeData) —
Within(onEvent(end_analyzeData, 60)

Another non-functional assertion (hereafter referred to as
AveragelabServiceTime) could be ‘The average response
time of all the invocations of operation analyzeData on
service LAB completed in the past 10 h should be less than
45 min’. This AA can be expressed as

avg(elapsed(onEvent(start_analyzeData)),
onEvent(end_analyzeData), 600) < 45

Property FASInvokeMildAlarm can be expressed as

onEvent(end_analyzeData)A
SanalysisResult/suggestion
= ‘sendAlarm’ —
Within(SalarmNotif/level = ‘mild’A
onEvent(start_alarm)), 240)

In this case we are defining a GA which states that upon
ending the execution of the activity analyzeData, if
field suggestion of the output variable is
sendAlarm, then the process must guarantee that an
alarmNotif is sent within 4 h, with the severity level
equal to ‘mild’.

Property MDCheckUp can be expressed as

Vx(Becomes(count(SalarmNotif/level = *high’A
x = SalarmNotif/pID,
onEvent(pButtonMsg), 10080)
=3)—>
Within(onEvent(patHospitalizedMsg)A
SpatHospitalized/pId =x,1440))

In the example, we count the number of times the
pButtonMsg is received within a week; if it is received
three times, the TA should receive the confirmation of
hospitalisation =~ within ~ 24h, by processing a
patHospitalizedMsg event.

5 ALBERT-aware development process

Fig. 4 describes how our validation framework fits into a
complete development process. The first step consists in
designing the service composition, represented as a BPEL
process; this task is usually accomplished by a BPEL
designer, that is, an expert in business processes modelling.
The BPEL document produced by the design phase is passed
to the verification and validation (V&V) engineer, who anno-
tates it with ALBERT assertions. These assertions may be:
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e AAs, which represent the assumptions made on the exter-
nal services, that is, process-side expectations of the QoS
and functionality the external services will provide;

e GAs, which state the properties that the workflow should
satisfy, if the AAs hold.

The BPEL process, annotated with ALBERT assertions,
is then provided to BPEL2BIR, which outputs a model suit-
able for verification through a model checker (Bogor, in this
case). The design and design-time validation phases are
continuously repeated until the GAs are satisfied.

Then, the BPEL process is deployed to an execution
engine running Dynamo, our monitoring framework.
Dynamo checks during run time if the assertions (both the
GAs and the AAs) are satisfied.

If the assertions are violated, the process can be verified
again, by relaxing the assumptions, or be redesigned and
re-deployed.

The next two sections present the technical details of the
two validation techniques we propose, including a qualitat-
ive evaluation of performance issues.

Both of the analysis techniques involve relevant complex-
ity issues that could affect the overall performance of the
proposed methodology. However, the technical details we
present in the following sections allow us to deal with them
efficiently, as we shall see from a qualitative stand point.

6 Design-time validation

In this section we describe our approach to design-time vali-
dation based on model checking. Model checking [6] is a
completely automatic technique in which the state space

&

BPEL BPEL
designer process

BPEL process j i

ro| ies
brgpest Vav

engineer

process-side
expectations

of the model representing the system under verification is
exhaustively analysed. As a consequence, the model has
to be finite in the number of states and can only contain vari-
ables that have finite sets of values. Since the state space
must be completely explored, model checking suffers the
well-known state explosion problem, which can be miti-
gated by the introduction of carefully crafted abstractions.

Several abstraction mechanisms have been proposed for
programs written in common programming languages
such as C (see, for example [10, 11]). Hereafter, we
discuss how ALBERT and the assume-guarantee design
methodology it enforces can support the definition of
abstractions that can help in the verification of web
service compositions.

According to our approach, we analyse workflow-based
service compositions by abstracting the external environ-
ment (i.e. external partner services) through interfaces to
external services, viewed as black boxes that fulfil certain
desired properties, formalised through AAs. Often, these
abstract interfaces are all, which one can know about
their environment. Sometimes, however, some of the exter-
nal partner services are shared within a restricted cooperat-
ing community. In such a case, it may be possible to inspect
the black box. The design-and-conquer methodology sup-
ported by ALBERT allows the implementation of these
partner services also to be analysed, to check what their
users require as AAs are guaranteed by the implementations
as GAs. Indeed, this is the essence of an assume-guarantee
approach to design-time verification. ALBERT allows the
approach to deal not only with functional requirements, but
also with QoS agreements that bind service requesters and
service providers, such as response time constraints.

NO
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Fig. 4 ALBERT-aware development process
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To support analysis, we developed BPEL2BIR [BPEL and
ALBERT to Bogor’s intermediate representation (BIR)], a
model checking framework based on Bogor [12]. Our
validation framework and the ALBERT language are theor-
etically independent of the selected model checking and
monitoring technologies. In particular, Bogor was chosen
because most BPEL constructs can be easily mapped onto
BIR (Bogor’s input language). Furthermore, Bogor’s
modular architecture supports the introduction of different
model checking algorithms and customisations for particu-
lar domains. This will be exploited in the future evolution of
this work, as outlined in Section 9.

