
Adaptive Service Composition
in Flexible Processes

Danilo Ardagna and Barbara Pernici

Abstract—In advanced service oriented systems, complex applications, described as abstract business processes, can be executed

by invoking a number of available Web services. End users can specify different preferences and constraints and service selection can

be performed dynamically identifying the best set of services available at runtime. In this paper, we introduce a new modeling approach

to the Web service selection problem that is particularly effective for large processes and when QoS constraints are severe. In the

model, the Web service selection problem is formalized as a mixed integer linear programming problem, loops peeling is adopted in the

optimization, and constraints posed by stateful Web services are considered. Moreover, negotiation techniques are exploited to identify

a feasible solution of the problem, if one does not exist. Experimental results compare our method with other solutions proposed in the

literature and demonstrate the effectiveness of our approach toward the identification of an optimal solution to the QoS constrained

Web service selection problem.

Index Terms—Web services, quality of service, service composition, integer programming.

Ç

1 INTRODUCTION

IN service oriented environments, complex applications
can be described as processes invoking services selected

at runtime. In this scenario, applications are defined as
flexible processes composed of abstract Web services. Web
services are selected from a set of functionally equivalent
services, that is, services which implement the same
functionality but differ for nonfunctional characteristics,
i.e., Quality of Service (QoS) parameters. The goal is to
select the best set of services available at runtime, taking
into consideration process constraints, but also end-user
preferences and the execution context.

The Web service selection problem has been studied for
business processes and e-science. Dynamic Web service
selection for composed Web services focused in particular
on context aware business processes. Context awareness
may be needed both when considering Web service
personalization, where a generic process is personalized
choosing services according to user preferences [10], and in
mobile composed services, to provide ubiquitous services
where selection and execution depend on the available
services and their QoS [29]. An interesting application area
of service selection optimization is e-science. Complex
processes, defined as workflows in this research context,
based on grid technology are being developed, reaching the
dimension of thousands of tasks in “in silico” experiments
[20]. Each task is performed selecting and invoking a
service.

Web service selection results in an optimization problem
that has been studied both in the research areas of service

oriented computing for business processes and of grid
environments. The literature has provided two generations of
solutions.

First generation solutions implemented local approaches
[26], [35], [3], which select Web services one at the time by
associating the running abstract activity to the best
candidate service which supports its execution. Local
approches can guarantee only local QoS constraints, i.e.,
candidate Web services are selected according to a desired
characteristic, e.g., the price of a single Web service invocation
is lower than a given threshold.

Second generation solutions proposed global approaches
[35], [7], [13], [21]. The set of services that satisfy the process
constraints and user preferences for the whole application
are identified before executing the process. In this way, QoS
constraints can predicate at a global level, i.e., constraints
posing restrictions over the whole composed service execution
can be introduced. In order to guarantee the fullfillment of
global QoS constraints, second generation optimization
techniques consider the worst case execution scenario for
the composed service. For cyclic processes, loops are
unfolded, i.e., unrolled according to their maximum
number of iterations [35], [7]. These approaches could be
very conservative and constitutes the main limitation of
second generation techniques.

Furtheremore, global approaches introduce an increased
complexity with respect to local solutions. The main issue
for the fulfillment of global constraints is Web service
performance variability. Indeed, the QoS of a Web Service
may evolve relatively frequently, either because of internal
changes or because of workload fluctuations [35], [12], [36].
If a business process has a long duration, the set of services
identified by the optimization may change their QoS
properties during the process execution or some services
can become unavailable or others may emerge. In order to
guarantee global constraints Web service selection and
execution are interleaved: Optimization is performed when

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 6, JUNE 2007 369

. The authors are with the Dipartimento di Elettronica e Informazione,
Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy.
E-mail: {ardagna, pernici}@elet.polimi.it.

Manuscript received 29 June 2006; revised 20 Aug. 2006; accepted 15 Mar.
2007; published online 3 Apr. 2007.
Recommended for acceptance by S. Donatelli.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0019-0106.
Digital Object Identifier no. 10.1109/TSE.2007.1011.

0098-5589/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

the business process is instantiated and its execution is
started, and is iterated during the process execution
performing reoptimization at runtime.

To reduce optimization/reoptimization complexity, a
number of solution have been proposed that guarantee
global constraints only for the critical path [35] (i.e., the path
which corresponds to the highest execution time), or reduce
loops to a single task [7], satisfying global contraints only
statistitically, by applying the reduction formula proposed
in [8].

Another drawback of second generation solutions is that,
if the end-user introduces severe QoS constraints for the
composed service execution, i.e., limited resources which
set the problem close to unfeasibility conditions (e.g.,
limited budget or stringent execution time limit), no
solutions can be identified and the composed service
execution fails [7].

While first and second generation approaches have been
applied, e.g., [6], [35], the need for further research toward
more advanced optimization techniques, in particular for
cyclic processes [20], [3], is advocated. In addition, none of
the previous approaches considers in the optimization the
case of processes composed by stateful Web services, where
more than one task must be performed by the same Web
service.

The goal of this paper is to set the basis to overcome the
limits of the previous approaches to Web services selection.
The aim is to discover the optimum mapping between each
abstract Web service of a flexible process and a Web service
that implements the abstract description, such that the
overall QoS perceived by the user is maximized under
severe QoS constraints. Severe constraints are very relevant
whenever processes have to be performed with stringently
limited resources. We introduce a new modeling approach
to the service selection problem, based on the following
main contributions: 1) loops peeling is adopted in the
optimization, which significantly improves the solutions
based on loops unfolding, 2) negotiation is exploited if a
feasible solution cannot be identified, to bargain QoS
parameters with service providers offering services, redu-
cing process invocation failures, and 3) a new class of global
constraints, which allows the execution of stateful Web
service components, is introduced. Furthermore, we extend
other literature approaches identifying the optimal solution
of the Web service selection problem instead of identifying
suboptima as in [7], [13], [21]. As will be discussed in the
remainder of the paper, our joint optimization and negotia-
tion approach is effective in particular for large processes,
when QoS constraints are severe, and it reduces the
reoptimization overhead.

Our approach is implemented within the MAIS (Multi-
channel Adaptive Information Systems) architecture, a
platform which supports the execution of flexible processes
in multichannel adaptive systems [29].

The remainder of the paper is organized as follows:
An overview of the MAIS architecture is reported in
Section 2. Section 3 introduces the composed service
model and specification and the set of quality dimensions
considered in the optimization problem. The composition
approach, including optimization and reoptimization

problem formulation and negotiation, is discussed in
Section 4. Experimental results in Section 5 demonstrate
the effectiveness of our solutions. Section 6 discusses other
literature approaches. Conclusions are drawn in Section 7.

