
Run-Time Monitoring of Instances and Classes of
Web Service Compositions∗

Fabio Barbon and Paolo Traverso
ITC-IRST

Via Sommarive 18, Povo
38050 Trento, Italy

[barbonfab,traverso]@itc.it

Marco Pistore and Michele Trainotti
DIT, University of Trento
Via Sommarive 14, Povo
38050 Trento, Italy

[pistore,trainotti]@dit.unitn.it

Abstract
The run-time monitoring of web service compositions

has been widely acknowledged as a significant and chal-
lenging problem. In this paper, we propose a novel solution
to the problem of monitoring web services implemented in
BPEL. We devise an architecture that clearly separates the
business logic of a web service from its monitoring func-
tionality. The architecture supports both “instance moni-
tors” that deal with the execution of a single instance of
BPEL process, as well as “class monitors” that report ag-
gregated information about all the instances of a BPEL pro-
cess. We also define a language for the specification of in-
stance and class monitors. The language allows for specify-
ing boolean, statistic, and time-related properties. Finally,
we devise a technique for the automatic translation of all
these kinds of monitors to Java programs.

1. Introduction

The run-time monitoring of web service compositions

has strong motivations. Indeed, even properties and require-

ments that are verified at design time, prior to deployment

and execution, can be violated at run-time. This is espe-

cially the case of service oriented applications, which are

most often developed by composing services that are made

available by third parties, that are autonomously developed,

and that can change without notification. Moreover, some

problems can be detected only at run-time. There are in-

deed situations that, even if admissible at design time, must

be promptly revealed when they happen, e.g., the fact that

a bank refuses to transfer money to a partner on-line shop.

This is also the case of all the statistical information that can

∗ This work is partially funded by the MIUR-FIRB project
RBNE0195K5 “KLASE”, “Knowledge Level Automated Software
Engineering”, by the MIUR-PRIN 2004 project “STRAP”, and by the
EU-IST project FP6-016004 “SENSORIA”.

be collected at run-time. For instance, the fact that the num-

ber of users that are not able to buy from an on-line shop

suddenly increases can be the signal of unavailable prod-

ucts, or of problems with a bank that refuses the on-line

payments. In both cases the occurrence of such a situation

has to be reported as soon as possible to the business ana-

lyst, so that prompt reactions can be taken.

Several recent works have indeed started to address dif-

ferent aspects of the run-time monitoring of web services

(compositions) and of distributed business processes, see,

e.g., [12, 11, 3, 4, 8, 9]. In this paper we propose a novel so-

lution to the problem of monitoring web service composi-

tions and, in particular, to themonitoring of distributed busi-

ness processes implemented in BPEL for web services [2].

The proposed solution has the following main features that

differentiate it from the existing solutions.

We devise an architecture where the monitor engine and

the BPEL execution engine are executed in parallel on the

same application server. This allows for an integration of

the two engines, still maintaining the two run-time environ-

ments distinct, and keeping the monitors clearly separated

from the BPEL processes. As a result, differently from the

framework proposed in [3, 4], we obtain a clear separation

of the business logic from the monitoring task, which al-

lows for an easier adaptation of the business process to the

evolving business needs.

The architecture supports both instance and class moni-

tors: instance monitors deal with the execution of a single
instance of BPEL business process, while class monitors ex-
tract information from and/or check the behaviour of all the

individual instances of a business process. For instance, an

instance monitor can check if the bank has rejected the on-

line payment during a specific session, while a class moni-

tor can provide statistics about on-line payment rejections.

We provide a novel, rather expressive language for the

specification of both instance and class monitors. The lan-

guage allows for specifying boolean, statistic, and time-

related properties to be monitored. Beyond monitors of

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

Bank

Store

VOS
(Shop)

Figure 1. The Virtual Online Shop example

usual boolean properties, we can specify instance monitors

that should, e.g., count the number of iterations that are ex-

ecuted in a given session, such as the number of times that

a client changes the selected item to buy. We can specify

that the monitor should issue an alert if the number of iter-

ations exceeds a given threshold. Moreover, we can specify

class monitors that collect information from all existing in-

stance monitors, and check situations of interest — such as

the fact that there has been at least one rejection of money

transfer by the bank— and/or report on statistics — such as

the percentage of payment rejections by the bank.

Finally, we devise a technique for the automatic genera-

tion of the code implementing the instance and class moni-

tors, thus reducing the effort in their design and implemen-

tation. Monitors are automatically generated as Java pro-

grams that can be deployed in the run-time environment of

the monitor engine. To the best of our knowledge, none of

the exiting approaches for the run-time monitoring of web

services support class monitors and their automated gener-

ation from high level specifications.

