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We define a flexible process as one that can
change its behavior dynamically according to vari-
able execution contexts; an adaptive process is
one that can execute a service when conditions at
runtime differ from those assumed during the ser-
vice’s initial design. While researchers have pro-
posed several adaptation mechanisms, none of the
existing frameworks systematically couples adap-
tation design-time and runtime execution. Focus-
ing only on design-time issues reduces an applica-
tion’s ability to adapt its behavior at runtime. In
a loosely coupled environment, in fact, the actual
execution context might differ dramatically from
the conditions hypothesized during application
design. In addition, implementing advanced
process-execution mechanisms, such as service
substitution, is possible only when processes and
services are carefully designed in advance.

To address this, we developed PAWS (Pro-
cesses with Adaptive Web Services), a frame-

work for flexible and adaptive execution of
managed service-based processes. Our frame-
work coherently supports both process design
and execution. It also integrates several research
results developed at Politecnico di Milano that
address different aspects of adaptation, coupling
design-time and runtime mechanisms in a global
environment. 

We have two primary goals for PAWS. First,
we want it be self-optimizing. PAWS should se-
lect the best available services for executing the
process and define the most appropriate qual-
ity-of-service (QoS) levels for delivering them.
Second, PAWS should guarantee service provi-
sioning, even in case of failures, through re-
covery actions and self-adaptation if the con-
text changes. To meet these goals, PAWS
provides methods and a toolset to support de-
sign-time specification of all information re-
quired for automatic runtime adaptation of
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processes according to dynamically changing
user preferences and context.2-4 Here, we focus
on how PAWS selects and adapts candidate
services for a composed process. In addition,
we describe its annotations for exploiting run-
time flexibility. PAWS provides flexibility in
terms of optimization, mediation, and self-
healing functionalities. Our framework is gen-
eral; developers can extend it by introducing
domain-dependent service annotations with
QoS and context definitions. 

The PAWS framework
Figure 1 shows the design-time and runtime

modules that constitute the PAWS framework. 
In PAWS, both service discovery and service

selection are driven not only by functional as-
pects (what the service should do), but also by
nonfunctional aspects (how the service should
work). Regarding the latter, all PAWS modules
rely on a shared QoS model5 to express global

and local QoS constraints, to discover the set
of candidate services, and to select the most
suitable services.

The QoS model’s goal is to provide an exten-
sible way to express the quality of tasks and the
overall process. A QoS dimension represents a
specific quality aspect, such as response time,
cost, or availability. The QoS model specifies a
quality dimension using

■ a name,
■ a metric,
■ a range of admissible values (either inter-

val or categorical),
■ a utility function that states how the QoS

varies with respect to the dimension’s as-
sumed values, and 

■ any domain-dependent QoS properties.

We assume that a service’s quality and functional
description is published in the service registry. 
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Figure 1. The Processes with Adaptive Web Services architecture. PAWS consists of design-time and runtime mod-
ules. Using a Business Process Execution Language editor, designers initially focus on process definition, then se-
lect services to perform the required invocations and satisfy the annotation constraints.
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Design-time modules
Design-time modules let designers create the

annotated BPEL (Business Process Execution
Language) process specification. Starting from a
standard BPEL editor, designers can define both
global and local constraints. A constraint de-
fines a QoS or domain-dependent requirement
for each task. By annotating the BPEL process,
the designer couples the BPEL specification’s
functional requirements with the PAWS con-
straints, which usually refer to nonfunctional as-
pects. For example, a designer might require a
given task to be performed in a given time or the
overall cost to be within a given budget.

In traditional design approaches,3 designers
start by identifying potential services and then
define the BPEL process using these previously
selected services. In contrast, with PAWS, de-
signers can initially focus on the process defi-
nition (step 1 in figure 1) and then select serv-
ices to perform the required invocations and
satisfy the annotation constraints. So, given a
specific task, in step 2, the designer relies on
the advanced service-retrieval module to re-
trieve all published services that can perform
the task. The retrieval module does this by
comparing the required service interface—de-
fined in Web Services Description Language
(WSDL)—with the published ones. It also ver-
ifies that the service’s QoS satisfies the local
constraints. Services that pass both analyses
constitute the candidate set for the target task.