To develop BPEL2BIR, we had to solve three main pro-
blems. First, we build a model from the BPEL workflow by
modelling the interactions with the external world through
the generation of random values for the relevant variables.
Second, we exploit the abstractions that can be derived from
AAs, which allow for a better representation of the inter-
actions with the external world. Then, we translate GAs into
BIR properties that must be verified. The model-checking
problem is described in the following by presenting how we
encode BPEL activities, AAs and GAs into BIR constructs.

The approach to model check web service compositions
presented in this article differs from other proposals that
appeared in the literature because:

e [t is supported by an assume-guarantee verification meth-
odology that fosters design-and-conquer.

e It covers the whole set of BPEL constructs, including
those dealing with time.

e ALBERT allows one to describe a rich set of functional
and non-functional properties.

Preliminary experimental results on the use of BPEL2BIR
have shown that Bogor can provide a better support for
model checking than other similar tools [13].

6.1 Bogor

Bogor [12] is a model-checking framework developed at
Kansas State University. The input language for Bogor,
called BIR, provides constructs found in modern program-
ming languages, such as dynamic threads and object cre-
ation, exception handling, virtual functions, recursive
functions and garbage collection. A low-level version of
the intermediate representation, named low-level BIR, is a
language for the description of transition systems based
on guarded commands with explicit locations, explicit
guards, sequences of statements comprising transition
actions and explicit transitions.

The BIR data model contains primitive types (boolean,
int, enum) and non-primitive types (null, record,
array, lock). For record types, sub-typing declarations
and virtual methods are also supported. The language is stati-
cally strongly typed. The memory model forbids pointer arith-
metic and achieves object reclamation through garbage
collection. To overcome the state explosion problem, Bogor
implements some well-known optimisation and reduction
strategies, such as data and thread symmetry [14], collapse
compression [15] and partial order reduction [16].

Bogor is extensible, both in terms of input language and
model-checking algorithms. It has an open, modular archi-
tecture that allows the development of extensions via new
algorithms and optimisations, to improve core tasks, such
as state encoding and state exploration. Several extensions
have been implemented; among these, the ones related to
partial-order reduction, state-encoding, search strategies,
support for different property languages (regular
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expressions, LTL and CTL, JML) and support for several
domains (multithreading and Swing, event-based Java pro-
grams, CORBA-based avionics systems). For example, in
our group we designed Bogor extensions to validate event-
based service architectures based on the publish/subscribe
paradigm [17].

6.2 Modelling BPEL in Bogor

A BPEL process is mapped onto a BIR system composed
of threads that model the main control flow of the process
and its flow activities. Data types are defined using an intui-
tive mapping between WSDL message /XML Schema types
and BIR primitive/record types. Basic activities are trivi-
ally mapped onto their equivalent in BIR. Instead, a
receive (resp., invoke) activity is translated as an assignment
to its input (resp., output) variable, since the behaviour of
external services is not modelled. If no assumptions are
made on the external partner services, the assignment is per-
formed with a non-deterministically generated value,
ranging all over its domain. Otherwise, if AAs are provided
to constraint the expected behaviour of external services,
they generate ad-hoc abstractions as discussed next.
Activities contained within a flow are translated into
threads, preserving both transition and join conditions.

For each scope, fault handlers are translated as try/
catch statements, with catch (var) clauses matching
exception variables corresponding to faults. Event handlers
are modelled using a dedicated thread, which non-
deterministically consumes the events produced by a
helper function.

A pick activity waits for the occurrence of one out of
several messages delivered by external services. In this
case, it is translated by invoking a function that models
the occurrence of one of the messages being awaited; the
message is then treated as if it had been received through
a receive. Optionally, a pick activity can specify a timeout
and a wait activity can specify a suspension. They both indi-
cate how long (for) or until the process needs to wait.

To deal with time constraints in BIR, we need to include
in the model an execution time for all BPEL activities rep-
resented in BIR and introduce a time counter for each
sequential path of activities generated during the execution
of the BPEL workflow.

For each activity, we insert a code block in BIR that ran-
domly generates the duration of the activity within a certain
interval. If there is an AA that constrains the duration of
the activity, we use it to generate the BIR code as discussed
in the next section. For a flow activity, the time consumed by
the flow is the maximum time spent along all paths. Notice
that if two activities in different paths are linked, we synchro-
nise the time on this link by assigning to its time counter the
maximum value of the counters on the incoming links.

6.3 Assumed assertions

In the previous section, we generated random values to
model both the values generated through interactions with
an external service and their duration. Now we show how
AAs can provide a better abstraction of external environ-
ment by reducing the range of the generated values.

As an example, in the TA service, the AA associated with
a receipt of message VitalParamsMsg (property
VitalParams) states that the glucose value sent by the
remote device must be between 40 and 300 mg/dL. This
constraint is used to reduce the size of the domain from
which the values are generated by the model checker for
variable $vitalParams/glucose.
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In some cases the formula representing an AA may refer to
the value of an expression in the past, such as past(i,
onEvent(w), n). In such a case, it is necessary to log the his-
torical values of the variables appearing in ¢y when a location,
in which onEvent() is true, is reached during the execution.
Logged data must be retrieved to evaluate past. Quantified
ALBERT formulae are also used in the optimised generation
of input values. The universal quantification is translated into
a generation of values of all the quantified variables per-
formed according to the quantified formula, and the existen-
tial quantifier is translated into a non-deterministic choice of
the variable, whose value is then generated according to the
quantified formula.

