Towards Dynamic Monitoring of WS-BPEL Processes

Luciano Baresi and Sam Guinea

Dipartimento di Elettronica e Informazione - Politecnigdvilano
Piazza L. da Vinci 32, 1-20133 Milano, Italy
baresi | gui nea@l et.polim.it

Abstract. The intrinsic flexibility and dynamism of service-centrigpdications
preclude their pre-release validation and demand for lsleitarobes to monitor
their behavior at run-time. Probes must be suitably acdtaind deactivated ac-
cording to the context in which the application is executed,also according to
the confidence we get on its quality. The paper supports #eetitht significant
data may come from very different sources and probes mudilbeé@maccommo-
date all of them.

The paper presents: (1) an approach to specify monitoriegtilies, called mon-
itoring rules, and weave them dynamically into the procésy belong to; (2)
a proxy-based solution to support the dynamic selectionesxadution of moni-
toring rules at run-time; (3) a user-oriented language tiegrate data acquisition
and analysis into monitoring rules.

1 Introduction

The flexibility and dynamism ofervice-centri@applications impose a shift in the vali-
dation process. Conventional applications are thorouggligated before deployment,
and testing is the usual means to discover failures beftease. In contrast, service-
centric applications can heavily change at run-time: famagle, they can bind to differ-
ent services according to the context in which are executpdowiders can modify the
internals of their services. New versions of selected sesyjinew services supplied by
different providers, and different execution contexts imigamper the correctness and
quality levels of these applications. Testing activitiasmot foresee all these changes,
and they cannot be as powerful as with other applicationsneezl to shift validation
to run-time, and introduce the idea@ntinuous monitoring

Runtime monitors [6] are the “standard” solution for assegshe quality of running
applications. Suitable probes can control functional@dmess, and also the satisfac-
tion of QoS parameters, but web services introduce somdipeaspects. Functional
correctness can be easily monitored by analyzing the datsaegied among services,
but service-centric applications also require that theyr@aS aspects be monitored
with data that can be collected at different abstractioellewVe can analyze the SOAP
messages exchanged between client and provider, tracevéhésegenerated during
execution, and collect data from external metering toolkth®se options must be ac-
commodated in a general framework that lets designers ehihesvalues of interest
and the way they want to collect them.

Current technology for executing (composed) serviceg tlke WS-BPEL engines
available in these days, does not support monitoring. § afibws designers to inter-
twine the business logic with special-purpose controlpptieation level, thus hamper-
ing the separation between the definition of the applicdtien the WS-BPEL process)
and the way it can be monitored. Designers must be free tayehaionitors without af-
fecting the application, and the actual degree of contratrba set at run-time. In fact,
since monitoring impacts performance, the user must be tabddange the amount
of monitoring while the application executes to adjust thgorbetween control and
performance.

In this context, the paper presents an approach towardy/ti@micmonitoring of WS-
BPEL processes. It proposes extermalinitoring rulesas means to dynamically control
the execution of WS-BPEL processes. This separation alfiiffesent sets of rules to be
associated with the same process. Monitoring rules ataWels services into suitable
UML classes, and use this abstraction to specify consgraimexecution. Assertions are
specified inWS-CoL (Web Service Constraint Language), a special-purposetisse
specification language that borrows its roots from JML (Muwaeling Language [11]),
and extends it with constructs to gather data from extemaices (i.e., to interact with
external data collectors).

Besides constraining the execution, monitoring rules i@parameters to govern the
degree of run-time checking. After weaving selected rutés the process at deploy-
ment time, the user can set the amount of monitoring at me-tty means of these
parameters (see Sections 3 and 4). The weaving introducegygervice, calleanon-
itoring managerwhich is responsible for understanding whether a momigpmille must
be evaluated, interacting with the external services, atithg known data analyzers
(monitors) to evaluate specified constraints. This safutian be seen as a feasibility
study (proof of concept) before embedding the manager in aBREL engine and
letting monitoring rules become part of the execution frawnk.