From a functional perspective, the retrieval
process returns services similar to the desired
one; rarely does a service’s WSDL interface
match exactly. We therefore need mediators to
translate between the two service-interface sig-
natures. To this end, PAWS includes a media-
tor configurator to support set-up of the re-
lated runtime module—the mediator engine. If
it’s not possible to derive message transforma-
tions automatically, the designer defines them
during process execution, providing addi-
tional information about parameter and serv-
ice mappings. 

Regarding nonfunctional constraints, the
service-retrieval module includes a service in the
candidate set if it can support the required QoS.
Before invoking the service, the designer uses
the SLA (service-level agreement) generator to
define the actual QoS that the service commits
to support during process execution and that
PAWS will monitor at runtime. Finally, in step
3, PAWS deploys the annotated BPEL process.

Runtime modules
The PAWS process definition doesn’t include

invocations of real services, but rather of de-
sired services as characterized by the annotated
process. Once the user starts executing the de-
ployed process (step 4 in figure 1), the process
optimizer runtime module selects a service for
each task from among the candidates. More-
over, because a traditional BPEL engine executes
the process and the target services are selected at
runtime, runtime modules mediate between the
BPEL invocation—as specified in the process
definition—and the selected service’s invocation.

The process optimizer module selects the
service, aiming both to satisfy the annotations’
local and global QoS constraints and to max-
imize overall quality for the user. The user
context collects user preferences and transpar-
ently exchanges context information between
the user and the framework. PAWS represents
context by <name,value> pairs, and can thus
define generic and domain-dependent charac-
teristics, such as user-defined QoS priorities,
negotiation preferences, and user location in-
formation. (We discuss PAWS context man-
agement in detail elsewhere.6)

PAWS mediates services using the mediation
engine module, which the mediator configura-
tor module sets up at design-time. The media-
tion engine redirects invocation of the de-
ployed process to the proper selected services. 

As long as the process execution works, no
additional efforts are required. However, if a
participating service or the overall process fails,
the self-healing module handles adaptation ac-
cordingly. When it detects a fault during
process execution, the self-healing module im-
plements a set of semiautomatically managed
recovery actions that enhance process adaptiv-
ity. If the failure requires a service substitution
for a given task, the process optimizer module
selects services for the remaining tasks from the
candidate set to guarantee global constraints. 

Components for flexibility 
and adaptivity

We now describe how PAWS module func-
tionality achieves the key requirements for
process adaptivity and flexibility. The sidebar,
“Related Work in Web-Service-Based Business
Processes,” describes other efforts in this area.

Advanced service retrieval
PAWS performs service retrieval through



URBE (UDDI Registry By Example), a UDDI
extension that supports content-based queries.
Unlike current registries, which limit service
location options to browsing predefined tax-
onomies or searching keywords,7 URBE also
lets designers submit a WSDL specifying the
requested service in terms of supported opera-
tions and I/O parameters. URBE then returns
a set of published services that more closely
match the requested WSDL interface.8

URBE is composed of a functional and a
QoS matchmaker. The functional matchmaker
is driven by a similarity-evaluation algorithm
that can state the similarity among services on
the basis of their descriptions. The algorithm
starts with the assumption that two services
are equal if they both require the same input
information and produce the same output
data for the same operations. The similarity
algorithm works with WSDL service signa-
tures and accounts for

■ naming aspects, which refer to the names

adopted for identifying the service, avail-
able operations, and related exchanged
parameters; and

■ structural aspects, which refer to the num-
ber of operations available and the I/O pa-
rameters’ data types. 

The algorithm compares names using an on-
tology that organizes terms according to seman-
tic relationships, such as synonym, antonym,
homonym, and hypernym.8 By adopting a gen-
eral-purpose ontology, such as WordNet, the al-
gorithm lets designers add domain-specific
terms and relationships. The algorithm can also
process Semantic Annotations for WSDL and
XML Schema (www.w3.org/TR/sawsdl) de-
scriptions, which allows for specific semantic
annotations on WSDL elements.

If the designer requirements include QoS
constraints, PAWS invokes the QoS match-
maker after the functional one. Using the
PAWS QoS model, the matchmaker verifies
whether a request and an offering match—
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Research on adaptation and flexibility in business processes
includes many heterogeneous areas, from traditional research
on the service-oriented architecture (SOA) to Semantic Web
services and business process optimization.