AAs can express constraints on the duration of activities
executed by the invocation of external services. As an
example, consider assertion LabServiceTime. In such a
case, the time bound expressed by the Within operator can
be assumed as an upper-bound for the duration of the
activity whose start and end events are referred in the
formula.

6.4 Guaranteed assertions

GAs specify invariant properties of the workflow. Thus each
assertion must be evaluated after the execution of each
activity of the BPEL process. The model checker executes
the check by instantiating an evaluator for each assertion
after executing the BIR code block corresponding to each
activity in the workflow.

The evaluation of each assertion can be completed in a
single step if it only refers to the present or past states of
the computation. If, instead, it contains future temporal
operators (such as Within), the instance of the evaluator
carries on in all subsequent states until it terminates by pro-
ducing the truth value of the assertion.

ALBERT assertions can refer to present and past values
of variables and past sequences of events. To support their
evaluation, the BIR system that models the BPEL
process should also include book-keeping actions that
collect the historical values and other auxiliary variables
needed for verification.

Let us describe in more details how an evaluator for an
ALBERT assertion works. The evaluation of arithmetic
and relational operators is straightforward. Existential (uni-
versal) quantifiers over formulae are interpreted as disjunc-
tions (respectively, conjunctions) of formulae. The
evaluation of function past(y, onEvent(u), n) requires
accessing the historical values of expression . The values
of the variables referred by i are stored in an array of n
elements, which is kept updated by the book-keeping
actions we mentioned above.

To evaluate predicate onEvent(u), we rely on a boolean
auxiliary variable, which is set to true by the BIR
system exactly when u happens, and to false immediately
afterwards. The evaluation of the predicate returns the value
of this variable. The evaluation of predicate Becomes(¢)
returns true if ¢ is true in the current state and false in the
previous. This is implemented by using an auxiliary vari-
able that contains the previous value of ¢. Function
elapsed(onEvent(w)) is computed by using a counter vari-
able managed as auxiliary variable by the BIR system.
This variable is set to 0 whenever onEvent(u) is true in
the current state and is incremented by the duration of the
last-executed instruction, in each state in which
onEvent(u) does not hold. When the function is evaluated
the value of this variable is returned. The evaluation of
function count and of the other functions derivable from
fun requires an auxiliary array variable that keeps track

226

of the process state in the last K time units. All such function
can be evaluated by using the values stored in the array; the
size of this array is finite and limited by the number of
activities performed in the last K units.

Let us now describe how future temporal predicates can
be evaluated. The evaluation of Until(¢p, &) returns false if
¢ is false in the current state and true if £ is true in the
current state; otherwise an evaluator for the formula is
started and remains active in all future states until either
¢ is false (in which case the evaluator returns false) or &
is true (in which case it terminates returning true). The
evaluation of Within(¢, K) requires an evaluator to be
started if ¢ is not true in the current state; otherwise it
returns true. The evaluator remains active until either ¢
becomes true (in which case it returns true) or K time
units elapsed (in which case it returns false). To evaluate
predicate Between(¢, &, K), an evaluator is started to
check whether ¢ occurs. If this is the case it remains
active for K time units and when this time interval
elapses, it checks if £ is true. If it is the case it returns
true, otherwise false.

6.5 Performance

The performance of a model checker is influenced by the
dimension of its two inputs: the model, which in the
context of this work is a BPEL process extended with
AAs, and a formula, which in our case is a GA. Although
the formula is generally small, the model can be huge and
sometimes potentially infinite.

Model checking requires that the systems under analysis
be finite, hence the main issue to consider when modelling
is the involved data’s size. In a BPEL process, variables can
vary on a potentially infinite domain that needs to be made
finite using abstraction techniques. In our approach we rep-
resent the model by randomly generating the data over their
domain: hence there is a trade-off between abstraction and
precision of data generation. Indeed, the data representation
is dually crucial; if we select coarse-grained domains for the
variables, the model itself looses generality and signifi-
cance; on the other hand, a fine-grained domain leads to
an exponential blow-up during verification.

AAs may help reduce the range of data exchanged with the
environment, by considerably affecting the space required
for verification. For instance, by annotating our TA process
with the VitalParams assertion, we can reduce the size of
the $vitalParams/glucose variable’s domain, and
as a consequence, the number of states visited during verifi-
cation: in our experimentation, it decreased from 422 to 282.

The metric ALBERT induces over time is another main
issue that affects performance: we support it by enriching
the model with time annotations. The temporal domain
we consider is discrete, but not finite. Hence, even though
we explicitly consider time, we do not use a global temporal
variable to represent it, since this would make verification
infeasible, but local timers.

The timers’ granularity is set using the state of the
process with respect to the GA that must be verified, and
to the time guards in the model. More precisely, whenever
the passing of time does not affect the model’s behaviour,
it is abstracted and considered as a single time slot.