2 THE MAIS ARCHITECTURE

The adaptive service composition presented in this paper is
based on the approach to flexible Web services introduced
in the MAIS project1 [29]. In the MAIS framework, Web
service invocation is based on the dynamic selection of
concrete services at runtime. The user or front-end applica-
tion which invokes a Web service may specify only its
abstract interface requirements and quality of service
constraints. As shown in Fig. 1, the flexible Web service
environment provides a Concrete Service Invoker service,
which invokes the concrete service corresponding to user’s
requirements, chosen from a service registry by a Con-
cretizator module. The MAIS service registry, an extension
of a UDDI registry, also provides, for each concrete service,
information on its abstract interface and quality of service
characteristics. The Concretizator selects the best concrete
services to be invoked for each task of the composed service
according to the optimization criteria discussed in the
remainder of this paper. Furthermore, a Broker service
allows negotiation of QoS parameters. The selection is
performed by using both contextual information and user
preferences, as specified in the service request. Context
information is provided through the MAIS Reflective
Architecture and includes both the user’s context of invoca-
tion, including the user profile, information about the
invocation channel, and the user’s device. Flexible services
allow the invocation of different services in different user’s
contexts, such as, for instance, a high resolution image
information service when bandwidth is not constrained or a
textual information service when a low bandwidth wireless
connection is available and interaction is on a small portable
device. We assume that the invocation context can vary
over time, so at different points in time different services
can be invoked due to modifications of the context.

In this paper, we focus on techniques to provide flexible
composed Web services, expressed as processes composed

370 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 6, JUNE 2007

1. Multichannel Adaptive Information Systems project Web site: http://
www.mais-project.it.

Fig. 1. MAIS architecture.

of abstract Web services. We assume that the structure of
such flexible composed Web services is fixed and local and
global QoS constraints can be specified.

3 COMPOSED SERVICE MODEL

This section introduces the specification, execution and
QoS model of a MAIS composed Web service. First, in
Section 3.1, we discuss the specification of a composed
Web service. Then, in Section 3.2, the execution model is
presented. The set of quality dimensions considered in
the optimization problem formulation are presented in
Section 3.3.

3.1 Process Specification

A Web service is modeled as a software component that
implements a set of operations. A composed service is
specified at an abstract level as a high-level business
process. We assume that a composed service is character-
ized by a single initial task and a single end task and that
task composition follows a block structure so that, in
particular, only structured loops can be specified, i.e., loops
with only one entry and exit point. In the remainder of the
paper, we represent composed services by UML activity
diagrams, where activities represent tasks to be executed by
Web services. The operational language we use for process
implementation is BPEL [18].

In the following, we refer to component abstract Web
services operations to be executed in the process with the
term task (ti), while Web services selected to be executed are
called concrete Web services (wsj). The notation adopted in
the paper is summarized in the Appendix. To support
adaptive concretization, a set of semantic annotations are
associated to the process specification to specify either
intrinsic characteristics of the process, or requirements by
the user of the composed service:

. Probability of execution of conditional branches. For

every switch s, the probability of execution fps1; ps2;
. . . ; psNBsg of conditional branches is specified

(
PNBs

h¼1 p
s
h ¼ 1, NBs indicates the number of disjoint

branch conditions of s).
. Loop constraints. The expected maximum number of

iteration NIl is defined for every loop l; the

probability distribution fpl0; pl1; . . . ; pl
NIl
g of the loop

number of iterations is specified (
PNIl

h¼0 p
l
h ¼ 1, pl0

indicates the probability that the loop is not

executed, pl1 indicates the probability that the loop

is executed once, and so on).
. Global and local constraints on quality dimensions.

Global constraints specify requirements at the
process level, while local constraints define the
quality of Web services to be invoked for a given
task in the process. We assume that quality
constraints may be defined on a set of N predefined
quality dimensions qn.

. Web service dependency constraints. Impose that a
given set of tasks in the process are executed by the
same Web service. This type of constraint allows
considering both stateless and stateful Web services
in composed services.

The probability of execution of conditional branches and
the distribution of loops number of iterations can be

evaluated from past executions by inspecting system logs
or can be specified by the composed service designer [7],
[35]. We assume that for every loop l, an upper bound NIl

for the loop number of iterations is determined. Otherwise,
if an upper bound does not exist, the process cannot be
optimized since infinite resources might be needed for its
execution and global constraints cannot be guaranteed [35].
Local constraints can be specified by the composed service
designer. Vice versa, the user can specify only global
constraints since we assume the user has no knowledge of
the structure of the composed process. For the same reason,
Web service dependency constraints are specified by the
composed service designer. User preferences may be either
specified explicitly by the user requesting the service, or can
be implicit in the user profile and, therefore, the same for all
service requests, or not specified at all. In the last case, all
quality dimensions are considered at the same level of
preference giving each dimension a weight 1=N .

3.2 Process Execution

When a composed service is invoked, the BPEL specification
is analyzed and the set of candidate Web services for
executing its component tasks is retrieved from the MAIS
registry. Services are selected from the registry by consider-
ing the signature of the operation to be performed and
according to the specified local quality constraints for the
tasks in the process. In the following, Web services will be
indexed by j and we will indicate with WSi the set of
indexes of Web services wsj candidate for the execution of
task ti, with OPj the set of indexes of operations
implemented by Web service wsj, and with wsj;o the
invocation of operation o 2 OPj of Web service wsj. Let I
be the number of tasks of the composed service specification
and J the number of candidate Web services retrieved from
the MAIS registry.

The goal of the concretization process illustrated in
Section 4.2 is to determine the optimum execution plan
EPL� of the composed process, i.e., the set of ordered
couples fðti; wsj;oÞg, indicating that task ti is executed by
invoking wsj;o for all tasks in the process, such that the
overall QoS perceived by the user for the application
instance execution is maximized, while (local) global and
dependency constraints are guaranteed.

During execution, quality constraints may be violated
due to a number of reasons: First, quality values considered
in the optimization are the ones advertised by Service
Providers and are subject to variability (due, for instance, to
performance changes as a consequence of workload
fluctuations). Furthermore, global constraints could be
violated as a consequence of a failure in an operation
invocation. At runtime, process execution and optimization
are interleaved. Criteria for executing the reoptimization
step are defined and discussed in Section 4.4.

3.3 The Quality Model

Several quality criteria can be associated with Web services
execution. The MAIS service registry includes about
150 relevant quality dimensions. For each dimension, a
definition, a metric, and a measuring system are proposed.
A comprehensive discussion of quality dimensions can be
found in [29, Appendix A]. In the present paper, we assume
that quality values are real numbers that vary in a bounded
range with a minimum and a maximum value. Note that, if
the same operation is accessible from the same Web service
and the same provider, but with different quality char-
acteristics, then multiple copies of the same operation will

ARDAGNA AND PERNICI: ADAPTIVE SERVICE COMPOSITION IN FLEXIBLE PROCESSES 371

be stored in the registry, each copy being characterized by
its quality profile.

In the following, quality dimensions will be analyzed
according to their aggregation pattern, the negotiability
property, and will be classified as positive and negative
qualities. The quality aggregation pattern defines how the
value of a given quality dimension for a composed service
can be determined starting from the value of quality of
component services. The following typologies of quality
aggregation functions are considered: weighted sum,
product, min, or max of the corresponding quality dimen-
sion of component services. Quality dimensions are defined
as negotiable when they can be contracted between the
Broker and the provider. The Broker can express prefer-
ences or define constraints on these dimensions, which, in
the service selection phase, are written in a service level
agreement contract. Negotiable quality dimensions are used
in the service selection phase in order to identify a feasible
solution of the concretization problem if it does not exist. A
quality dimension can be also classified as positive and
negative criteria. A quality attribute is positive (negative) if
the higher the value the higher (the lower) the quality. In
the process optimization, in order to guarantee constraints,
the minimum (maximum) values advertised by Service
Providers are considered for positive (negative) quality
dimensions.