The paper is structured as follows. In Section 2, we in-

troduce an explanatory example that will be used all along

the paper. Section 3 describes the architecture of the run-

time monitoring environment, while in Section 4 we de-

scribe the language for the specification of monitors, and

how monitors are generated automatically from specifica-

tions in this language. In Section 5 we draw some conclu-

sions and a comparison with related work.

2. An Example

In our explanatory example, the composed service is a

Virtual Online Shop (VOS) that offers a combined sell and

payment service to clients, by interacting with two exter-

nal services: a Store and a Bank (see Figure 1). When the

VOS receives a request for an item from a client, it contacts

the Store, and, if the item is available, it gets back an of-

fer including the price. In the case the client does not accept

the offer, he/she can either terminate the interaction with

the VOS, or require an offer for a different item. Once the

client has accepted the offer, the VOS sends an acknowl-

[RECEIVE]
startPayment

(cost, scc_data)

[SWITCH]
SCC correct?

[INVOKE]
startPaymentNack

[INVOKE]
startPaymentAck

[RECEIVE]
getOrdererData

(ucc_data)

[SWITCH]
UCC correct?

[INVOKE]
getOrdererDataAck

(transfer_id)

[INVOKE]
getOrdererDataNack

[ON MESSAGE]
cancelPayment

[ON MESSAGE]
confirmPayment

[SWITCH]
[INVOKE]

confirmPaymentNack
[INVOKE]

confirmPaymentAck

YESNO

YES

YES

NO

NO

[PICK]

FAIL

FAIL

FAIL

FAILSUCC

Figure 2. Bank abstract BPEL

edgement to the Store, which in turn replies by sending back

its bank account data. After obtaining also the client’s bank

account, the VOS invokes the Bank by sending the amount

to be transferred from the client’s account to the Store’s ac-

count. The Bank performs the usual authentication proce-

dures, and if the credential of the Store and of the client

are not refused, the Bank sends back to the VOS a “trans-

fer id” that identifies univocally the transaction and that the

VOS routes to the Store. If the Store confirms the payment,

the VOS confirms to the Bank, which performs the money

transfer.

In this example, the Store and the Bank are the external

component services. We assume their abstract BPEL speci-

fications, available on theWeb, describe the interaction pro-

tocols that the VOS is expected to respect when interacting

with them. In Figure 2 we show the interaction flow of the

abstract BPEL of the Bank (the one for the Store is concep-

tually similar). This interaction is structured in three phases.

In the first phase, the bank receives a request for a money

transfer of a given amount (corresponding to the cost pa-
rameter of the message [RECEIVE] startPayment)
to the bank account identified by the parameter scc data.
The second phase starts after the owner of the destina-

tion account, in our case the Store, has been validated

([SWITCH] SCC Correct?). In this phase, the Bank
authenticates also the owner of the source account, in our

case the VOS client ([RECEIVE] getOrdererData).

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

[RECEIVE]
itemRequest (qty, item_id)

[SWITCH]
Available?

[INVOKE]
notAvail

[INVOKE]
offer (cost)

[ON MESSAGE]
offerNack

[ON MESSAGE]
getOrdererData (ucc_data)

[SWITCH]
Payment

[INVOKE]
getOrdererDataAck

(transfer_id)

[INVOKE]
getOrdererDataNack

YESNO

YESNO

[PICK] [ON MESSAGE]
offerChange

[WHILE]

FAIL

FAIL

FAIL SUCC

Figure 3. VOS abstract BPEL

The third phase starts when both accounts have been vali-

dated. The Bank sends back an acknowledgement and stops

waiting for a confirmation or a cancellation. On confirma-

tion ([ON MESSAGE] confirmPayment), the Bank
can either refuse to perform the money transfer, for in-

stance if there is not enough money on the source ac-

count (this is notified to the client with [INVOKE]
confirmPaymentNack), or perform the transfer. In the
latter case, a final acknowledgement is sent to the client of

the Bank ([INVOKE] confirmPaymentAck).