7 Run-time validation

When performing model checking, we distinguish between
AAs and GAs. The former defines assumptions on the
outside world, whereas the latter defines properties that,
when statically verified, allow us to state the ‘internal’
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correctness of the workflow process. When moving from
development time to run time, the workflow interacts with
real external services. Such services, as we observed, are
owned, run and evolved by independent authorities.
Compliance of their behaviour with the properties
assumed by the workflow at development time is not auto-
matically ensured, and must be checked by monitoring.
Moreover, to ensure system robustness, we may also be
interested in monitoring the GAs.

Our validation framework proposes a rule-based monitor-
ing approach where AAs and GAs are checked at run time
by Dynamo, which is our monitoring infrastructure for
dynamic monitoring.

7.1 Monitoring rules

Monitoring rules specify the directives for the monitoring
framework, and are made up of two main parts: (1) a set
of optional meta-level information called Monitoring
Parameters, and (2) a Monitoring Property expressed
in the ALBERT language.

Monitoring Parameters allow our approach to be flex-
ible and adjustable with respect to the context of execution.
Each rule is associated with a set of optional monitoring
parameters. These are meta-level information used at run
time to decide whether the rule should be taken into
account or not. By default, if no parameters are given, moni-
toring is performed. Supported parameters are priority,
validity and trusted providers. A priority
associated with a monitoring rule defines a simple notion
of ‘importance’. In our model we support five levels of pri-
ority: very low, low, medium, high and very high. When the
rule is about to be evaluated, its priority is compared with a
threshold value (The threshold value is set by the owner of
the process); the rule is taken into account if its priority is
less than or equal to the threshold value. By dynamically
changing the threshold value we can dynamically set the
intensity of probing. A validity parameter defines
time constraints on when a supervision rule should be con-
sidered. The supervision designer can define two different
kinds of constraints: time windows and periodicity. The
former defines time-frames within which monitoring is per-
formed. When outside of this frame, any new monitoring
activities are ignored. Rule checking, however, when
started within a valid time-frame, is always completed.
Monitoring periodicity, on the other hand, can be specified
by using the every keyword. Accepted values are dur-
ations and dates, for example, ‘every 3D’, meaning every
3 days, or every ‘01/01’, meaning every January Ist.
Finally, trusted providers is a list of service provi-
ders for which supervision is not necessary. This is useful
because, in abstract process definitions, the actual service
to which the process binds could be chosen at development
time or at run time. If a rule refers to at least one non-trusted
provider, it is checked.

7.2 Dynamo

Fig. 5 presents the Dynamo execution and monitoring fra-
mework, by illustrating the dependencies existing between
the various components and the technologies used in the
implementation.

The Configuration Manager is a storage component
for all the ALBERT properties that have been defined.
The ActiveBPEL engine is a modified version of
ActiveBPEL [18] in which we embed monitoring. This is
achieved by following an aspect-oriented programming
approach [19]. The engine is a Java program in which we
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Fig.5 A run time view of the monitoring framework

weave the cross-cutting monitoring features via Aspect]
[20]. ActiveBPEL works by creating an internal tree rep-
resentation of the process being executed. In this tree,
each node represents a single BPEL activity in the process
definition, and it is an appropriate extension of the
AEActivityDefinition class. Each node contains the
information necessary to perform the particular activity it
is associated with. At run time, the tree is visited and the
definition classes are used by the engine to instantiate
appropriate AEActivityImpl classes, all of which
implement a common interface. Amongst other things,
this interface provides an execute method where the
activity’s primary action is performed. For example, a
scope activity will set up its internal variables, whereas an
invoke activity will perform the appropriate external invoca-
tion. To perform monitoring, we intercept the process after
the execute method is called for the various BPEL activi-
ties. These are the points where the Monitoring Manager
(implemented as an Aspect] advice) is activated. Its main
responsibility is data collection, both from within the
process and from the outside world (in the case of external
variables, through the Data Collector). The Monitoring
Manager collects all the values of the variables defining
the state of the process, and time-stamps and stores them
in the Active Pool, together with the label of the BPEL
activity after which they were collected. In practice, a com-
plete process state is built and saved in the Active Pool.

The Active Pool is responsible for keeping track of his-
torical sequences of process states. These states are needed
by the Data Analyzer to perform analysis, and can be
obtained in two ways. One way is to use an API, provided
by the Active Pool, which can return the last state or a his-
torical sequence of states. Another way is to subscribe to
new states being generated (via the publish/subscribe para-
digm), to receive them as they become available.

ALBERT formulae are evaluated by the Data Analyzer,
which retrieves the data from the Active Pool, as described
in the next section.

7.3 Evaluating ALBERT properties

This section describes how Dynamo evaluates ALBERT
formulae in an intuitive manner. The Active Pool and
the Data Analyzer perform optimisations that are
ignored here for simplicity.

The evaluation of ALBERT formulae that do not contain
references to the present state and/or to the past history (i.e.
formulae that do not contain Until, Between, or Within oper-
ators) can be performed by the Data Analyzer by retriev-
ing the relevant values from the Active Pool. We show that
given a formula ¢ that describes an assertion to be moni-
tored at run time, the size of the state history to be kept
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by the Active Pool is limited. For the sake of simplicity, we
first assume that the formulae do not contain nested past
operators.