The approach is demonstrated on a simple example taken &oEen if the proposal
is suitable for checking both functional and non-functioc@nstraints, here we only
address QoS related monitoring rules since functionalaspecre already studied in
[7].

This paper is the natural continuation of the work alreadyspnted in [7], and its novel
aspects are: (1) the idea of monitoring rules, {%-CoL to specify constraints on
execution, (3) the capability of setting the degree of nmmig at run-time, and (4) the
proxy-based solution to enact the monitoring rules.

The rest of the paper is organized as follows. Section 2 dinites the monitoring ap-
proach, while Section 3 describes monitoring rules andi@gdtintroduces the moni-
toring manager. Section 5 surveys similar proposals antid®e® concludes the paper.

2 Monitoring Approach

The ideas behind the monitoring approach presented in #uencome from assertion
languages, like Anna (Annotated Ada [4]) and JML (Java ModeLanguage [11]),

which let the user set constraints on program execution lnsief suitable comments
added to the source code. Similarly, we propose monitorifgsito annotate WS-BPEL

processes and constrain their executions both in termsraftifinal correctness and
satisfiability of the QoS agreements set between the clemth runs the WS-BPEL
specification, and the providers, which supply the servicesked by the WS-BPEL
process.

Monitoring rules are blended with the WS-BPEL process atalgpent-time. The ex-
plicit and external definition of monitoring rules allows teskeep a good separation
between business and control logics, where the former i$MBeBPEL process that
implements the business process, and the latter is the satriforing rules defined to
probe and control the execution. These rules also comprite-tavel parameters that
allow for run-time tailoring of the degree of monitoring &dies. This separation of
concerns lets designers produce WS-BPEL specificationstiyaaddress the problem
they have to solve, without intertwining the solution and ttay it has to be checked.
Different monitoring rules (and/or monitoring parame}aran be associated with the
same WS-BPEL process, thus allowing the designer to tdidiegree of control to
the specific execution context without any need for rewagkime business process.
Moreover, a good separation of concerns allows for a neadégagement of monitor-
ing rules, and it is an effective way to find the right balaneéa®en monitoring and
performance.

Besides separation of concerns, the approach was conagitrethe goal of reusing
existing technology to ease the acceptability of the apgr@ad foster the adoption of
monitoring techniques.

All these reasons led to the monitoring approach summaiiz€&igure 1. It starts as
soon as a WS-BPEL process exists (or the designer startsngaf it):

= Monitoring

® Definition File
s
2 Monitoring| Monitor
— BPEL Manager
MM ~al=
/ WS B
i 4 WS-BPEL Process

Instrumented WS-BPEL Process

Fig. 1. Our Monitoring Approach

— Monitoring rules are always conceived either in parallehvihe business process
or just after designing it. These rules are associated vp#tific elements (for
example, invocations of external services) of the busipessess, and are stored in
monitoring definition files.

— When the designer selects the rules to use with a specifiutaacdBPEL? instru-
ments the original WS-BPEL specification to make it call threnitoring manager.

— When the instrumented WS-BPEL process starts its exegliticalls the monitor-
ing manager whenever a monitoring rule has to be considé&redlactual invoca-
tion of the monitor, that is, the actual analysis of exequf@oS data depends on
the current status of the manager. For example, if a rule hastp lower than the
current one, the manager skips its execution and calls thialaervice directly.

— The designer has a special-purpose user interface (seeRpto interact with the
monitoring manager and change its status. This happens thkatesigner wants
to change the impact of monitoring at run-time without reldging the whole

process.
Travel Service Global Process Parameteres
Pizza Delivery Priority (0277) Certified
- Authenticate Web Service
getCoord post: Providers: Credit Card Validation Web Service
condition SMS Web Service
- getMap post-
condition P
- validateCreditCard
pre-condition Monitoring Rule
Multimedia Club Priority: 2 Certified
Finder Providers:
On-line Magazine
Subscriber

Validity:

From : To:

Monitoring Rule Type:
post-condition

Path to Annotated Activity:
XPATH to annotated activity

Expression:

@ensures easting.length()==7 &8&
easting.charAt(6)=="E;

Fig. 2. The monitoring manager’s interface

— If some constraints are not met, that is, if some monitoririgs are not satisfied,
the monitoring manager is in charge of letting the WS-BPHEicpss know. It could
also activateecovery actionspecified in the monitoring rules, but this topic is not
part of this paper, and recovery actions are still work ingpess.