The VOS is a new service that exploits the interfaces of

Bank and Shop to provide the combined sell and payment

service. Its abstract BPEL, depicted in Figure 3, defines the

protocol interaction between the VOS and the client. The

VOS becomes active upon a request for an item, which in-

cludes information about the quantity (see the [RECEIVE]
itemRequest box). If the requested item is not available,
the user is informed about this ([INVOKE] notAvail
box) and the interaction terminates. Otherwise, the VOS

sends an offer with a cost ([INVOKE] offer box).
The availability condition ([SWITCH] Available?)
depends on an interaction between the VOS and the Store

that is hidden to the client. If the item is available, the VOS

stops waiting for either a positive reply from the client ([ON
MESSAGE] getOrdererData), or a negative response
([ON MESSAGE] offerNack). The client is given also
the possibility to ask for another offer ([ON MESSAGE]
offerChange). If the client accepts the offer, its message
([ON MESSAGE] getOrdererData) contains his/her

bank account information for the payment. Finally, depend-

ing on whether the payment procedure is successful (this

involves interactions of VOS with the Store and with the

Bank), the client is notified with either an acknowledge-

ment ([INVOKE] getOrdererDataAck) or a refusal
([INVOKE] getOrdererDataNack).

Despite the simplicity of the domain, there are several

different properties that the provider implementing the Vir-

tual Online Shop may want to monitor. A first class of prop-

erties are those that constrain the correct behaviors of the

composition. An example is property:

• StoreCcNotRefused: the credentials of the Store are
not refused by the Bank.

We remark that the interaction protocol with the bank al-

lows for such a refusal; however, the VOS expects this re-

fusal never to happen due to the contracts regulating the re-

lations with the Bank. This refusal is an unexpected (and

hence very dangerous) event that has to be detected at run-

time as soon as it happens. This is an example of a boolean

property that we want to check on all instances of the VOS

process. Another boolean property is the following:

• OfferBeforeBank: the interaction with the Bank does
not start before the User has accepted an offer.

The VOS may also be interested in counting how many

times a given event occurs in the execution of a process in-

stance. Examples of this properties are:

• NotAvailCount: count the number of times the Store
reports that a requested item is unavailable.

• RetriesOnSuccCount: count the number of items of-
fered to the User before the User accepts to buy.

Finally, the VOS may be interested in measuring the time

spent to perform certain activities, for instance:

• PaymentTime: compute the time requested to finalize
the payment with the bank.

All the properties described above are instance-level prop-

erties, that is, they are evaluated on the execution of one

instance of the VOS service. On top of these properties, it

is possible to define aggregated class-level properties, i.e.,

properties that consider all the instances of a business pro-

cess.

• GlobalStoreCcNotRefuse: the credentials of the Store
have never been refused by the Bank in any execution

of the VOS.

This is an example of a boolean property for a class moni-

tor. A related numerical property for a class monitor is the

following:

• CountStoreCCRefused: count the total number of
times the Bank has refused the credentials of the Store

on all the executions of the VOS.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

The following two properties perform statistical analysis of

properties related to the number of times a given event is re-

peated and of properties related to the time required to per-

form given activities:

• AverageUserRetriesCount: average number of times
the user gets and refuses an offer from the VOS.

• AveragePaymentTime: average duration of the inter-
actions with the back for the payment procedure.

3. The Run-Time Monitoring Environment

In our approach, monitors are software modules that run

in parallel to BPEL processes, observe their behavior by in-

tercepting the input/output messages that are received/sent

by the processes, and signal misbehaviors or, more in gen-

eral, situations or events of interest. In this section we de-

scribe how we implemented the run-time environment for

the monitors within the specific BPEL platform that we

adopted for our projects. The architecture that we describe,

however, is modular and allows for a simple integration of

our framework also in other BPEL platforms.

BPEL execution environment. We have chosen a standard
engine for executing BPEL processes. Among the existing

engines, we chose Active BPEL [1] for our experiments,

since it is available as open source, and since it implements

a modular architecture that is easy to extend.

From a high level point of view, the Active BPEL run-

time environment can be seen as composed of four parts

(see the light components of Figure 4). A Process Inven-
tory contains all the BPEL processes deployed on the en-
gine. A set of Process Instances consists of the instances of
BPEL processes that are currently in execution. The BPEL

Engine is the most complex part of the run-time environ-
ment, and consists of different modules (including the Pro-

cessManager, and the QueueManager), which are responsi-

ble of the different aspects of the execution of the BPEL pro-

cesses. The Admin Console provides web pages for check-
ing and controlling the status of the engine and of the pro-

cess instances.