When considering past(s, onEvent(w), n) functions, the
Active Pool needs to keep » history states. In the case of
Becomes(¢), the Active Pool needs to keep one history
state. Assertion ¢ evaluated in such state must be false,
and it must be true when evaluated in the current state.
When considering count(¢p, K) and fun(y, K) functions,
K represents a historical time window, going back from
the current time. Thus, the Active Pool needs to keep all
the history states that were collected within this time
frame, whose number is of course bound. Therefore the
number of states in the Active Pool will be the
maximum among the maximum of the »; states needed for
the past; functions, 1 (if there is a Becomes predicate),
and the maximum number of states needed for the various
count and fun time windows.

To illustrate a case where the formula contains nested
operators that refer to the past, we analyse the following
expression: past(past(y, onEvent(u), a), onEvent(y'), b)
where a and b are two natural numbers. The size of the
history sequence to be kept to evaluate the expression is
a4+ b. In general, nested operators that refer to the past
lead to a bounded growth of the history sequence.

Function elapsed needs special attention. For each event
[ appearing in the argument of onEvent(u), the Active
Pool keeps one temporal distance variable. The variable
is initially undefined, and is set to zero the first time
onEvent(u) becomes true. The time-stamp is updated
upon receiving new states to store the amount of time
passed from the last time onEvent(u) was true.

The evaluation of formulae that contain Until, Between or
Within predicates is more complex. From a theoretical
viewpoint, it could be explained by referring to the well-
known correspondence between linear temporal logic and
alternating automata [21].

Conceptually, the evaluation of these formulae cannot be
completed in the current state. Their value, in fact, depends
on the values the variables will assume in future states. For
this reason, as soon as the Data Analyzer needs to evaluate
one such subformula, it spawns a new evaluation thread for
that subformula. The thread terminates in some future time
instant. If the formula comprises subformulae, its evaluation
can only be completed when all threads spawned by the
evaluation terminate.

Whenever a new state is stored in the Active Pool, the
Data Analyzer is notified. Consequently, each of the
threads that was spawned for the evaluation of temporal
subformulae is evaluated, according to the following rules:

o Ifthe subformula is of the type Until(¢, &), & is evaluated
by the thread in the state notified by the Active Pool and, if
it is false, ¢ is evaluated. If ¢ is also false, the evaluation
thread terminates by returning false. Otherwise, the thread
continues to evaluate the subformula in future states.

o If the subformula is of the type Between(¢, & K) a timer
is associated with its evaluation thread. The timer is
initialised to O the first time ¢ evaluates to true in a state
notified by the Active Pool. As the timer reaches K,
the thread terminates by returning the value of ¢ in the
current state.

o If the subformula is of the type Within(¢, K), the thread
checks the truth of ¢. If it is true, the thread terminates by
returning true. If it is false, a timer (initialised to 0) is
associated with the thread. If ¢ becomes true before the
timer reaches K, the thread terminates by returning true;
otherwise, it terminates by returning false.
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Consider for example property MDCheckUp, which is
recalled here for convenience.

Vx(Becomes(count($alarmNotif/level = *high’A
x = S$alarmNotif/pID,
onEvent(pButtonMsg), 10080)
=3)—>
Within(onEvent(patHospitalizedMsg)A
SpatHospitalized/pId =x, 1440))

The formula includes elements of different nature: two state
variables SalarmNotif/level and SalarmNotif/
pID, one pick message pButtonMsg, and one event
patHospitalizedMsg and its associated variable
SpatHospitalized/pId.

The formula is universally quantified over the patients,
hence it is rewritten as a conjunction of formulae of the
same structure, where variable x is substituted each time
with a different patient. More precisely, if the set of patients
isP={pi, ..., pN}, the formula is internally considered as

N
/\(Becomes(count($alarml\]otif/level = ‘high’A

i=1
p; = SalarmNotif/pID,
onEvent(pButtonMsg), 10080)
=3)—>
Within(onEvent(patHospitalizedMsg)A
$patHospitalized/pId =p,, 1440))

Each component of the conjunction is monitored by the
Data Analyzer as follows, taking into account that since
there is an external conjunction all the subformulae have
to be true.

Operator Becomes is evaluated for a single patient by
checking the value of its argument in the previous and in
the current state. To evaluate such an argument in either
state, function count must be evaluated, and this requires
examining the historical sequence of states that occurred
in the previous time-span, starting from the time-stamp of
the state we are considering (either the previous or the
current). The evaluation of the consequent of the formula
is evaluated only when the Becomes is true and spawns a
thread, which terminates, at the latest, after 1440 time
units from the current time value. This is the latest time at
which the value of the overall formula becomes known.