2.1 Weaving

Code weaving is performed by the BPEpre-processor. Its job is to parse the monitor-
ing rules associated with a particular process and to adzdfsp@/S-BPEL activities to
the process in order to achieve dynamic monitoring . If the embeds a post-condition
to the invocation of an external web service, BPEubstitutes the WS-BPEL invoke

activity with a call to the monitoring manager (Figure 3)epeded by WS-BPEL as-
sign activities that prepare the data that have to be sehetmbnitoring manager, and
followed by a switch activity which checks the monitoring mager’s response. The
monitoring manager is then responsible for invoking the s&tvice that is being mon-
itored and for checking its post-condition with the help ofexternal data analyzer.
Depending on the response it receives from the monitoringager, the process flow
can either continue or stop (see Figure 3). Pre-conditiomgraated the same way, ex-
cept that the monitoring manager first checks the pre-clmmdiénd only if it is verified
correctly does it then proceed to invoke the web servicegogianitored.

If the rule represents an invariant on a scope, BPEanslates it as a post-condition
associated with each of the WS-BPEL activities defined insttwpe. If the rule is a
punctual assertion then a single call to the monitoring rgan& added, together with
the corresponding WS-BPEL assign and switch activities.

BPEL? always adds to the WS-BPEL process an initial call to the mooing manager

Assign activities in P
PostCondition preparation of monitoring Val i
manager invocation o
K

v ¥
: Monitoring Manager Monitoring
Invocationof | | | -2 [| TS e b - >
Service A e BPEL? B invocation Manager

T Y

I Assertion

| not verified N

v e

Assertion
verified

Throw BPEL exception

Monitor

WS A

Fig. 3. The effects of weaving

to send the initial configuration such as the monitoringsaled information about the
services it will have to collaborate with (s&® Set up in Figure 1). BPEE also adds

a "release” call to the monitoring manger to communicateg finished executing the
business logic (seBM Rel ease in Figure 1). This permits the monitoring manager
to discard any configurations it will not be needing anyméneery call to the monitor
manager (which is not a setup or a release call) is also sigite unique incremental
identifier. This is used for matching the manager call to fhec#ic rules and the data
stored in the monitoring manager during setup.

This solution does not require any particular tool to run amahitor WS-BPEL pro-
cesses. Once the weaving of rules has been performed, thigmggrocess continues
to be a standard WS-BPEL process which simply calls an ext@moxy service to
selectively apply specified monitoring rules.

3 Monitoring Rules

Monitoring rules reflect the "personal” monitoring needattsingle users of WS-BPEL
processes may have. Every time a WS-BPEL process is ruereliff monitoring ac-
tivities should be enacted, depending on "who” has invokedprocess. This requires
the ability to define and associate monitoring activities tsingle WS-BPEL process
instantiation, or execution. These definitions are coregklyy producing a monitoring
definition file.

The monitoring definition file follows the structure illuated in Figure 4. The infor-

General Information
Initial Configuration

Monitoring Rules

Monitoring Rule #1

I Monitoring Location l

I Monitoring Parameters l

I Monitoring Expression l

Fig. 4. Monitoring Definition

mation it provides is organized into three main catego@neral Informationlinitial
Configuration andMonitoring Rules The first part provides generic data regarding the
WS-BPEL process to which the monitoring rules will be atedtlirhe second part con-
tains values that are associated with the process exeagi@whole and can impact the
amount of monitoring activities that will be performed ahftime. This concept will
be further analyzed in Section 4. The third part, the moimitprules, represent the core
of the monitoring definition. They are organizedMonitoring Location Monitoring
ParametersandMonitoring Expressions