For ourmonitoring purposes, the most relevant aspects in

the execution of BPEL processes are the creation and the ter-
mination of a new process instance, and the input and output
of messages. The engine manages to create a new instance
for a BPEL process in the inventory when one of its start ac-

tivities is triggered by an incoming message. The creation

of the process instance is supervised by the Process Man-

ager, and consists in the activation of the initial set of BPEL

activities for that process. When all the activities of a pro-

cess instance have been executed, the Process Manager ter-
minates that instance. The Queue Manager is responsible
for dispatching incoming and outgoing messages. When an

incoming message is received, the engine tries to find an ac-

Figure 4. The Active BPEL engine extended
with the run-time monitor environment

tive process instance that matches the correlation data in-

cluded in the message. If such an instance is found, then

the message is stored in the “inbound queue” for that pro-

cess instance, where it waits until it gets consumed by one

of the activities of the process instance.1 The management
of outgoing messages is much simpler. The engine provides
an “outbound queue”, where outgoing messages are stored

by invocation or reply activities. The Queue Manager is re-

sponsible for picking messages from the “outbound queue”

and for dispatching them to the destination services.

Run-Time Monitoring Environment. We have implemented
the run-time monitoring environment as an extension of the

Active BPEL environment.2 In particular, we have extended
Active BPEL with five new components (see dark part of

Figure 4). TheMonitor Inventory and theMonitor Instances
are the counterparts of the corresponding components of

the BPEL engine: the former contains all the monitors de-

ployed in the engine, while the later is the set of instances

of these monitors that are currently in execution. The Run-
Time Monitor (RTM) is responsible to support the life-cycle
(creation and termination) and the evolution of the monitor

instances. TheMediator allows the RTM to interact with the
Queue Manager and the Process Manager of the BPEL en-

gine and to intercept input/output messages as well as other

relevant events such as the creation and termination of pro-

cess instances. The Extended Admin Console is an exten-
sion of the Active BPEL Admin Console that presents, along

with other information on the BPEL processes, the informa-

tion on the status of the corresponding monitors.

The framework supports two kinds of monitors. Instance
Monitors (IMs), which observe the execution of a single in-

1 If no matching instance is found, the message is parked in a “un-
matched message queue” until a matching instance is found. For lack
of space, we cannot discuss the details of the management of un-
matched messages.

2 The implementation of the run-time monitoring environment is avail-
able from http://www.astroproject.org/ as open source code.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

Figure 5. The IM Console

stance of a BPEL process; and Class Monitors (CMs), which
report aggregated information on all the instances of a given

BPEL process. The two kinds of monitors are reflected in

the architecture of the monitoring framework. Indeed, ac-

cording to Figure 4, there are two distinct sets of monitor

instances, namely IM Instances and CM Instances. In the
RTM, the IMs and CMs are managed by two specific han-

dlers, the IM Handler and the CM Handler. Also the Ex-
tended Admin Console provides two viewers, a IM Viewer
and CM Viewer, to display the status of the two kinds of
monitors. As an example, in Figure 5 we show one of the

web pages generated by the Extended Admin Console, re-

porting the status of a specific instance of the VOS BPEL

process. The console reports the status of the IMs associ-

ated to the BPEL process instance. This information, which

is not present in the “standard” Active BPEL console, is gen-

erated by the IM Viewer.

Structure of a Monitor. A monitor is a Java class imple-
menting the IMonitor interface described in Figure 6. More

precisely, IMs implement interface IInstanceMonitor, while

CMs implement interface IClassMonitor. The IMonitor in-

terface defines four methods which are common to all mon-

itors: getProperty and getDescription return a
short and a long description of the property that is moni-

tored; getProcessName returns the name of the BPEL
process the monitors are associated to (the VOS in our

exaple); and getValue returns the current value of the
monitor (e.g., true or false in the case of a boolean moni-

tor).

The methods defined by interfaces IInstanceMonitor and

IClassMonitor manage the evolution of the monitors, and

are better explained describing the life-cycle of instance

and class monitors. The IMs life-cycle is influenced by

three events: the process instance creation, the input/output

IMonitor

+getDescription(): String
+getProperty(): String
+getProcessName(): String
+getValue(): Object

IClassMonitor

+init(): void
+update(): void

IInstanceMonitor

+init(): void
+evolve(message:BpelMsg): void
+terminate(): void

Figure 6. Methods of a monitor Java class

Figure 7. RTM message flow

of messages, and the termination of the process instance.