7.4 Performance

Many different aspects must be considered when studying
the time Dynamo takes to verify an ALBERT expression.
However, before starting our analysis, we must recall that
monitoring is achieved mainly asynchronously. As we
shall see, in a realm in which long ongoing processes are
the norm, this will turn out not to be a real issue.
Monitoring can be broken down into various steps. In the
first step the process execution is intercepted to build a new
process state and to save it to the Active Pool. This is the
only step taken synchronously, as the Monitoring
Manager performs data collection from the process and
from external services. Tests performed on an AMD
Athlon(tm) XP 2600+(1.93 GHz) with 512 MB of RAM,
running Windows XP, show that our system takes less
than 2 ms to intercept the execution and to commence
data collection. Since the Monitoring Manager lives in
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the same application space of the executing process, internal
variables are collected extremely rapidly leveraging
ActiveBPEL’s own APIs (i.e. in a time quantifiable in milli-
seconds). External variables, on the other hand, are a com-
pletely different matter. The time needed to obtain data
from an external service mostly depends on issues we are
not responsible for, such as network-related issues or mid-
dleware serialisation and de-serialisation. The more the
designer decides to include external variables in his proper-
ties, the more this becomes obviously an issue. In general,
however, the literature has taught us to expect the use of
external variables to be limited with respect to internal vari-
ables. Nevertheless, many interesting properties can only be
expressed with the help of external data, leaving the decision
of how much external variables to use up to the designer.

Once data collection has been completed, the data are
time-stamped and sent to the Active Pool, and the
process is free to proceed. From this point all monitoring
activities are performed asynchronously, meaning they
have no further impact on performance.

On the other hand, the time needed to actually verify a
property depends solely on the property itself. If a property
does not contain any Until, Between or Within predicates, it
can be evaluated immediately, and in the long running
business processes this may very well occur before the
next significant business step is taken. Moreover, if any
one of these predicates appears, the analysis time will
depend on the evolution of the process execution (i.e. the
appearance of new process states in the Active Pool),
and on the timers mentioned in Section 7.3. Regardless of
the property, the result will be known in an amount of
time that depends linearly on and is bounded by the time
constants used in these predicates. When the process termi-
nates, all properties still under analysis are immediately
evaluated considering that internal variables can no longer
evolve. Properties involving external variables remain
pending, for a bounded amount of time, waiting for the
external data to become available.

8 Related work

In this section we discuss some related approaches. We first
review the existing work on the application of model check-
ing to web service compositions. Then, we move to run-time
monitoring. Besides introducing the different proposals, we
also describe how our approach is different from the others.

8.1 Model checking

Research on model checking web service compositions is
quite recent, but it has attracted considerable attention.

WSAT [22] is a framework for analysing the interactions
among composite web services modelled as conversations.
BPEL specifications of web services are translated into an
intermediate representation, an XPath-guarded automaton
augmented with unbounded queues for incoming messages.
This model is then translated into Promela and LTL proper-
ties, which can also be derived from XPath expressions, are
then checked with the SPIN model checker [23].

The Verbus verification framework [24] is based on an
intermediate formalism, which decouples the approach
from any particular process definition language or
verification tool. The support for BPEL is incomplete:
compensation and event handlers are not considered. The
current version of the prototype performs reachability
analysis and supports the verification of properties like
invariants, goals, activity pre- and postconditions, as well
as generic properties defined in temporal logic.
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Table 1: Comparison of BPEL constructs support
among model checking approaches

BPEL constructs BrPEL2BIR WSAT Verbus Nakajima

basic + structured yes yes yes yes
activities®

fault handler yes yes yes no

event handler yes no no no

compensation handler yes no no no

aActivities described in Sections 11 and 12 of [4]

Nakajima [25] proposes a method to extract the beha-
vioural specification from a BPEL process and to analyse
it by using the SPIN model checker. A finite-state automaton
extended with variable annotations (definitions and updates)
is used as an intermediate representation. This approach pro-
vides only partial BPEL support, which does not deal with
fault/event/compensation handlers. The tool checks for
deadlocks and verifies user-defined LTL properties.

Table 1 summarises the results of comparing our
approach with the three previous SPIN-based verification
frameworks in terms of the support they provide to the
BPEL language. BPEL2BIR is the only approach that sup-
ports all the constructs of the language; all the others have
some limitations in dealing with handlers.

Other authors use different computational models for ver-
ifying BPEL processes. Schlingloff ef al. [26] use Petri Nets
to define the semantics of BPEL. Validation is performed by
using the LoLA [27] model checking tool. Process algebras
are used in [28] and [29]. Foster et al. [28] verify web
service compositions against properties created from
design specifications and implementation models.
Specifications, in the form of message sequence charts,
and implementations, in the form of BPEL processes, are
translated into the Finite State Process notation, which is
the input language for the Labelled Transition System
Analyser (LTSA) model checker. Koshkina and van
Breugel use a process algebra, the BPE-calculus, to abstract
the BPEL control flow. This calculus is used as input for a
process algebra compiler to produce a front-end for the con-
currency workbench (CWB) [30], which performs equival-
ence checking, preorder checking and model checking.