Michael Papazoglou and colleagues advocate the need
to extend the traditional SOA to consider service composi-
tion and service management.1 Other researchers propose
adaptive mechanisms for workflows and service-based
processes. The Mosaic framework2 proposes to model, an-
alyze, and manage service models focusing on design
phases rather than runtime flexibility. Meteor-S3 and other
semantic-based approaches—such as the Web Services
Modeling Ontology (www.wsmo.org)—explicitly define the
process goal of both service discovery and composition.
The Meteor-S approach proposes a framework to select se-
mantically annotated services that focus on flexible process
composition and QoS properties. However, it doesn’t con-
sider runtime adaptivity to react to changes and failures.
The WSMO approach proposes a goal-based framework
to select, integrate, and execute Semantic Web services. It
doesn’t separate design and runtime phases, nor does it
specifically support adaptivity. While goal-based approaches
can make it possible to derive service compositions at run-
time, their applicability in open service-based applications
is limited by the amount of knowledge available in the
service definitions.

Other approaches tackle individual aspects of adapta-

tion.4,5 Business-process-optimization approaches provide
the process specification and select the set of best services at
runtime by solving an optimization problem.4 Similarly, re-
searchers model grid systems applications as high-level sci-
entific workflows that select resources at runtime to mini-
mize, for example, workflow execution time or cost. Even if
such approaches perform runtime re-optimization and pro-
vide a basic adaptation mechanism, they have a limited
ability to address user context changes and self-healing. 

PAWS supports adaptation preferences and adaptation
execution in a coherent framework, focusing on both func-
tional and QoS properties. With respect to self-healing, the
PAWS framework allows runtime adaptation and flexibility
based on optimization and negotiation mechanisms and
predefined repair actions.
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that is, whether the offering can support the
request. At this stage, we use WS-Policy as the
language for QoS offerings.

Researchers validated URBE’s similarity al-
gorithm in experimental evaluations; its preci-
sion and recall in specific application domains
were around 80 percent.9

Negotiation
The SLA generator allows PAWS to auto-

matically negotiate QoS aspects between the
user and candidate service providers. The SLA
generator negotiates the QoS of candidate serv-
ices only for tasks with local budget constraints.
Indeed, such constraints can be solved at design-
time—that is, the user and provider can negoti-
ate the maximum QoS possible within the user’s
budget constraint. Automating negotiation at
design-time saves time and simplifies the run-
time process optimization phase. Therefore, for
each task that specifies a local budget con-
straint, the SLA generator negotiates the SLA
for all the candidate services URBE retrieves.

The negotiation’s objective is to obtain an
SLA within the request and service-offering
matches identified in the service-discovery
phase. Specifically, given a QoS dimension
range, our QoS model lets designers define a
set of negotiation intervals over which service
providers can specify a pricing model. The
pricing model is additive—the final price asso-
ciated to a service is the sum of partial prices
associated to each individual QoS dimension
interval. The SLA generator uses the designer’s
local-constraints budget during negotiation to
improve candidate service quality, starting
from a basic SLA identified by each relevant
QoS dimension’s lowest QoS interval. The
module can adopt different strategies, such as
splitting the budget proportionally to the
users’ priorities (a horizontal strategy) or ex-
ploiting the budget to maximize the highest
priority dimension’s QoS (a vertical strategy).

Negotiating SLA for a single candidate
service exploits two configuration policies:
that of the service provider and that of the de-
signer (who acts on the user’s behalf). The user
policy contains the QoS dimension preferences
(expressed as a vector of weights) and identi-
fies the SLA negotiation strategy. The service
provider policy contains the target service’s
pricing model parameterization. After parsing
both policies, the SLA generator can automat-
ically perform SLA negotiation. 

If a feasible solution to the process opti-
mization problem doesn’t exist, PAWS can up-
date the negotiated QoS profiles at runtime
using the process optimizer module. Runtime
negotiation exploits

■ an extra budget obtained from the global
budget constraint, and

■ a structure of preferences on QoS dimen-
sions and service pricing models similar to
those specified for design-time SLA nego-
tiation.