The first element indicates the exact location in the WS-BIpEicess in which the
monitoring rule must be evaluated. The second element icengaset of monitoring
parameters, meta level information that define the contigkteomonitoring rule itself.
These parameters influence the actual evaluation of theantécan even impede its
run-time checking. Since we envisage the existence of pi@léxternal monitors, the
type of monitor that should be used for the given rule is aroirtgnt parameter. Besides

this, we currently consider three parameters (but manyrstt@uld easily be added in
the futuré). The three parameters considered so far are:

priority Itis a number between one and five indicating the level of ine that is
associated with the rule. A priority level of one indicategeay low priority level,
while a priority level of 5 indicates a very high priority lel The idea is that a
process can run at various levels of priority. Given a pregemrity, any monitor-
ing rule with a priority level inferior to this threshold wiilinot be considered at
run-time. This makes it possible to execute the same buslng& with different
degrees of monitoring.

validity The user defining the monitoring rules can decide to asseidtme-frame
with a monitoring rule. Every time a process execution osawuithin this time-
frame, the monitoring rule is checked; while, should it acoutside the time-
frame, it would be ignored. This can be useful when a sernnwedation must
be initially monitored for a certain amount of time beforecidigng that it can be
trusted.

certified providers It is a list of providers that gives us a way of indicating thtae
monitoring activity does not have to be executed if the deevice is supplied by
one of the providers in the list. This is because we envisag@itaring playing a
key role in systems living in highly dynamic environmentsddor this reason we
imagine that a specific service with which to do businessabelchosen dynam-
ically. We are never entirely sure of "who” will really be ptiding that service at
run-time. In fact, even when a service has been chosenatgtit can still need to
be substituted at run-time in the wake of erroneous sitnatio

The third and last element, the monitoring expressionesttte constraint that has to
be evaluated.

The monitoring definition file is mainly a container for thefidé¢ion of the monitor-
ing rules that are to be executed at run-time and of the donditat which they can
be ignored. Obviously, this leads to the need of specificdaggs for identifying the
locations and for defining the expressions embedded in the.ru

3.1 Locations

In our approach we want to monitor pre- and post-conditi@sseiated with the invo-
cations of external web services, invariants that can lzelatd to WS-BPEL scopes,
and punctual assertions indicating a property that must &ich precise point of execu-
tion. While defining locations, we specify two things: thadiof condition we want to
monitor, and in which point of the process definition we wantionitor it. For the first
part, we use a keyword indicating whether the monitoring splecifies are-condition

a post-conditionaninvariant, or anassertion For the second part, we use an XPATH
guery capable of pointing out where the rule has to be cherrkéie process, inde-
pendently of the fact that the run-time checking could l&terdynamically switched

! The context could be more complex and address the physizatidm in which the process is
executed, or interact with the device on which the processugrs through interfaces such as
WMI (Windows Management Instrumentation).

off. In the first two cases (pre- and post-conditions) the KRAquery indicates the
WS-BPEL invoke activity to which we associate the rule, ia tase of an invariant it
indicates the WS-BPEL scope to which we associate it, ankdrcase of an assertion
it indicates any point of the WS-BPEL process (in this caséndeate the WS-BPEL
activity prior to which the assertion must hold). Regardprg- and post-conditions,
we are only interested in attaching monitoring rules to WEE=RB activities that can in
some way modify the contents of the process’ internal véemiWe are not interested
in attaching monitoring rules to activities that are used\ify-BPEL to define the pro-
cess topology. Therefore, we assume that pre- and posttimsdcan be attached to
WS-BPEL invoke activities, post-conditions to receivaaties, and pre-conditions to
reply activities. We also assume that post-conditions eaadsociated witbnMessage
branches in WS-BPEL pick activities. The reason for this although pick activities
contribute to the process topology, they also help definentkenal state of the process,
and therefore should be monitored.