In this paper, examples are based on a subset of quality
dimensions, which have been the basis for QoS considera-
tion also in other approaches [11], [35], [27] and which are
representative for every dimension of analysis discussed
above. The approach proposed for the classical dimensions
of the literature could be easily generalized to other
dimensions of the MAIS framework. The following subset
of quality dimensions is considered:

. Execution time ej;0. The expected delay between the
time instant when a request is sent (wsj;o is invoked)
and the time when the result is obtained. Execution
time is measured in seconds.

. Availability aj;0. The probability that the service
operation wsj;o is accessible. Availability is a number
in the range [0, 1].

. Price pj;0. The fee that a service requester has to pay
to the Service Provider for the service invocation
wsj;o. Price is measured in dollars ($).

. Reputation rj;0. A measure of the service invocation
wsj;o trustworthiness. It is defined as the ratio
between the number of service invocations which
comply the negotiated QoS over the total number of
service invocations. Reputation is a number in the
range [0, 1].

. Data quality dj;0. The ability of a data collection to
meet user requirements , defined as the proximity of
a value v returned by wsj;o to a value v0 considered as
correct. The measure of data quality is considered
here as a real number in the range [0, 1], where 1
represents the most desirable score.

The selected quality dimensions represent all types of
aggregation patterns: The execution time of a composed
service is given by the sum of execution time of invoked
services. Availability is given by the product of availabilities
provided by component services. The reputation is the
average reputation of selected services. As in [29], the
aggregate value of data quality is given by the minimum
value of data quality of invoked services. With respect to
negotiability, we assume that price, execution time, and

data quality are negotiable, while availability and reputa-
tion are not. Finally, availability, reputation, and data
quality are examples of positive criteria, price and execution
time are negative criteria.

Fig. 2a shows an example of a composed service
specification, with corresponding semantic annotations
and constraints. Concrete services information are specified
as shown in Fig. 2b.

4 INTERLEAVING WEB SERVICE SELECTION AND

EXECUTION

In our approach, Web service selection and optimization
and Web service execution are interleaved. Optimization is
computed when the composed service execution starts; re-
optimization is performed periodically at runtime with the
time interval varying according to environment changes
and user behavior. Furthermore, negotiation gives another
degree of freedom for the solution of optimization and
reoptimization problems. If a feasible solution cannot be
identified, QoS parameters are bargained with Service
Providers, which implement negotiation protocols.

Section 4.1 introduces some basic concepts that will be
used in the remainder of the paper. The mathematical
formulation of the optimization problem is provided in
Section 4.2. The negotiation approach is presented in
Section 4.3. Reoptimization is discussed in Section 4.4.

4.1 Process Graph Transformations and
Preliminary Definitions

If the BPEL specification includes some loops (while
construct), then they are peeled [4] prior to start the
optimization process. Loop Peeling is a form of loop
unrolling in which loop iterations are represented as a
sequence of branches (see Fig. 3a). Each branch condition
evaluates if the loop l has to continue with the next iteration
(according to the probability distribution fplhg) or it has to
exit. As discussed in Section 3.1 and in [35], if the process
includes a single entry and exit task, then, after loops
peeling, a composed Web service can be modeled as a
Directed Acyclic Graph (DAG).

We adopt the following definitions that we introduced
in [3]:

Execution Path. A set of tasks ft1; t2; . . . ; tIg such that t1 is

the initial task, tI is the final task, and no ti1 , ti2 belong to

alternative branches. Execution paths will be denoted by

epk. As shown in the example reported in Fig. 3b, an

execution path can include parallel sequences. A probability

of execution freqk is associated with every execution path

and can be evaluated as the product of the probability of

execution of the branch conditions included in the execu-

tion path. In the example above, ep1, where the loop l is not

executed, has probability freq1 ¼ pl0; ep2, where l is

executed once, has probability freq2 ¼ 1� pl0
� �

� pl1
1�pl0
¼ pl1;

ep3, where l is executed twice, has probability freq3 ¼
1� pl0
� �

� 1� pl1
1�pl

0

� �
� pl2

1�pl
0
�pl

1

¼ pl2 and so on. Note that the

set of execution paths of an activity diagram identifies all

the possible execution scenarios of the composed service.

The optimization problem will consider all of the possible

372 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 6, JUNE 2007

ARDAGNA AND PERNICI: ADAPTIVE SERVICE COMPOSITION IN FLEXIBLE PROCESSES 373

Fig. 2. Process specification and annotations.

Fig. 3. Loop peeling and process execution paths.

execution scenarios according to their probability of

execution. In the following, Ak will denote the set of

indexes of tasks included in the execution path epk.
Subpath. A subpath of an execution path epk is a sequence

of tasks ½t1; t2; ; tI �, ti 2 epk 8i, from the initial to the end task,

that does not contain any parallel sequence. Subpaths will

be indexed by m and denoted by spkm. In our example, ep1

has two subpaths sp1
1 ¼ ½t1; t2; t3; t8� and sp1

2 ¼ ½t1; t4; t8�.
For a generic execution plan EPL, the quality dimen-

sions can be formally evaluated under the hypothesis that
the composed service is executed along an execution path
epk using the aggregation patterns discussed in Section 3.3,
as illustrated in Table 1.

4.2 Optimization Problem Formulation

In this section, we formulate the Web Service Concretization
(WSC) problem as a mixed integer linear programming
(MILP) problem. The decision variables of our model are
the following:

zi;j :¼ equals 1 if the task ti is executed by Web service wsj;

j 2 WSi; 0 otherwise:

yi;j;o :¼ equals 1 if the task ti is executed by wsj;o; i:e:;

by invoking operation o 2 OPj of Web Service wsj

with j 2 WSi; 0 otherwise:

Note that the variable Y ¼ ½yi;j;o� is the characteristic vector

of a generic execution plan EPL; in the following, execution

plans will be represented by their characteristic vectors.
The goal of the WSC problem is to maximize the

aggregated value of QoS, considering all of the possible
execution scenarios, i.e., all of the execution paths arising

from the composed service specification, and their prob-
ability of execution freqk.

The aggregated value of QoS is obtained by applying the
Simple Additive Weighting (SAW) technique [22], one of
the most widely used techniques to obtain a score from a list
of dimensions. Let us denote with scorekðYÞ the aggregated
value of QoS of the execution plan Y along the execution
path epk. Since the quality dimensions qn have different
units of measure, the SAW method first normalizes the raw
values for each quality dimension. Each quality dimension
qn is also associated with a weight wn in the process
execution request (see Section 3.1). Let us denote with qkn the
aggregated value of the quality dimension qn evaluated
along the execution path epk. The score of an execution plan
(i.e., its overall value of QoS) is calculated as a weighted
sum of the normalized values of quality dimension.