8.2 Monitoring

Several works define specification languages for functional
and non-functional properties [usually expressed in the form
of a service level agreement (SLA)] and propose an associ-
ated monitoring architecture. Sahai ef al. [31] describe an
automated and distributed SLA-monitoring engine. The
monitor acquires data from instrumented processes and —
by analysing the execution of activities and message
passing — then verifies the SLAs. Keller and Ludwig [32]
propose a framework to define and monitor SLAs, focusing
on QoS properties such as performance and costs. The
language defines a type system for various SLA artefacts
such as parties, obligations, parameters, metrics and func-
tions. The monitoring component is composed of two ser-
vices. The first (the measurement service) measures
parameters defined in the SLA, by probing client invoca-
tions or by retrieving metrics from internal resources. The
second (the condition evaluation service) tests measured
values against the thresholds defined in the SLA and, in
case of a violation, triggers corrective management
actions. Skene et al. [33] propose the SLAng language for
SLAs; in [34] they extend their work by providing a
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Table 2: Comparison of monitoring approaches

Language Abstraction Properties
Approach Logic HL/VHL Domain Implementation Safety Temporal
Sahai et al. [31] — X X — — X
Keller and Ludwig [32] — X — — X
Skene et al. [33, 34] — X — — X
Robinson [35] X — X — X X
Mahbub and X — X — X X
Spanoudakis [36]
Barbon et al. [37] X X — X — X
ALBERT X X — X X X
Directives Timeliness
Process Activity Event Post-mortem Synchronous Asynchronous
Sahai et al. [31] X — — — — X
Keller and Ludwig [32] X — — — — X
Skene et al. [33, 34] X — — — — X
Robinson [35] X — — — X X
Mahbub and X — — X — —
Spanoudakis [36]
Barbon et al. [37] X — —
ALBERT X X X — — X

model and an analysis technique for reasoning about the
monitorability of SLAs.

All these approaches focus on formally defining high-
level contracts among parties (typically, between a service
consumer and a service provider), hence they do not
allow to specify properties that should hold on specific
events occurring during the execution of the service, such
as the completion of a certain activity.

Robinson [35] uses temporal logic and KAOS to express
requirements, such as timeliness constraints. These require-
ments are then analysed to identify conditions under which
they can be violated. If such conditions correspond to a
pattern of events observable at run time, each of them is
assigned to an agent for monitoring. At run time, an event
adaptor translates SOAP messages into events and forwards
them to the corresponding monitoring agent.

Mahbub and Spanoudakis [36] propose a framework for
the run-time verification of requirements of service-based
software systems. Requirements can be behavioural proper-
ties of a service composition, or assumptions on the beha-
viour of the different services composing the system. The
first can be automatically extracted from the composite
process, expressed in BPEL; the latter are specified by
system providers using the event calculus. System events
are collected at run time and stored in an event database;
defined properties are checked by means of an algorithm
based on integrity constraint checking in temporal deduc-
tive databases.

Barbon ef al. [37] describe an approach to monitor BPEL
compositions. Monitors can be attached to a single instance
or to the whole class of process instances; they can check
temporal, boolean, time-related and statistics properties,
expressed in a run-time monitoring specification language.
Business and monitoring logics are kept separated by
executing in parallel the monitor engine and the BPEL
execution engine; code-implementing monitors are auto-
matically generated from high-level specifications.

A comparison of our approach against the others men-
tioned above is presented in Table 2. The classification of
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the approaches follows the taxonomy presented by
Delgado et al. [38], with some modifications/extensions
of the metrics to adapt them to the service-oriented
context. ‘Language’ indicates the type of specification
used by the approach (logic or HL/VHL), ‘abstraction’
indicates the abstraction level at which properties are
defined (domain or implementation), ‘properties’ is used
to indicate the kind of properties definable by the language
(safety or temporal), ‘directives’ indicates the level at which
a property can be evaluated (process, activity, event), ‘time-
liness’ indicates when the monitoring activity is performed
(post-mortem, synchronous or asynchronous).

The comparison shows that ALBERT is one of the few
logic-based specification languages to fully support BPEL.
This means that we can define assertions that predicate
both on the whole process and on the single activity or event.

9 Conclusions

SoAs provide unprecedented degrees of dynamism and
flexibility to software systems. Independently developed
and deployed services are made available dynamically
and then composed by third parties to provide new useful
features. Web services achieve these goals at the Internet
level, supporting dynamic federations of business services.
The intrinsically dynamic nature of these systems and the
multiple stakeholders involved in their construction and
composition, however, challenge our ability to provide
dependable solutions. In particular, the traditional boundary
between development time, during which applications are
carefully validated, and run time, during which systems
are operated in the real world, disappears.

Given such a premise, our goals are to provide designers
with a coherent validation framework for composite ser-
vices described in BPEL. We believe that designers can
benefit from a language — ALBERT - built from the
ground-up for specifying functional and non-functional
properties, both for design-time and run-time validations.
This is why we have also set out to provide appropriate
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model-checking tools and a monitoring-aware execution
environment. In conclusion, such a framework allows
designers to produce more dependable solutions and to
promptly discover whether their systems deviate from an
expected and desirable QoS.

Our future work will focus on exploiting the results of
run-time monitoring, by providing mechanisms and strat-
egies to react to the detection of undesirable behaviours.
Our goal will be to incorporate self-managing features in
SoAs to allow service compositions to reorganise themselves
to dynamically optimise the overall QoS. Moreover, regard-
ing the design-time validation, we plan to exploit Bogor’s
extensibility for further development. The CEGAR
(Counterexample Guided Abstraction Refinement) [11]
loop and predicate abstraction [39] state space reduction
techniques — which proved to be highly beneficial when
applied to software model checking — may be implemented
as Bogor plugins to improve verification efficiency.
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12 Appendix
12.1 Formal semantics of ALBERT

In this appendix we provide the formal definition of the
semantics of the core of ALBERT. We start by formalising
the notions of state and sequence of states.