For example, recalling thButuristic Pizza Deliveryexample presented in [8], if we
want to define a post-condition on the invocation of the off@manamedyet Map pub-
lished by thavlpW5 web service and linked to the WS-BPEL process through partne
link MapSer vi cePar t ner Li nk, we would define the location s

type = "post-condition”
path = "//:invoke[@artnerLink="Ins: MapServi cePart nerLi nk" and
@per ati on="get Map"]"

3.2 Expressions

For monitoring expressions, we propose to reason on areakisin of the WSDL def-
initions of the services the WS-BPEL process does businébs Bepending on the
degree of dynamism, these could be the actual services ydsbe lpplication, or ab-
stract descriptions of the services the process would dikertd to (dynamic binding is
not treated in this paper). To do this we use a tool based ogl#pAXIS WSDL2Java
[2]. The tool permits us to reason on stereotyped class aiiagrthat represent the
classes that are automatically extracted from a WSDL seméscription. In the tool,
a web service becomes<services class that provides one public method for each
service operation and no public attributes. Similarly,dach message type defined in
the WSDL a<dataType> class is introduced, containing only public attributes and
no methods. Figure 5 showsvapW5 < services> class that provides a single method
calledget | nage. The exposed method takeszat | mageRequest <dataType>

as input and produces@et | mageResponse «dataType> as output. This way we
can state our pre- and post-conditions by referring to thiesses. If we want to express
an invariant, we can only express conditions on variablgiba within the WS-BPEL
scope to which the invariant is attached. Since internal BP&L variables are struc-
tured as simple or complex XSD types, the automatic traioslab stereotyped class
diagrams can still be achieved. The same holds for exprestiat are punctual asser-
tions. The only difference lies in the visibility of the vakles the expression can refer
to.

Expressions are defined usid¢S-ColL , inspired by the light-weight version of JIML

2 This is what the system produces but the user defines losaligrpointing to the specific
WS-BPEL elements directly in the graphical editor, and byagting the annotation type.

<<service>>
MapWSs

+ getimage(GetimageRequest) : GetimageResponse

<<dataType>>

<<dataType>>
GetlmageRequest yP

GetlmageResponse

HCoord : long

VCoord : long GetlmageReturn : byte[]

Fig.5. The MapWS Web Service

(Java Modeling Language [11NVS-CoL further simplifies it and introduces a set of
instructions for specifying how we can retrieve data that external to the process.
This may be the case in which the monitoring rule defines dioelship that must hold
between data existing within the process in execution atalttiat can be obtained by
interacting with external data collectors.

WS-CoL does not make use of keyworllsl d and\r esul t 3. The first is not use-
ful because services are black-boxes that take input messangl produce output mes-
sages. Therefore, it is never necessary to refer to the galedgain "variable” possessed
prior to the invocation of the operation. The second keywsrseless because we can
refer to returned messages with their names.

WS-CoL adds a set of keywords that represent ways of obtaining daa éxternal
data collectors. A different extension is introduced foecheaf the standard XSD types
that can be returned by external data collectyret ur nl nt, \r et ur nBool ean,
\returnString, etc. Therefore, while defining a monitoring expressioncae use
these extensions. All follow the same design pattern. Taleg &s input all the informa-
tion necessary for interacting with the external data ctdie such as the URL location
of its WSDL description, the name of the operation to be dalipon it, the parameters
to be passed to the data collector service, etc (see Segtion 4

For example, if we want to specify a post-condition for thet | mage operation in
Figure 5 and state that the returned map must have a resolesis than "80x60” pixels
we would define the expression as:

@nsures \returnlnt(wsdl Loc, getResol ution,

"imge’', Cetl mgeResponse. Get | mageRet urn,

HResol ution) <= 80 &&

\returnlnt(wsdl Loc, getResolution, 'inmage',

Get | mageResponse. Get | mageRet urn, VResol ution) <= 60;

3 Lack of space does not allow us to thoroughly introduce theguage, but JML usesol d
to refer to old values in post-conditions, akdesul t to identify the value returned by a
method.