In the normalization phase, positive and negative
criteria are scaled in different ways, as defined in (1)
and (2), respectively:

vknðYÞ ¼
qknðYÞ�min qkn
max qkn�min qkn

if max qkn 6¼ min qkn
1 if max qkn ¼ min qkn;

(
ð1Þ

vknðYÞ ¼
max qkn�qknðYÞ
max qkn�min qkn

if max qk
n 6¼ min qk

n

1 if max qk
n ¼ min qk

n;

(
ð2Þ

where min qkn ¼ min
8Y

qknðYÞ and max qkn ¼ max
8Y

qknðYÞ indicates

the minimum and maximum values, respectively, for the

nth quality dimension along the execution path epk. Note

that, if max qkn ¼ min qkn, then, along the execution path epk,

every execution plan is characterized by the same value for

the quality dimension n, the quality dimension is not a

differential characteristic for the execution path epk, and

vknðYÞ is set to 1. As discussed in [35], the assessment of the

maximum and minimum value of each quality dimensions

can be done without considering all possible execution

plans, since, for example, the execution plan of maximum

price can be obtained by assigning to each task the

candidate service of maximum price. The normalization

phase complexity is linear in the number of tasks of the

composed process.
The overall score along the execution path epk associated

with an execution plan Y is evaluated as

scorekðYÞ ¼
XN
n¼1

wnv
k
nðYÞ: ð3Þ

Let B the set of indexes of tasks included in any loop of
the composed service specification. Let us indicate with K
the number of different execution paths arising from the
composed service specification. Let E be the execution time
global constraint for the composed service execution; while
A, R, and DQ indicate the availability, the reputation, and
the data quality global constraints, respectively. Let B be the
price global constraint, which will be considered as the
budget for the composed service execution. In order to
consider the optimization overhead, let OptTime be an
estimate of the time required to optimize the composed

374 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 6, JUNE 2007

TABLE 1
QoS Aggregation Function

service and let E0 ¼ E �OptTime. The optimum execution
plan EPL� can be determined by solving the following
problem:

P1. max
PK

k¼1 freqk � scorekðYÞ:P
j 2 WSi

P
o2OPj

yi;j;o ¼ 1; 8i ð4Þ

yi;j;o � zi;j; 8i; 8j 2 WSi;
8o 2 OPj ð5ÞP

j 2 WSi
zi;j ¼ 1; 8i ð6Þ

P
j 2 WSi

P
o 2 OPj

ej;oyi;j;o ¼ exeTi; 8i ð7Þ

xi2 � ðexeTi1 þ xi1Þ � 0; 8ti1 ! ti2 ð8ÞP
i 2 splm

exeTi � exeTimek; 8spkm 2 epk ð9Þ

availk ¼
Q

i 2 Ak

Q
j 2 WSi

Q
o 2 OPj

a
yi;j;o
j;o 8k ð10Þ

pricek ¼
P
i 2 Ak

P
j 2 WSi

P
o 2 OPj

pj;oyi;j;o 8k ð11Þ

repk ¼ 1
jAkj

P
i 2 Ak

P
j 2 WSi

P
o 2 OPj

rj;oyi;j;o 8k ð12ÞP
j 2 WSi

P
o 2 OPj

dj;oyi;j;o � dqk; 8k; 8i 2 Ak ð13ÞP
j 2 WSi

P
o 2 OPj

rj;oyi;j;o � R; 8i 2 B ð14Þ

exeTimek � E0; 8k ð15Þ
availk � A; 8k ð16Þ
pricek � B; 8k ð17Þ
repk � R; 8k ð18Þ
dqk � DQ; 8k ð19Þ

yi;j;o; zi;j 2 f0; 1g; 8i; 8j 2 WSi;
8o 2 OPj

exeTi; xi 2 IRþ 8i;
exeTimek; availk; pricek; repk; dqk 2 IRþ; 8k:

Constraints family (4) guarantees that every task is
associated to exactly one Web service operation invocation
(i.e., for every i, only one variable yi;j;o is set to 1). In the
same way, (6) entails that every task is associated to exactly
one Web service. Constraint family (5) relates yi;j;o and zi;j
variables; indeed if the task ti is executed by invoking
operation wsi;j, i.e., yi;j;o ¼ 1, then zi;j is raised to one.
Constraints family (7) expresses the duration of every task
in term of the duration of the selected service (note that for
(4), only one operation invocation is selected and, hence, the
duration of a task is given by the selected Web service
operation execution time). Constraints family (8) represents
precedence constraints for subsequent tasks in the activity
diagram. The variable xi indicates task ti’s starting time
instant. Let us denote with ti1 ! ti2 , i1; i2 2 I, that task ti2 is
a direct successor of task ti1 . Constraints family (8) entails
that the execution of task ti2 can start only after task ti1
termination. Constraints family (9) evaluates the duration of
every execution path as the maximum execution time over
the set of subpaths of the execution path (see Table 1).
Indeed, the maximum value vmax of a set V is defined as the
value in the set (vmax 2 V) such that v � vmax, 8v 2 V , and
the first term of (9) represents the duration of the
subpath spkm. Constraints families (10) through (13) express
execution path epk availability, price, reputation, and data
quality of an execution path according to the rules of
Table 1. Constraints families (15) through (19) are the global

constraints to be fulfilled. Finally, (14) guarantees the
fulfillment of the reputation constraint for composed
services which include some loops. The rationale can be
explained by considering the example reported in Fig. 2.
Let us assume that the expected maximum number of
iteration of the loop is an even number and the reputation
of service invocations outside the loop is equal to R.
Without (14), the task t could be executed by alternatively
invoking wsj1;o1

with reputation r1 ¼ Rþ� and wsj2;o2
with

reputation r2 ¼ R��, with � > 0. If, at runtime, the
number of iteration of the loop is an odd number, the
reputation constraint is violated. This drawback can be
avoided by introducing in a conservative way (14), for tasks
in a loop of the composed service specification.

Problem P1 can include Web service selection con-
straints and can also formally encompass local constraints.
Web service selection constraints can be formulated as
follows. If two tasks ti1 and ti2 , i1; i2 2 I, must be executed
by the same Web service, the following constraint families
are introduced:

zi1;j ¼ zi2;j; 8j 2 WSi1 \WSi2 ;
zi1;j ¼ 0; 8j 2 WSi1 nWSi2 ;
zi2;j ¼ 0; 8j 2 WSi2 nWSi1 :

Local constraints can predicate on properties of a single
task and can be formally included in the model as follows.
For example, if the designer requires that the price for
task ti1 has to be less or equal than a given value p, then the
constraint X

j 2 WSi

X
o 2 OPj

pj;oyi1;j;o � p

is introduced. Local constraints are enforced when Web
services are selected from the MAIS service registry (see
Section 3.2). Indeed, if a Web service does not satisfy local
constraints, then it can be filtered from the list of candidate
Web services, reducing the number of variables of the
model.