To evaluate these two negotiation strategies,
we ran an experiment, defining quasilinear
utility functions for users and providers with
different combinations of budget constraints
and pricing models. The horizontal negotiation
strategy’s outcome proved to be extremely
close to the negotiation problem’s Pareto fron-
tier. This result is noticeable because the nego-
tiation strategies are heuristics and we assume
incomplete information among negotiation
participants.10,11

Business process optimization
Given each task’s set of candidate services,

we model service selection as an optimization
problem that accounts for end-user prefer-
ences, global QoS process constraints, and the
runtime execution context. Furthermore, we
interleave service selection and execution: op-
timization occurs when the user instantiates
and executes the business process, and it iter-
ates during process execution. This reopti-
mization accounts for service performance
variability, invocation failures, and user con-
text changes.

Researchers have proposed several business
process optimization approaches. Some guar-
antee global constraints for only the critical
path—that is, the path that corresponds to the
highest execution time12—while others satisfy
global constraints only statistically.13 Further-
more, in such approaches, if the end user intro-
duced severe QoS constraints for the composed
service execution, such as a stringent execution
time limit, the system wouldn’t find a solution
and the service execution would fail. 

In PAWS, we implemented a new optimiza-
tion approach based on mixed-integer linear
programming models. This approach over-
comes the limits of previous solutions when
optimizing user-perceived QoS under severe
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QoS constraints. Our modeling approach is
based on

■ loops peeling, which considers the proba-
bility distribution of the number of loop
iterations; and

■ negotiation, to bargain QoS parameters
with service providers when feasible solu-
tions can’t be found, thus reducing process
invocation failures. 

The optimizer ranks each task’s set of can-
didate services (excluding those that violate
constraints). It thereby selects a service for
each task and ranks other services as substi-
tutes that can be invoked in case of a failure.

Experiments have shown that our joint opti-
mization and negotiation approach is effective,
particularly for large processes (up to 10,000
tasks) with severe QoS constraints. Our ap-
proach also reduces the re-optimization over-
head.14 In relation to existing approaches, our
problem formulation and algorithms improved
the end user’s QoS by up to 40 percent.

Mediation support
Our mediation engine aims to

■ support service invocation, dynamically
binding a generic candidate service with-
out requiring stub compilation at design
time, and

■ manage service substitution, which might in-
volve services that are described by different
signatures but have the same choreography.15

Whenever the BPEL engine invokes a task,
the mediator selects the first service from the
optimizer’s ranked candidate-services list. If the
candidate service’s interface differs from the in-
terface that the task definition requires, the me-
diator retrieves the proper mapping document
produced by the mediator configurator, and
then invokes the candidate service by sending
transformed messages. The mediator manages
candidate-service invocation through sessions.
By so doing, it avoids the need to repeatedly ac-
cess the ranked list if a service is executed more
than once in several tasks. The sessions also al-
low stateful service execution. During service
substitution, the mediator uses the mediator
configurator to transform messages formatted
according to the substituted service’s interface
to suit that of the substitute service. 

Self-healing
We conceive of self-healing behavior as a

combination of monitoring and repair capa-
bilities. Our goal is to detect failure during a
process execution and apply appropriate re-
covery actions to let the process successfully
terminate.

To that end, PAWS features several recov-
ery actions: 

■ retry a process task’s execution,
■ redo a process task’s execution using dif-

ferent input parameters,
■ substitute the current candidate service

with another candidate service, and 
■ compensate an executed task with a com-

pensation action defined within the service
management interface.

Our self-healing module uses the mediator
to perform recovery actions, either to retry/redo
process task execution or to substitute a faulty
candidate service. In case of service substitu-
tion, the mediator first checks for changes in
the user’s context since the last optimization. If
changes have occurred, it notifies the optimizer,
which then generates a new ranked candidate-
services list. If no changes have occurred, the
mediator retrieves the next candidate service
from the optimizer’s list and waits for the self-
healing module to restart the process. In both
cases, if a candidate service is no longer avail-
able, the mediator throws an exception. 

The self-healing module typically uses the
retry and the redo actions to recover from
temporary faults, while it uses the substitute
action when an orchestrated service instance
is considered permanently faulty. It uses com-
pensation actions to restore a previous process
state. Because the self-healing module can’t
perform recovery actions over running-
process instances, once a fault is detected, it
suspends the process and moves it into a re-
pair mode. Once all necessary recovery ac-
tions are complete, the instance resumes and
the self-healing module returns the process to
the running mode.