In this example, @et Resol ut i on operation is invoked on a service that publishes
its interface at the URWsdIl Loc. The array of byte€et | nageRet ur n (see Figure

5) is passed as an input value and mapped onto thege message part defined at
wsdl Loc. HResol uti on andVResol ut i on, on the other hand, are the message
parts defined in the output messagenatll Loc that should be returned as integers.
These returned values are compared with the desired reso(80 pixels for the hori-
zontal dimension and 60 pixels for the vertical dimension).

4 Monitoring Manager

The Monitoring Manageris the key component of our proxy-based solution for dy-
namic monitoring. This section illustrates its architeetand how it can be used by a
WS-BPEL process that requires monitoring. We also analgeeits structure impacts
the transformation produced by the BPHhre-processor.

The manager, whose architecture is shown in Figure 6, isbdajd interpreting mon-
itoring rules, of keeping trace of the configuration with atia user wants to run a
process, of interacting with external data collectors t@aiwbadditional data for moni-
toring purposes, and of invoking external monitor services

We illustrate its use in the case of monitoring of pre- andfeosditions; its usage for

Monitoring Manager ‘
Plugin Interface| CLiX
Monitor
Configuration Plugin
Manager g
Monitor A
Manager ’
Interface i External Moni
O L fommmmmmmmmmmm oo > Monitors -~ >O— onlt_or
Manager . Plugin
Manager | Plugin Interface
N
Invoker
t Monitor
Plugin Interface AT

Fig. 6. The Monitoring Manager

the other cases is similar. To evaluate pre-conditionsyideager is used in substitution
to the services which have rules associated with them. hifas calledinsteadof the

service to be monitored. When called, it decides if the rai®ibe evaluated by look-
ing at its associated monitoring parameters and if it is;gcpeds to evaluate it. If the
condition is verified correctly, it then invokes the oridimeeb service being monitored.

Post-conditions are evaluated in the same way.

The manager is constructed to keep a configuration tableafcn process execution.
These configurations are managed by @enfiguration ManagerIn particular, the

manager needs to know: the initial overall process configqamgécontained in the mon-

itoring definition file), the monitoring rules, and all the@nmation necessary for inter-
acting with external services (the service being monitptieel external data collectors,
and the external monitor service). Most of these data carelets the manager at the
beginning of the process by invoking the setup method pdtidy the manager (see

Figure 1). In particular, everything except the input/auitglues that will be exchanged
at run-time can be sent at the beginning of the process, dsfarting to perform the
real business logic. This solution is preferable, with ezsfio sending all the data ev-
ery time the process needs to interact with the manageg sindnitial slowdown is
certainly better than slowing down all the intermediatestell the information sent
during the setup phase is stored in tbenfiguration Manageand is associated with
a process execution through the unique identifier produgettidd WS-BPEL engine.
Similarly, at the end of a process execution the managerigedato free itself of the
burden of keeping the corresponding configuration table.

The manager also supplies a graphical interface to the liggermits the run-time

consultation and modification of the values contained indbefiguration table. For
example, it is possible to modify the priority level at whialprocess is being run or
to add a new provider to the list of certified providers that associated with a given
monitoring rule.

Figure 7 shows the step by step interaction of the comporkeatsooperate to exe-
cute the service presented in Section 3 and to check itsqoostitiorf. Initially, the
BPEL process sends the data that will be necessary to thegeaftep 1). Since no
pre-condition needs to be checked, fRegles Manageasks thdnvokerto go on and
invoke the external web service (in our case seriMapWs) (Steps 2 and 3). When the
RulesManagereceives the results of the service invocation (Steps 4 aritlibteracts
with the Configuration Manageto retrieve the monitoring rule (i.e. the post-condition)
that has to be checked (Step 6). By examining the monitorargrmpeters attached to
the rule, theRules Managedynamically decides if the rule is to be checked or not. For
example, if we consider the expression presented in Se8tiare could imagine the
associated priority parameter to be 4. If the process is thenvith a priority value of
3, the rule would be checked since its priority parameteighér than the value asso-
ciated with the process.