The Problem P1 has integer variables and a nonlinear
objective function and constraints (the availability term in the
objective function is nonlinear as (10) and (16)). Availability
constraints families can be linearized by applying the
logarithm function. Equation (16) then becomesX

i 2 Ak

X
j 2 WSi

X
o 2 OPj

lnðaj;oÞyi;j;o � lnðAÞ 8k: ð20Þ

The objective function is linearized in the same way.
Every term

availkðYÞ �min availk
max availk �min availk

is replaced by

lnðavailkðYÞÞ �min lnðavailkÞ
max lnðavailkÞ �min lnðavailkÞ

¼P
i 2 Ak

P
j 2 WSi

P
o 2 OPj

lnðaj;oÞyi;j;o �min lnðavailkÞ

max lnðavailkÞ �min lnðavailkÞ
:

ARDAGNA AND PERNICI: ADAPTIVE SERVICE COMPOSITION IN FLEXIBLE PROCESSES 375

In this way, the WSC problem can be reduced to an MILP
model.

In [3], we have shown that a WSC problem for a process
with a block structure is equivalent to a Multiple choice
Multiple dimension Knapsack Problem (MMKP), which is
NP-hard. Every instance of the MMKP can be formulated as
a WSC; hence, the WSC problem is NP-hard.

The optimum execution plan EPL� assigns the optimum
candidate service operation invocation wsj;o to each task ti.
After the evaluation of EPL�, for every task ti, the set of
candidate services that guarantee the fulfillment of WSC
constraints are ranked according to the value provided to
the objective function of Problem P1. The goal is to obtain a
ranking of services which can be invoked as substitute
services in case of a failure. In this way, the delay associated
with the invocation of a failed service invocation is
minimized, since the substitute service is invoked without
waiting for the result of the reoptimization.

4.3 Negotiating QoS Parameters

If a feasible solution for the WSC problem does not exist,
negotiation is performed in order to determine new quality
values for Web service invocations. For example, if the data
quality global constraints cannot be fulfilled, the Broker can
ask service providers to improve the data quality of service
invocations (e.g., by performing data cleaning procedures),
which will be provided at a higher price in turn. If the
Broker and a provider find an agreement on the new price
and quality parameters for a given operation invocation, a
new candidate operation invocation is considered in the
optimization/reoptimization process, i.e., successful nego-
tiations enlarge the solution domain of the optimization
problem.

If the WSC problem is infeasible, first we iteratively
solve a relaxation of the problem in order to identify the
largest set of global constraints specified by the user
which could be fulfilled. Subsequently, the quality
parameters of the operation invocations which lead to
constraints violation are negotiated. The next section
introduces negotiation concepts. Our negotiation algo-
rithm is presented in Section 4.3.2.

4.3.1 Negotiation in the SOA

Our negotiation approach is based on the service oriented
negotiation algorithms described in [19] and [15]. The
negotiation process is multiparty (each provider included in
a partially feasible plan is involved), multiattribute (at least
two attributes, the price and a quality dimension, are
negotiated), and single encounter (each Broker-provider
negotiation can be considered as an independent bilateral
bargaining problem). Thus, the whole negotiation process is
implemented as a set of parallel bilateral bargaining
sessions between the negotiation Broker and each provider.

In the negotiation process, the Broker band each provider p

have the role of agents. Each agent x (x 2 fb; pg) delimits

each quality attribute qn;j;o of a service invocation wsj;o in

a range ½qxn;j;o;min; qxn;j;o;MAX�. Let us denote with N � ½1; N �
the set of indexes of the negotiated quality attributes.

Each agent has a utility function Ux
n : ½qxn;j;o;min; qxn;j;o;MAX� !

½0; 1� that gives the evaluation the agent x assigns to a

quality attribute qn;j;o. As in the SAW technique, the

relative importance that an agent assigns to each quality

attribute under negotiation is modeled as a weight uxn,

(
P

n2N u
x
n ¼ 1). The overall evaluation for the contract qj;o ¼

fqn;j;ojn 2 Ng of a service invocation wsj;o is given by

Uxðqj;oÞ ¼
P

n 2 N u
x
nU

x
nðqn;j;oÞ.

The negotiation process between two agents consists of
an alternate succession of offers and counteroffers qj;oðtÞ.
This continues until an offer is accepted by the other side
or one of the agents terminates (e.g., because a time
deadline expires). An agent x accepts an offer qj;oðtÞ if the
value Uxðqj;oðtÞÞ is greater than the value of the counteroffer
Uxðqj;oðtþ 1ÞÞ the agent is ready to send in the next
iteration. In order to prepare a counter offer, an agent uses
a set of tactics to generate new values for each negotiated
quality attribute. We have implemented time dependent
tactics and the offer for the quality dimension qn;j;oðrÞ at the
iteration r is evaluated as

qn;j;oðrÞ ¼ qxn;j;o;min þ �xnðrÞ � ðqxn;j;o;MAX � qxn;j;o;minÞ: ð21Þ

Here and in the following, we limit the presentation to
negative quality criteria since, in [3], we have shown that
every positive quality metric can be replaced by a
corresponding negative one and vice versa. The function
0 � �xnðrÞ � 1 depends on the iteration r and is such that the
value �xnð0Þ equals the initial bid qxn;j;oð0Þ of the agent x and
�xnðrxmaxÞ ¼ 1, where rxmax is the deadline for the agent, i.e.,
the maximum number of iterations in the negotiation. We
adopt polynomial time functions since they concede faster
in the beginning of the negotiation and this increases the
probability of success of the negotiation process, i.e., we set

�xnðrÞ ¼
minðr; rxmaxÞ

rxmax

� � 1
�xn

and �xn 2 R. The �xn parameter determines the concavity of

the �xnðrÞ function and the behavior of the tactic. The tactic

is conceder if �xn > 1 and is boulware if �xn < 1, while �xnðrÞ
is linear for �xn ¼ 1 (see [19] for more details). For each

quality attribute, we assume linear utility functions, i.e.,

Ux
nðqnÞ ¼

qx
n;j;o;MAX

�qxn
qx
n;j;o;MAX

�qxn;j;o;min
. In the MAIS framework, the nego-

tiation is automatic and is executed by the Broker according

to service providers negotiation parameters that are stored

in the MAIS registry when concrete services are deployed.

Negotiation parameters are specified by an extension of

WS-Policy (see [15] for further details). The negotiation

process complexity is proportional to the number of

negotiated quality attributes and to the agents deadlines,

i.e., the negotiation complexity is OðjN j � rxmaxÞ.

4.3.2 Identifying a Feasible Solution

If a feasible solution for an optimization/reoptimization
problem does not exist, the procedure illustrated in
Algorithm 1 is executed.

Algorithm 1: Negotiation Procedure.