When the RTM receives the notification of the creation of a

new BPEL process, it creates a set of monitor instances that

are specific for that process instance. The monitor instances

are initialized through the method init. When the RTM
receives a message from the Mediator, it sends it to the In-

stance Monitor Handler which dispatches the message to all

the matching monitor instances through method evolve.
For each message, the Mediator provides also information

on the process instance receiving/sending the message, as

well as on the BPEL process specification corresponding to

the instance. The process termination is captured via a ter-
mination event, which is dispatched, through the invocation
of method terminate, to all the monitor instances asso-
ciated to the process instance.

The life-cycle of a class monitor is quite different.

Method init is called only once, when the single instance
of the class monitor is created. The evolution of the class

monitor is triggered whenever the RTM receives a mes-

sage or an event is received from any instance of the BPEL

process to be monitored. More precisely, after the Instance

Monitor Handler has dispatched the event or message to the

relevant monitor instance, and this has been updated, it sig-

nals to the Class Monitor Handler that also the class moni-

tors have to be updated. The Class Monitor Handler invokes

method update on all the different class monitors associ-
ated to the BPEL process, which can update their internal

status.

Figure 7 shows the flow on interactions triggered by the

reception of a message by the BPEL engine. When the mes-

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

sage in received by the Queue Manager, a copy of it is for-

warded to the Mediator. The Mediator marks the message

with a time stamp and dispatches it to the RTM. The mes-

sage is then passed to the Instance Monitor Handler which

dispatches the message to the right IMs. The Instance Mon-

itor Handler signals an update request to the Class Mon-

itor Handler, which forces the update of the proper CMs.

Figure 7 shows also how the CMs interact with the asso-

ciated IMs in order to update their own states. Indeed, if

a class monitor is responsible of collecting statistical data

on all the instances of a given BPEL process, then it has

to interact with the instance monitors that collect the non-

aggregated values for the single process instances. This is

achieved through the request/[value] flows shown in
figure.

4. Automatic Generation of Monitors

In this section we introduce RTML, the Run-Time Mon-

itor specification Language. As we will see, RTML is rather

expressive: it allows for the specification of IMs as well

as CMs; moreover, it allows for specifying boolean prop-

erties related to the execution of processes, as well as statis-

tic properties and time-related properties. We also illustrate

the technique we have devised for translating automatically

RTML monitor specifications into the Java code that imple-

ments the monitors.

We provide the description of RTML in three steps. First

of all, we define the language for specifying the “events”

that are relevant for the evolution of monitors. On top of

events, we define the language for specifying instance mon-

itors. Finally, we define the language for class monitors on

top of instance monitors.

Events. According to the framework of Section 3, the rele-
vant events for monitors are:

• The creation and termination of a process instance;
these two events are modeled through keywords

“start” and “end” in RTML.
• The input and output of messages; in this case, RTML
requires to specify the link on which the message is

received or sent,3 the fact that the message is an in-
put or an output, and the message type. For instance

“msg(VOS.output = offer)” corresponds to the shop
sending an offer to the user, while “msg(Bank.input
= startPayment)” corresponds to the bank receiving
from the shop a request for starting a payment. It is also

3 In the paper, we use as name of the link the name of the abstract BPEL
process specifying the interaction protocol. That is, in the case of the
VOS example, “Bank” refers to the messages between bank and shop,
“Store” to the messages between store and shop, and “VOS” to the
messages between shop and client.

possible to specify constraints on the exchanged mes-

sage values, as in “msg(Shop.input = request [item
= Book])”.
In some cases, it is preferable to speak of the effects of an

event on the status of an interaction protocol, rather than of

the event itself. For instance, let us consider the events lead-

ing to a termination of the interactions with the bank in

a failure state: they correspond to msg(Bank.output =
startPaymentNack), msg(Bank.output = getOrder-
DataNack), msg(Bank.output = confirmPayment-
Nack), and msg(Bank.input = cancelPayment).
Alternatively, all these events can be described by

“cause(Bank.state = FAIL)”, that is, all the events that
cause the bank to reach an activity named “FAIL”. Sim-

ilarly, we can say “cause(link.var = val)” to denote all
events that cause variable var of BPEL process link to as-
sume value val.4
The complete grammar for events e is the following:

e ::= start | end |
msg(link.input/output = msg[opt-constraints]) |
cause(link.var = val) |
cause(link.state = label)

Instancemonitor formulas. The following grammar defines
the formulas that specify instance monitors. We distinguish

boolean formulas b, which monitor properties that can be
either true or false, and numeric formulas n, which moni-
tor properties that define a numerical value.

b ::= e | Y b | O b | H b | b S b |

n = n | n > n | ¬b | b ∧ b | true
n ::= count (b) | time (b) | b?n:n |

n + n | n − n | n ∗ n | n/n | 0 | 1 | ...