To perform the retry and the redo actions,
the self-healing module explicitly asks the me-
diation engine to execute an already-executed
process task; it performs substitution by ask-
ing the mediation engine to substitute a faulty
candidate service with a new one.

The WS-Diamond Project (http://wsdiamond.
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di.unito.it) has tested our self-healing and me-
diation modules, executing a repair plan using
a diagnoser and a plan generator.16

Scenarios and applicability criteria
We implemented the PAWS framework in

Java, using 

■ Axis handlers to realize the mediation en-
gine, 

■ an extended Java implementation of
UDDI (jUDDI) version to provide service
retrieval functionalities,

■ WordNet as a semantic network for term-
based similarity evaluations, 

■ ActiveBPEL as a BPEL engine (properly
extended with plug-ins for managing re-
pair actions), 

■ Web Services Distributed Management to
provide notification services to support
process management operations, and

■ CPLEX as an optimization engine. 

We implemented all PAWS modules as serv-
ices themselves. As a result, developers can use
them in different combinations to support flex-
ibility and adaptivity. (PAWS modules are avail-
able as open source code upon request.)

Researchers have tested the PAWS frame-
work in multiple contexts to build adaptive in-
formation systems based on Web services. The
Multichannel Adaptive Information Systems
(MAIS) project (www.mais-project.it) features
two proof-of-concept prototypes:

■ a virtual travel agency, which sells travel
packages to customers through multiple
system channels, and

■ a micro MAIS application that gathers in-
formation at archeological sites following
natural disasters using networked PDAs. 

WS-Diamond focuses on the development of
service-based self-healing systems. The refer-
ence scenario is a food company that cooper-
ates with several partners to sell food packages.
The E-Adaptive Services for Logistics project
(www.easylog.org) aims to support risk man-
agement in dangerous-goods transportation. Fi-
nally, the Distributed Information Systems for
Coordinated Service Oriented Interoperability
project (www.discorso.eng.it) seeks to develop
flexible processes to support small and
medium-sized enterprises.

In all these projects, the developed applica-
tions require a basic adaptivity layer. This layer
consists of URBE services and the mediation
engine, which selects services and adapts the
process execution. The mediation configurator
has been adopted in both the MAIS and WS-
Diamond projects, in which the developed can-
didate services have different functional inter-
faces. Projects with critical, global QoS
constraints have adopted the process optimizer,
while projects that can accept a range of possi-
ble QoS values, such as MAIS, Discorso, and
Easylog, use the SLA generator. Finally, WS-
Diamond introduced the self-healing module
to provide fault-tolerant environments.

These projects have shown that the PAWS
framework reduces design-time efforts to cre-
ate a flexible process, while the quasi-Pareto
optimality ensures a good trade-off between
the user and provider perspectives. In addi-
tion, our framework is based on open stan-
dards and can easily fit in existent architec-
tures. At this stage, PAWS’ main limitation is
performance; the modules introduce a notice-
able overhead at runtime. The results also
show that PAWS has limited applicability in
mobile environments because of its computing
and power requirements. 

W e’ve planned several enhancements
to the PAWS framework. Regard-
ing self-configuration, we aim to

extend the mediation capabilities to reduce the
design-time effort and automate mediation con-
figuration as much as possible, especially for
complex data structures. Moreover, we want to
strengthen adaptivity using new and more flex-
ible context-management mechanisms to ex-
press user and provider preferences on the QoS
of the composed process. In addition to our me-
diation-layer work, we plan to enhance adap-
tivity by extending negotiation functionalities
through more detailed user-provider contract
descriptions.

We’re also planning to extend PAWS’ self-op-
timizing aspect in two ways. First, we want to
extend self-optimization to account for fault
probability. Second, we intend to reduce opti-
mization overhead and thus facilitate optimiza-
tion of multiple process instances. To enhance
self-healing, we will introduce planning capa-
bilities to recover orchestrated processes using
atomic recovery actions both individually and
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in combination.16 Service descriptions also af-
fect autonomic systems’ self-configuring, self-
optimizing, self-healing, and self-protecting
properties; we therefore plan to extend Web
service specifications to enhance our service-
retrieval approach. 

See http://home.dei.polimi.it/pernici/ws-
research.html for further information on
PAWS. 
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