1 iteration 0

2 STOP false;

376 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 6, JUNE 2007

3 while iteration < iterationMAX and not(STOP) do

4 Identify an execution plan EPL which satisfies the

maximum number of constraints;

5 Start a negotiation process with every SP providing

services leading to global constraints violation;

6 if negotiation is successful with at least one provider

then

7 if P1 is feasible then

8 STOP true

9 end

10 iteration iterationþ 1;

11 else

12 STOP true;

13 end

14 end

15 if P1 is feasible then

16 return SUCCESS;
17 else

18 return Concretization Process Failure;

19 end

First, an execution plan EPL that satisfies the max-
imum number of constraints is identified (Step 4). In
Step 5, a negotiation process is performed with every SP
providing services that contribute to the violation of at
least one global constraint. If the negotiation is successful
with at least one SP (Step 6), then the procedure is
repeated until a feasible solution is found or a maximum
number of iterations is reached. Otherwise (Step 18), the
overall concretization process fails, the composed service
execution terminates, and an error notifying that the
specified set of constraints are too restrictive and cannot
be fulfilled is sent to the user.

Identifying the maximum number of constraints that can
be fulfilled in the WSC is a NP-hard problem, even if the
linear programming relaxation of the WSC is considered
(the problem in the Operation Research literature is known
as the max feasible linear subsystem [2]). Anyway, we can
expect that, in a real environment, the number of global
constraints is limited and the maximum number of
constraints that can be fulfilled can be determined by
an exhaustive search. In the following, we focus only on
global constraints, but the approach can be easily
extended to include local ones. The identification of a
feasible solution can introduce a significant overhead that
depends on the number of violated constraints, on the
parameter iterationMAX, and on negotiation deadlines rxmax.
Algorithm 1 overhead (NegTime) can be determined
experimentally and, in order to prevent execution time
global constraints violations, the execution time global
constraint value E00 ¼ E0 �NegTime is adopted in (15).

Let us denote with qn the global constraint value
specified for the nth quality dimension, with N 0 the set of
quality dimensions included as global constraints by the
user, let N 1 � N 0 be the set of nonnegotiable quality
dimensions, and let us assume that a budget constraint is
specified in N 0 (otherwise, the negotiation process and the
problem solution are trivial). First, the following relaxation
of P1, which includes only constraints for nonnegotiable
qualities, is considered:

P2.

max
XK

k¼1
freqk � scorekðYÞ

qnðYÞ � qn 8n 2 N 1:

If P2 is infeasible, then negotiation cannot be effective to
find a solution and an error message is sent to the user. Vice

versa, if a feasible solution of P2 exists, then all of the

possible combinations of constraints N 0 are considered

incrementally in order to identify the largest set of

constraints N feas such that N feas includes the price

constraint and can be guaranteed. Let us indicate with

Yfeas the optimum solution of P1 limited to the set of
constraints N feas and with EB ¼ B� priceðYfeasÞ ¼ B�P

k freqk � pricekðYfeasÞ the extra-budget. In the negotiation

process,

1. the extra-budget EB is split among the violated

constraints N 0 n N feas according to their percentage

of violation PVn ¼ qnðYfeasÞ�qn
qn

,
2. the extra-budget

EBn ¼
PVnP

n2N 0nN feas
PVn

assigned to a constraint n 2 N 0 n N feas in Step 1 will

be evenly shared among the set of service providers

SPn involved in the violation, and
3. the Broker will ask the service providers for an

improvement proportional to the QoS percentage
violation.

Table 2 reports the negotiation ranges adopted by the

Broker and the service providers. For service providers, the
upper bound of each quality dimension range is related to

the providers’ ability to improve the negotiated quality

dimension, while qn;j;o indicates the quality values adver-

tised for services selected in Yfeas, i.e., the services which

minimize the number of constraints violations. As in other

approaches proposed in the literature [3], [36], we assume

that the price of a service invocation depends linearly on

execution time and reputation, quadratically on data quality
and exponentially on availability. Hence, in the negotiation

process, the price of offers is evaluated as

pj;o ¼ �iej;orj;od2
j;oe

�iaj;o ; ð22Þ

where �i and �i are constants that depend on the particular

abstract service operation (i.e., the higher is the complexity

of the operation that a task implements and the higher is the

price).

ARDAGNA AND PERNICI: ADAPTIVE SERVICE COMPOSITION IN FLEXIBLE PROCESSES 377

TABLE 2
Negotiation Ranges

4.4 Runtime Reoptimization

At runtime, the optimum plan identified by initially solving
the WSC problem can be updated in order to take into
account the variability of Web services and of user behavior.
A reoptimization step should be performed if a service
invocation fails but, from a theoretical point of view, could
be performed after the execution of each task since new
Web services with better characteristics could become
available. On the other hand, reoptimization introduces a
system overhead, since it is time consuming and the MAIS
service registry has to be accessed in order to retrieve the set
of candidate Web services and their corresponding quality
values.

As in other approaches [7], [24], the basic idea is to
monitor the QoS of service invocations and reestimate the
quality values expected for the composed service. When-
ever the new estimate indicates a large deviation from the
initial value obtained by EPL�, services that remain to be
executed must be replanned in order to avoid SLA
violations.

Reoptimization is triggered in the following cases:

. The current QoS value qn differs from the corre-
sponding prediction ~qn by more than a given
threshold �n, i.e., jqn � ~qnj > �n. Note that, if the
quality attribute is positive (negative), then, if
qn 	 ~qn, the execution plan could be suboptimal
(could lead to a global constraint violation) while,
vice versa, if qn
 ~qn, the execution plan could lead
to a global constraint violation (could be subopti-
mal). In this way, the reoptimization faces the
problem of variability of Web services performance.

. If a Web service invocation fails, a substitute service
is invoked as discussed in Section 4.2. The invocation
of a substitute service is suboptimal with respect to
the previous execution plan. The reoptimization is
triggered if jqn � ~qnj > �n.

. Different sets of weights fwng can be specified for a
user in different contexts (see Fig. 2a). Reoptimiza-
tion is triggered by a user’s context switch.

. Optimization is performed statistically, i.e., by
evaluating branch conditions and loops number of
iteration probability distribution. Reoptimization is

triggered after the evaluation of branch conditions
(excluding branches introduced by loops peeling)
since the knowledge of the branch to be executed
could lead to a better execution plan. Reoptimization
should be performed also when a loop execution
ends. If the number of iterations is overestimated,
then the execution plan is suboptimal. Vice versa, if
the maximum number of iterations is underesti-
mated, global constraints could be violated.

. Reoptimization is also periodically performed with
a time period Tp that varies in a time window
½Tmin; Tmax�. In this way, the execution plan can be
updated in highly variable execution contexts. In
order to adapt the time period to environment
changes, Tp is updated as follows, similarly to the
strategy adopted in the TCP protocol [14]. If, after a
periodic reoptimization, the new execution plan is
equal to the previous one, we argue the environment
has not changed significantly in the last period, and
Tp is increased and is set to minf2 � Tp; Tmaxg. Vice
versa, if the two execution plans are different, Tp is
reduced and is set to maxfTp=2; Tming in order to
detect environment changes.

In the reoptimization problem, the quality parameters for
tasks already executed are set according to the values
monitored for Web service operation invocations provided
by the MAIS reflective architecture.

4.5 Concretizator Module Implementation

The adaptive concretizator module has been implemented
in Java and is deployed in the MAIS framework as a Web
service (Fig. 4). The input are the BPEL abstract specifica-
tion, constraints, and annotations. The optimization is
performed by the following steps:

1. When a composed service is deployed in the MAIS
framework, it is translated into a DAG internal
representation. Loops are peeled, execution paths
are extracted from the DAG, and a depth-first
algorithm identifies the set of subpaths of every
execution path.