Then,Rules Managedecides whether additional data are required from extetatal
collectors. If this is the case, it calls thesokerto obtain them (Step 7). This component
is built around Apache WSIF (Web Service Invocation Franté8]) and is capable

4 More complete running examples are available At tp://ww. el et. polim .it/
upl oad/ gui nea.

Configuration
Manager

6: getConfiguration T

1: Send Data for Monitoring

> 11: Tranform Rule External 12: Tranform Rule
WS-BPEL Rules —— - — CLiX Monitor
Monitors f

Process <«----| Manager Y «---- Plugin
19: return 14: return anager 13: return

A
.]

2: Invoke Web Serwcel ! 5: return
i

s
' 10-

Web Service 1 10: return

A

]
i 18: return
i

A
7: Invoke Supporting l

15: Invoke Monitor l

] 9: reiurn 17: return
Supporting Invoker =="="1 CLiX Monitor
Web Service -— B —_—
8: Invoke Supporting 16: Invoke Monitor
Web Service l
A

3: Invoke Web Service

]
| 4:return
I

Web Service

Fig. 7. The Monitoring Manager

of invoking a web service without previously creating ctiside stubs but by dynam-
ically interacting with the service through its WSDL degtion. Thelnvokercan be
used to invoke any service provided it knows: the URL of theDA/®f the service to
be invoked, the name of the operation that is to be invokethatservice, a list of keys
that help map the operation’s input values onto the oparatinessage parts as defined
in the WSDL description, a list of input values for the op&natto be invoked, and a
list of keys for indicating the parameters (as indicatecdhim@utput message parts con-
tained in the WSDL description) we want to receive as oufpoéInvokercan also be
called when an expression usegV&-CoL to obtain additional monitoring data from
external data collectors. In this case, the list of outpyskie reduced to a single key
that corresponds to a part of the output message as desaritlelWSDL description
of the service (see the expression given in Section 3.1).

Once all the data necessary have been obtained (Steps 8, B0githeRulesManager
begins its interaction with thExternal Monitors Manage(Step 11). This component
is responsible for managing the different kinds of extemahitors that thenanager

is capable of working with. In particular, it manages thedafgilugins that contain the
logic necessary for converting thNéS-CoL syntax used for defining the monitoring ex-
pressions into the proprietary syntax used by each extaraaitor. The monitor plugin
also prepares the data that must be sent to the monitor byaftingthem in a way that

the monitor is capable of interpreting (Step 12). In thisgrapre use a monitor built
aroundXl i nkl t [1]. For this monitor theNS-CoL expressions must be re-written
as CLiX rules and the data expressed as XML fragments. Whexternal Monitors
Managerhas finished adapting the monitoring data and the monitatites (Steps 13
and 14), thdnvokeris called once again for invoking the external monitor (St&p.

If the monitor responds with an error, meaning the condiisomot satisfied, th&ules
Managercommunicates it to the WS-BPEL process by returning a staifdalt mes-
sage, as published in the WSDL description of the manag#relfmonitor’s response
is that the condition is satisfied, the manager can then pobt® return the original
service response to tWS-BPEL ProcesStep 19).

5 Related Work

The research initiatives undertaken in the field of web servhonitoring share the
common goal of discovering erroneous situations during#eeution of services. They
differ, although, in a number of ways: degree of invasivenpabstraction level at which
they work, reactiveness or pro-activeness.

For example, Spanoudakis and Mahbub [9] developed a frankef@o monitoring
requirements of WS-BPEL-based service compositions. rTaygbroach uses event-
calculus for specifying the requirements that must be nooait. Requirements can be
behavioral properties of the coordination process or aptons about the atomic or
joint behavior of deployed services. The first can be ext@etutomatically from the
WS-BPEL specification of the process, while the latter messipecified by the user.
Events are then observed at run-time. They are stored inabase¢ and the run-time
checking is done by an algorithm based on integrity condticiecking in temporal
deductive databases. Like our approach, it supports veaoinitoring since erroneous
situations can be found only after they occur, but it is legsuBive since it proceeds
in parallel with the execution of the business process. Hads to a lesser impact on
performance but also to a lesser responsiveness in disogvan-time erroneous situ-
ations. The approach also proposes a lower abstractioln péaeing therefore a heavier
burden on the designer.