A boolean formula can be an event e, a Past LTL [6] formula
(operators Y, O, H, and S), a comparison between numeric
formulas, or a logic combination of other boolean formulas.

A numeric formula can be either a counting formula (oper-

ators count and time), a conditional expression (b?n:n), or
an arithmetic operation on other numeric formulas.

Formulas are evaluated whenever a relevant event is re-

ceived by the instancemonitor. Formula e is true if it is com-
patible with the occurring event. Past LTL formulas have the

following meaning:

• Y b means “b was true in the previous step”;

• O b means “b was true (at least) once in the past”;

• H b means “b was true always in the past”;

• b1S b2 means “b1 has been true since b2”.

4 We want to stress once more that we do not monitor the fact that the
status of a process changes, or that a variable gets a value. We monitor
the occurrence of an event that triggers such an effect.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

The meaning of the other boolean formulas is standard. Nu-

meric formula count (b) counts the number of times that
boolean condition b has been true since the creation of the
process instance. Formula time (b) is similar, but it counts
the sum of the time-spans after occurrences of condition b.
Consider for instance the sequence of events modeled in the

following diagram, corresponding to the execution of a fic-

titious BPEL process:

b b

1ms 1ms 2ms 4ms

start endb

1ms5ms

We have marked in black the events satisfying condition

b, and we have annotated the duration of the time inter-
vals between events. At the end of the execution we have

count (b) = 3 (b has been true 3 times) and time (b) = 8ms
(corresponding to the sum of durations 1ms+2ms+5ms).
The IM properties we have introduced in Section 2 can

be defined by RTML following formulas:

• OfferBeforeBank:
msg(Bank.input = startPayment) ⇒
Omsg(Store.input = offerAck))

• NotAvailCount:
count (msg(Store.output = notAvail))

• RetriesOnSuccCount:
O (cause(VOS.state = SUCC))?
count (msg(VOS.ouput = offer))) : 0

• PaymentTime:
time ((¬(cause(Bank.state = SUCC, FAIL))S
msg(Bank.input = startPayment)))

We have implemented a procedure that translates auto-

matically an instance RTML formula into the Java code

implementing the monitor. The skeleton of the class is de-

scribed in Figure 8. The key element in the generation of the

Java code implementing the property is map Val, which as-
sociates a value to all the sub-formulas of the property to

be monitored. Function Init_RTML assigns initial (truth
or numerical) values to these sub-formulas, while function

Update_RTML updates these values according to a re-
ceived event. The update is done compositionally on the

structure of the formula, and exploits the old values of the

sub-formulas that are stored in variable Val_old. Func-
tion Update_RTML assigns values to V al as follows:

• V al(e) := “if event e is occurring”

• V al(Y b) := V alold(b)

• V al(O b) := V alold(O b) ∨ V al(b)

• V al(b1S b2) := V al(b2)∨(V alold(b1S b2)∧V al(b1))

• V al(H b) := V alold(H b) ∧ V al(b)

• V al(n1 = n2) := (V al(n1) = V al(n2))

• V al(n1 > n2) := (V al(n1) > V al(n2))

• V al(b1 ∧ b2) := (V al(b1) ∧ V al(b2))

• V al(¬b) := ¬V al(b)

package monitor.instance;
import org.astroproject.monitor.core.*;
import java.util.Map;
// Instance monitor for formula b
public class InstanceMonitor implements IInstanceMonitor {
private Map Val; // Associates a truth value to each sub−formula

public void init() {
 Init_RTML(Val); // Initialize Val according to event "start"
 }

public void evolve(BpelMsg message) {
 Map Val_old = Val;
 Update_RTML(Val, Val_old, message);

// Update Val compositionally on the sub−formulas
// according to event "message"

 }

public void terminate() {
 Map Val_old = Val;
 Update_RTML(Val, Val_old, EVENT_TERMINATE);

// Update Val compositionally on the sub−formulas
// according to event "end"

 }

public Object getValue() {
return Val.get("b");

 }

public String getProcessName() { ... }
public String getProperty() { ... }
public String getDescription() { ... }

}

Figure 8. Skeleton for IM class

• V al(count (b)) := if V al(b) then

(V alold(count (b)) + 1) else V alold(count (b))
• V al(time (b)) := if V al(b) ∧ V alold(b) then

(V alold(time (b)) + elapsed) else V alold(time (b))
• V al(b?n1:n2) := if V al(b) then V al(n1) else

V al(n2)
• V al(n1 + n2) := (V al(n1) + V al(n2))
• ...