2. The set of candidate Web services (with their quality
values) is retrieved from the MAIS service registry.

378 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 6, JUNE 2007

Fig. 4. Concretizator module architecture.

The MILP model formulation is computed, and the
optimization problem is solved by running CPLEX, a
state of the art integer linear programming solver
based on the branch and cut technique [33]. Given
enough time (see the discussion in Section 5), the
solver identifies the optimum solution of the WSC
problem, i.e., for a given composed Web Service, the
optimum execution plan is identified.

3. Finally, the Ranking procedure evaluates the Web
services ranking as discussed in Section 4.2.

The number of execution paths arising from the BPEL
specification depends on the process structure and is given
by the product of branch conditions and loops number of
iterations, i.e., K ¼

Q
s NB

s
Q

l NI
l. The depth-first algo-

rithm is executed for every execution path and has a
complexity proportional to the number of nodes and edges
of the DAG representation of the execution path which are
OðIÞ. Hence, the overall complexity of Step 1 is
OðI �

Q
s NB

s �
Q

l NI
lÞ.

The complexity of Step 2 is given by the solution of the
MILP model, which, in the worst case, is exponential in the
number of binary decision variables which are

OðI �max
i
jWSij �max

j
jOPjjÞ:

Anyway, as will be discussed in the next section, CPLEX is
very efficient in the generation of cutting planes [33] and the
problem solution can be computed quickly for realistic
problems of reasonable size. Finally the complexity of the
Ranking procedure is OðI �maxi jWSij �maxj jOPjjÞ.

Reoptimization is implemented by the Process Tuner
module, which obtains as input the state of the running
process and the composed Web service execution trace by
the Process Orchestrator. The Process Tuner module modifies
the internal DAG representation associated with the
composed process instance and generates additional con-
straints, which assign concrete Web services to tasks
already executed; the solution of the reoptimization
problem is obtained by invoking CPLEX. In the worst case,
optimization and reoptimization have the same complexity.
In general, the reoptimization process is faster than the
optimization, since the DAG is simplified by using the
result computed in Step 1, additional constraints can be
added, and the number of binary decision variables can be
reduced [3], [35], [7]. Finally, the complexity of Algorithm 1
is OðiterationMAX � 2jN

0jÞ.

5 EXPERIMENTAL RESULTS

Our WSC model and algorithms have been tested on a wide
set of randomly generated processes instances. Experiments
have been performed to compare the solutions obtained by
applying the peeling technique with respect to loop
unfolding and to evaluate the effectiveness of the negotia-
tion approach.

Quality of services values of candidate Web services
have been randomly generated according to the values
reported in the literature. Maximum and minimum avail-
ability values were randomly generated assuming a uni-
form distribution in the interval 0.95 and 0.99999.
Reputation was determined in the same way, considering

the range [0.8, 0.99]. As in [11], we assume that the
execution time and data quality have a Gaussian distribu-
tion and the min max interval (stored in the MAIS registry)
includes the value of the quality dimension with prob-
ability 0.999 (i.e., the min max values equal �� 3�, where �
and � indicate the mean and the standard deviation of the
quality dimension). The price of each service invocation
was determined according to the QoS level experienced by
the user by applying (22), where the constant factors �i and
�i were randomly generated assuming a uniform distribu-
tion in the range [0.1, 1]. Finally, the set of weights wi was
randomly generated and weights were adjusted to sum 1.

Analyses have been performed on a 2 GHz Intel
Pentium-D Workstation with 2 GB of RAM. Problems with
up to 100 execution paths, 10,000 tasks, 50 candidate Web
services operations per task, and 5 global constraints have
been considered. For problems of maximum size, the
execution time required to deploy a composed service and
evaluate its DAG representation was about one minute,
while CPLEX execution time was about three minutes. Even
if the branch and cut technique implemented by CPLEX has
a worst case exponential time complexity, CPLEX is very
efficient in determining the problem optimum solution.
Fig. 5 reports the gap between the best solution found by
CPLEX within a limited time interval and the final global
optimum. The gap is less than 1 percent in all cases; a
feasible solution is found in less than a second for small/
medium size problem instances (i.e., up to 1,000 tasks),
while it is about one minute for large processes with 5,000-
10,000 tasks. Emmerich et al. [18] reports that 10,000 tasks is
the maximum number of tasks that could be orchestrated by
current BPEL engine implementations in modern grid
environments, so our approach is valid for the maximum
process sizes that are currently considered in research.
Finally, in the worst case, the execution time required by
Algorithm 1 to obtain a feasible solution using negotiation
was about one minute.

Every experiment has been conducted by considering the
execution plan determined initially when the composed
service execution starts (static global plan) and the variable
QoS values obtained at runtime. Runtime QoS values have
been evaluated through simulation. As in [35], the same test
case was analyzed by varying the variance of concrete
services execution time. For every test case, the standard
deviation of concrete services execution time has been
varied between 0:1� and 0:3� with step 0:1�. For a fixed
value of the standard deviation, the comparison is
performed by running 10 simulations for every test case.

ARDAGNA AND PERNICI: ADAPTIVE SERVICE COMPOSITION IN FLEXIBLE PROCESSES 379

Fig. 5. Gap to the optimum solution versus optimization time.

In order to evaluate the effectiveness of loop peeling, we
have considered a process which invokes a task t0, then
invokes a task t several times in a loop, and, finally,
invokes a task tNIþ1 (see Fig. 6). The number of candidate
Web services for the task t has been varied between 10 and
30 with step 10, while the number of candidate Web
services for task t0 and tNIþ1 has been varied between 100
and 300 with Step 100. The high number of candidate Web
services of the two tasks external to the loop allow
analyzing loop peeling advantage with respect to loop
unfolding in a general way. Indeed, a set of Web services in
a composed process specification can be represented by a
single task applying the reduction formula proposed in [8],
[7]. Task t0 and tNIþ1 represent the “average” behavior of a
complex service before and after the loop execution.

We have considered several discrete probability distri-
butions for the loop number of iterations (uniform,
geometric, and Poisson). The global constraints of the
process have been determined by considering the quality
value obtained by the local approach algorithm proposed in
[35] and are reduced progressively (negative quality
criteria) until no feasible solution exists.

Results vary depending on the global constraints value.
When the global constraints are not stringent, loop peeling

and loop unfolding give the same results. Vice versa, when
the global constraints are more severe (the process has to be
executed with limited resources which set the problem close
to unfeasibility conditions), then the loop peeling gives
better results. In order to show the peeling behavior, we
report a representative test case result, obtained by
considering three different probability distributions for the
loop number of iterations (see Fig. 7). The problem of
minimization of the execution time with a budget global
constraint has been considered. The budget was initially set
equal to $18 and was further reduced with step $2.5 down
to $8. With a budget lower than $8, the problem becomes
unfeasible. The plots in Figs. 8, 9, and 10 to report the
average composed process execution time obtained by
applying the unfolding and peeling techniques as a function
of the budget constraint. When the budget constraint is
loose or the probability to run the maximum number of
iterations is high (Case 3 distribution; see Fig. 7), the
unfolding and peeling approaches determine the same
solution (the plots in Fig. 10 do overlap). Vice versa, when

380 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 6, JUNE 2007

Fig. 6. Loop test case.