A state is defined as a triple (V, 1, £), where Vis a set of ( vari-
able, value) pairs, / a location of the process and 7 a time-stamp.
A state completely describes the system in the particular time
instant indicated by the time-stamp. States can be considered
snapshots of the process. A location is defined as a set of
labels of BPEL activities; in the case of a flow activity, it con-
tains, for each branch of the flow, the last instruction executed
inthat branch. The setis needed to deal with flow activities; it is
a singleton if the workflow processes do not contain flow
activities. Sequences of states are often called timed state
words, defined as follows.

Definition: A timed state word is an infinite sequence
s =81, 82, ... such that s; = (V}, I, t,).

As a consequence of how states are defined, timed state
words are strictly monotonic. In fact, between subsequent
states there is always at least one time-consuming inter-
action with the outside world or one internal activity
execution (e.g. an assign activity).

The formal semantics of ALBERT operators can be defined
as follows. Given a timed state word s = s, 5,,...5;, ..., We
introduce a helper function numState(i, K) where i is an
index of a state in the word and K > () is a real value denoting
atime interval. The function returns the number of states in the
word, encountered in the time window of size K by moving
backwards in past from the i-th state:

e numState(i, K) =1ifft;, —t,_; > K
e numState(i, K) = 1 + numState(i — 1, K — (¢; — t,—1))
lfft, - ti*lf K

An overloaded version is numState(K, onEvent(uw), s;) which
operates exactly as before, with the only difference that it
counts only the states in which onEvent(w) is true.

We introduce now the function eval(i, s;), which takes
as parameters an ALBERT expression ¢ and the state s; in
a word s and returns the value of ¢ in s;.

e eval(const, s;) = const;

e eval(var, s;) = value iff (var, value)e V;

o eval(yy arop y», s;)= eval(y, s;) arop eval(y», s,);
o eval(past(y, onEvent(u), n), s;) = value iff 3 j <i |
eval(y, s;) =value and w, jF onEvent(u) (the satis-
fiability relation F is defined below) and 3 exactly n — 1
disjoint wvalues hy,...,h, | VYme {1,...,n—1},
j<h,<iandw, h, F onEvent(w). If such a value of j
cannot be found, eval(past(y, onEvent(w), n), s;) is
undefined;
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o eval(elapsed(onEvent(w)), s;) = value iff 3 j <i | w,

jE onEvent(n) and — 3h | j<h<i and w, hE

onEvent(u) and t; — t; = value;

e Let j be such that j <i, t;,—t;<K and t, - t; | > K.

Then eval(sum(y, K), s;) is defined as follows:

— if i = then eval(i, s,),

— if i # j then eval(y, s;) + eval(sum(y, K — (¢; —
Si—1)-

e eval(avg(y, K), s;) = eval(sum(y, K))/numState(,

K)

e Let j be such that j <i, f;,—t;,<Kand t,— ¢, | > K.

Then eval(max(, K), s;) is defined as follows:

— if i = then eval(i, s,),

— if i > j then

t[—])))

*if eval(y, s;) < eval(max(, K — (t; — t;—1)), si—1)
then eval(max(y, K — (¢; — t;—1)), Si—1)

*if eval(y, s;) > eval(max(y, K— (t; —
eval(y, s;)

t;i—1)) then

e Letj be such that j <i,t,—t <K and t,— ¢, > K.
Then eval(count( ¢ , K), ;) is defined as follows:

— if i = then
*ifw, i E ¢ then 1,
*ifw, i ¥ ¢ then 0;

— if i > j then

* ifw,i E ¢then 1 + eval(count(d, K — (t; — t;—1)), Si—1),
* ifw,i ¥ ¢then eval(count(d, K — (t; — t;—1)), si—1).

Function eval(min(ys, K), s;) can be computed similarly
to eval(max(y, K), s;). The overloaded version fun(i,
onEvent(w), K) of functions fun is performed similarly
to the evaluation of the original versions, but only consid-
ering the states in which onEvent(w) holds.

For all timed word w, for all i € N, the satisfaction
relation F is defined as

w, i E relop ¢/ iff eval(y, s;) relop eval(y/, s;).
w,iE =~ ¢iffw, i ¥ ¢.
w,iEpAEiffw,iFdandw,iFE &

w, [ E onEvent(w) iff

— if wis a start event, u € [; 1,

— otherwise, u € [;

o w,iF Becomes(¢p)iffi>0andw,i F pandw,i— 1
¥ ¢

o w, ik Until(p, & iff3j>i|w,jE Eand Vk, if i< k <j
then w, k E ¢;

o w,i F Between(¢, £ K)iff3j>i|w,j F ¢ and VI if
i<l<jthenw,/ ¥ ¢and3h|t, < t;+K t)41 > t;,+K
andw, h E &

o w, ik Within(y, K)iff 3j>i|t,—t;,<Kandw,jF ¢

Notice that even if the definition of the satisfaction
relation recalls the function eval and viceversa, the two
definitions are not cyclic.
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