In the case of operator time, value elapsed is the elapsed
time from last event relevant for the monitor. This value

is computed using the time-stamps associated to the events

sent to the monitors.

Class monitor formulas. Also for the class monitors we dis-
tinguish among boolean formulas B and numeric formulas
N , as shown by the following grammar.

B ::= And (b) | YB | OB | HB | B SB |

N = N | N > N | ¬B | B ∧ B | true
N ::= Count (b) | Sum (n) |

N + N | N − N | N ∗ N | N/N | 0 | 1 | ...

where b and n are instance monitor formulas.
Most of the operators are identical to those of the in-

stance monitor formulas. We now describe the meaning

of the operators specific of the class monitor formulas.

Boolean formula And (b) checks if property b is true for all
the instances of the BPEL process corresponding to the mon-

itor. Numeric formula Count (b), instead, counts the num-
ber of instances of the BPEL process for which formula b
holds. Numeric formula Sum (n) is similar, but aggregates
numeric instance module formulas: it sums up the values

of numeric formula n on all the instances of the BPEL pro-
cess.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

The CM properties we have introduced in Section 2 can

be defined by RTML following formulas, where we used

the abbreviation Avrg (n) = Sum (n)/Count (Ostart) for
computing the average value of numeric formula n:

• GlobalStoreCcNotRefuse:
And (¬Omsg(Store.input = startPaymentNack))

• CountStoreCCRefused:
Count (Omsg(Store.input = startPaymentNack))

• AverageUserRetriesCount:
Avrg (count (msg(VOS.output = offer)))

• AveragePaymentTime:
Avrg (time ((¬(cause(Bank.state = SUCC, FAIL))
Smsg(Bank.input = startPayment))))

Also in the case of class monitors, we have implemented

a translator from RTML to Java code. The key difference

with respect to instance monitors is in the implementation

of operatorsAnd, Count, andSum. Indeed, these operators
serve as link between class-level monitoring and instance-

level monitoring. The translation algorithm adopts the fol-

lowing approach:

• An instance monitor is generated for each instance
property b or n that appears as argument of operators
And, Count, and Sum in the class formula.

• One class monitor is generated that aggregates the data
of the instance monitors according to the formula.

The class monitor has the same structure as the instance

monitor. In particular, it exploits map Val to associate a
(boolean or numeric) value to each class-level sub-formula

of the property to be monitored. Functions init and
update are defined similarly to init and evolve in the
instance monitor. (Function terminate is not present in
the class monitors, since their execution is not supposed to

terminate.) The main difference is in the implementation of

function Update_RTML. We report its definition for oper-
ators And, Count, Sum:
• V al(And (b)) :=

∧

i∈I(b)

i.V al(b)

• V al(Count (b)) :=
∑

i∈I(b)

(if i.V al(b) then 1 else 0)

• V al(Sum (n)) :=
∑

i∈I(n)

i.V al(n)

where I(b) is the set of all instances of the instance moni-
tor corresponding to formula b, and i.V al(b) is the value of
formula b in monitor instance i.
In the implementation of Count (b), we have taken into

account that I(b) contains monitors for all instances of a
given BPEL process. This includes all BPEL instance that

are already terminated, plus all running BPEL instances. As

a consequence, V al(Count (b)) has a consolidated compo-
nent that takes into account the terminated BPEL instances,

and an evolving component for the processes that are still

running. The consolidate component is stored in an addi-

tional variable Solid(Count (b) and, whenever an update is
performed, the value of Solid(Count (b)) is updated tak-
ing into account the instances which terminated since the

last update. Then the value of V al(Count (b)) is com-
puted adding to Solid(Count (b)) the contribution of the
instances that are still running. Similar considerations also

hold for operators And and Sum.

5. Conclusions and Related Work

In this paper, we have presented a novel approach to the

problem of monitoring web services described as BPEL pro-

cesses. The approach allows for a clear separation of the

service business logic from the monitoring functionality.

Moreover, it provides the ability to monitor both the be-

haviours of single instances of BPEL processes, as well as

behaviours of a class of instances. The monitors can check

temporal, boolean, time related, and statistic properties. We

devise a language that is expressive enough to express for-

mally specifications of all these kinds of monitors, and a

technique to automatically generate both instance and class

monitors from their specifications, thus supporting their de-

velopment.