Lazovik et al. [10] proposes another approach based on tipeshassertions and actor
assertions. The first can be used to express properties tisatm true in one state be-
fore passing to the next, to express an invariant propeatyrttust hold throughout all
the execution states, and to express properties on thetivoti process variables. The
second can be used to express a client request regardingtitesteisiness process, all
the providers playing a certain role in the process exeputipa specific provider. The
system then plans a process, executes it, and monitorsdkssgions. This approach
shares with ours the fact of being assertion-based. Oncastfertions are inserted, it
is completely automatic in its setup and monitoring. It lmekhough the possibility of
dynamically modifying the degree of monitoring. It alsokaadoptability since it is
based on proprietary solutions.

Our approach must also be compared with the proposals tiegtrate Aspect Oriented
programming and WS-BPEL. An example can be found in the wgrkibkelstein et
al. [5]. It exploits the semantic analyzers present in tlewelopment toolkit (called

SmartTools) to implement a WS-BPEL engine as an interprAtestract syntax trees
are built for each process and are then traversed by the sieraaalyzer that imple-
ments the visitor design pattern. These methods facildapect oriented adaptation.
The approach concentrates more on weaving at the engirealeddess at the process
level, which is where our approach works.

6 Conclusions and Future Work

The paper has presented an approach to suppodtytheemic monitoringof WS-BPEL
processes. It is an evolution and refinement of the ideaadrpresented in [7]. The
proxy-based solution is dictated by the wish of using atdéldaechnology, instead of
inventing new non standard executors, but this proposalatsmbe seen as a feasi-
bility study to better understand the different pieces ef &pproach, and evaluate the
possibility of embedding them in an existing WS-BPEL engine

Our future work will concentrate on further studying the gibgity of embedding the
monitoring manageinto a WS-BPEL engine, on experimenting with ndata collec-
torsanddata analyzerson extending the language to support other types of mangor
(e.g., the capability of predicating on histories instebdomcentrating on punctual val-
ues), and on providing real-world results of the perforneataverhead” that can be
introduced by our approach.

References

1. Xlinklt: A Consistency Checking and Smart Link Generat®ervice. ACM Transactions
on Software Engineering and Methodologpages 151-185, May 2002.

2. AXIS. Apache AXIS Web Services Project, 2008.t p: / / ws. apache. or g/ axi s/ .

3. Web Service Invocation Framework. Apache WSIF Projei@52ht t p: / / ws. apache.
org/wsif/.

4. D.C. Luckham. Programming with Specifications: An Introtion to Anna, A Language for
Specifying Ada Programslexts and Monographs in Computer Scigroet 1990.

5. C. Courbis and A. Finkelstein. Towards Aspect Weavinglfggtion. In Proceedings of the
25th International Conference on Software Engineeri2@05.

6. N. Delgado, A.Q. Gates and S. Roach. A Taxonomy and CatdlBgntime Software-Fault
Monitoring Tools .IEEE Transactions on software Engineerjmpgges 859-872, December,
2004.

7. L.Baresi, C. Ghezzi and S. Guinea. Smart Monitors for Cased Servicedn Proceedings
of the 2nd International Conference on Service Oriented @dmg 2004.

8. L. Baresi, C. Ghezzi and S. Guinea. Towards Self-healgnyi€ Compositionsin Pro-
ceedings of the First Conference on the PRInciples of Sdétiragineering2004.

9. K. Mahbub and G. Spanoudakis. A Framework for Requirembfunitoring of Service
Based Systemsin Proceedings of the 2nd International Conference on $er@riented
Computing 2004.

10. A. Lazovik, M. Aiello and M. Papazoglou. Associating Ag#ons with Business Processes
and Monitoring their Execution.In Proceedings of the 2nd International Conference on
Service Oriented Computing004.

11. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preiany Design of JML: A Be-
havioral Interface Specification Language for Jabapartment of Computer Science, lowa
State University, TR 98-06-rev2&pril, 2005.