Run-time monitoring has been extensively studied in dif-

ferent areas of computer science, such as distributed sys-

tems, requirement engineering, programming languages,

and aspect oriented development, see, e.g., [5, 7, 10, 13].

There have been several proposals that deal with different

aspects of the monitoring of web services and distributed

business processes, see, e.g., [12, 11, 3, 4, 8, 9].

The works closest to ours are those described in [3, 4],

and in [8, 9]. In [3, 4], monitors are specified as assertions

that annotate the BPEL code. Annotated BPEL processes are

then automatically translated to “monitored processes”, i.e.,

BPEL processes that intearleave the business processes with

the monitor functionalities. This approach allows for moni-

toring time-outs, runtime errors, as well as functional prop-

erties. On the one hand, an advantage of this approach is

that monitors are themselves services implemented in BPEL,

and can run on standard BPEL engines. Moreover, since the

monitoring occurs within the BPEL process, if a monitored

property fails, the monitor can influence the behavior of the

BPEL process, e.g., forcing a termination. On the other hand,

we allow for both instance and class monitors, as well as for

the monitoring of properties and for the collection of infor-

mation that depend on the whole history of the execution

path. These kinds of monitors would be hard to express as

assertions. Moreover, we allow for a clearer separation of

the business logic from the monitoring task than in [3, 4],

since we generate an executable monitor that is fully dis-

tinguished from the executable BPEL that runs the business

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

logic. Finally, in general, our monitors can capture possi-

ble misbehaviors generated by the internal mechanisms of

the BPEL execution engine.

The work described in [8, 9] shares with us the idea to

have a monitor that is clearly separated from the BPEL pro-

cesses. It provides a framework for monitoring behavioral

properties and assumptions expressed in the event calcu-

lus. In addition to a different technical setting, the most im-

portant difference is that we allow for statistical and time-

related properties and for class monitors, which are not sup-

ported in their setting.

In the future, we plan to extend the framework with tech-

niques that allow for the automated failure-handling, re-

pairing and adaptation triggered by information provided

by monitors. Moreover, we plan to provide an experimen-

tal evaluation of the usability and of the practical effective-

ness of the proposed technique on a set of application do-

mains.

References

[1] ActiveBPEL. The Open Source BPEL Engine -

http://www.activebpel.org.

[2] T. Andrews, F. Curbera, H. Dolakia, J. Goland, J. Klein,

F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trick-

ovic, and S. Weeravarana. Business Process Execution Lan-

guage for Web Services (version 1.1), 2003.

[3] L. Baresi, C. Ghezzi, and S. Guinea. Smart Monitors for

Composed Services. In Int. Conf. on Service-Oriented Com-
puting, 2004.

[4] L. Baresi and S. Guinea. Towards dynamic monitoring of

WS-BPEL Processes. In Int. Conf. on Service-Oriented
Computing, 2005.

[5] A. Dingwall-Smith and A. Finkelstein. From Requirements

to Monitors by way of Aspects. In Int. Conf. on Aspect-
Oriented Software Development, 2002.

[6] E. A. Emerson. Temporal and modal logic. In J. van

Leeuwen, editor, Handbook of Theoretical Computer Sci-
ence, Volume B: Formal Models and Semantics. Elsevier,
1990.

[7] M. Feather and S. Fickas. Requirements Monitoring in Dy-

namic Environment. In Int. Conf. on Requirements Engineer-
ing, 1995.

[8] K. Mahbub and G. Spanoudakis. A Framework for Require-

ments Monitoring of Service Based Systems. In Int. Conf.
on Service-Oriented Computing, 2004.

[9] K. Mahbub and G. Spanoudakis. Run-Time Monitoring of

Requirements for Systems Composed of Web-Services: Ini-

tial Implementation and Evaluation Experience. In Int. Conf.
on Web Services, 2005.

[10] D. Peters. Deriving Real-TimeMonitors for System Require-

ments Documentation. In Int. Symp. on Requirements Engi-
neering - Doctoral Symposium, 1997.

[11] W. Robinson. Monitoring Web Service Requirements. In Int.
Conference on Requirement Engineering, 2003.

[12] A. Sahai, V. Machiraju, A. van Morsel, and F. Casati. Auto-

mated SLA Monitoring for Web Services. In Int. Workshop
on Distributed Systems: Operations and Management, 2002.

[13] K. Sen, A. Vardhan, G. Agha, and G. Rosu. Efficient Decen-

tralized Monitoring of Safety in Distributed Systems. In Int.
Conf. on Software Engineering, 2004.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