Fig. 7. Loop probability distribution

Fig. 8. Execution time versus budget dependency.

Fig. 9. Execution time versus budget dependency.

Fig. 10. Execution time versus budget dependency.

the probability to run the maximum number of iterations is
low (first and second distributions in Fig. 7), and the budget
constraint is reduced, the peeling approach improves the
average execution time up to 45 percent. This could be
explained considering that, when the budget constraint is
reduced (see Fig. 11), then the peeling approach selects Web
service invocations which give better performance and have
a high price in the first iterations of the loop. In order to
fulfill the budget constraint, in the last iterations, Web
services with high execution time and low price are selected
instead. In the first part of the loop, the peeling approach is
“aggressive” and tries to optimize the objective function
while always guaranteeing the global constraints.

The reoptimization, hence, is triggered only if the loop’s
current number of iteration is greater than its expected
value. Analyses have shown that this behavior is quite
independent of loops’ probability distributions. Hence, loop
peeling allows reducing the reoptimization effort with
respect to loop unfolding. We obtained almost the same
results considering the static execution plan determined
when the composed process execution starts and the
average value of QoS obtained by running the composed
service throught simulation. Peeling improvement de-
creases as the standard deviation of Web services execution
time increases. Note that, in that case, the process re-
optimization is performed also more frequently.

The higher is the gap between the maximum and the
average loop number of iterations, and the more severe are
the global constraints, the better are the results which can be
obtained by the peeling approach with respect to loop
unfolding.

In order to verify negotiation effectiveness, we have
considered linear tactics both for the Broker and service
providers (�xn ¼ 1) and we set rxmax ¼ 10. Results depend
on the value of global constraints and extra budget;
anyway, if the Broker and service provider price and
quality intervals do overlap, then the Broker-provider
negotiation converges, on average, in five steps and
Algorithm 1 identifies a feasible solution for the problem
in five or six steps.

As an example, the plot reported in Fig. 12 shows the
trend of the percentage constraint violation PV1 and the
negotiation procedure number of steps as a function of
Algorithm 1 number of iterations for a representative
example where four providers are involved in a global

constraint violation. The negotiation is effective and the
percentage constraint violations decreases at each iteration.
A feasible solution of the problem is finally identified.

6 RELATED WORK

Recently, dynamic Web service composition has attracted
great interest in the research community. Literature
approaches can be classified into two main categories:
composition by planning and business process optimization
[31]. The former approach, proposed by the Semantic Web
and AI communities, investigates the problem of synthesiz-
ing a complex behavior from an explicit goal and a set of
candidate services which contribute to a partial solution of
the complex problem. In the latter case [28], [35], complex
applications are specified as BPEL processes and the best
set of services is dynamically selected at runtime by solving
an optimization problem.

The Semantic Web and AI approach is very flexible since
a composed service process is built automatically or
semiautomatically from a high level specification of the
required functionality. The work in [23], [24] proposes a
framework which interleaves planning and execution of
complex applications whose functional goal and QoS
requirements are specified by assertions through XSRL
and XSAL languages. The planning is performed by model
checking as in [30]. In a similar way, in [16], a complex
application is built from a high level workflow specification
which is synthesized by applying contingency plans.
Planning is very flexible but usually is computation
intensive and, from the QoS point of view, only suboptimal
solutions can be identified [24]. The work in [1] proposes a
trade-off between planning and optimization approaches.
In a first semiautomatic logical composition step, the goal is
translated into a workflow-based specification that intro-
duces abstract tasks. A second physical composition step
maps abstract tasks to concrete services and is super-
visioned by the composed service designer.

Business process optimization approaches allow the
specification of complex applications as BPEL processes
composed by abstract services which act as place holders of
Web service components invoked at runtime. In that case,
the best set of services, selected by solving an optimization
problem, is invoked at runtime by implementing a dynamic/
late binding mechanism. Two generations of solutions have
been proposed in the literature (see Section 1). First
generation solutions consider only local constraints; the

ARDAGNA AND PERNICI: ADAPTIVE SERVICE COMPOSITION IN FLEXIBLE PROCESSES 381

Fig. 11. Process execution time.
Fig. 12. Constraints violation in Algorithm 1.

service composition is very simple and can be performed at
runtime by a greedy approach which selects the best
candidate service suitable for the execution. The work
presented in [25] introduces an agent-based framework
where agents can migrate to invoke Web services locally.
Anyway, network traffic and execution time are the only
quality dimensions considered and constraints can be
specified only locally.

Second generation solutions support global constraints. In
[5] the complexity of some variants of the Web service
composition problem is analyzed, while an overview of
heuristic techniques, which hence identify only suboptimal
solutions, can be found in [21]. In [34], the Web service
composition problem is modeled as a multiple choice,
multiple dimension knapsack problem and as a graph
constrained optimum path problem. Ad hoc efficient
techniques are proposed to identify suboptimal solutions
of the WSC problem, but composed processes which
include only a single execution path are considered.

Our approach starts from the work presented by Zeng
et al. [35]. The authors separately optimize each execution
path and obtain the execution plan by composing separate
solutions according to the frequency of execution. Their
approach has several limitations. First, in the optimization
of a single execution path, the fulfillment of availability and
response time constraints is guaranteed only for the critical
path (i.e., the path which corresponds to the highest
execution time). Furthermore, the execution plan is ob-
tained as the merge of separate execution plans. If a task
belongs to multiple execution paths, then the task is
executed by the service identified for the most frequently
executed execution path. In a previous work [3], we have
shown that Zeng et al.’s work cannot always guarantee the
fulfillment of global constraints since the WSC problem is
not separable. In this paper, we extend our previous work
by introducing loop peeling, negotiation, and Web services
dependencies constraints allowing the execution of stateful
Web services.

Some recent proposals face the WSC problem by
implementing genetic algorithms [7], [13]. In Canfora
et al.’s work [7], the reduction formulas presented in [8]
are adopted and the reoptimization is considered, but only
sub-optimal solutions are identified since tasks specified in
cycles are always assigned to the same Web service.
Furthermore, by applying reduction formulas, the execution
plan guarantees global constraints only statistically. At
runtime, if low probability paths are taken (see [7]), then the
execution plan could become infeasible and the reoptimiza-
tion must be triggered. In [13], the multiobjective evolu-
tionary approach NSGA-II (Nondominated Sorting Genetic
Algorithm; see [17]) is implemented, which identifies a set
of Pareto optimal solutions without introducing a ranking
among different quality dimensions. Every identified
solution is characterized by the fact that no other plans
exist such that a quality dimension is improved without
worsening the other ones. Genetic algorithms are more
flexible than our mixed integer linear approach since they
allow considering also nonlinear composition rules for
composed Web services but are less computationally
efficient. In current implementations [7], [13], some execu-
tion time is wasted by also generating nonfeasible solutions
and sometimes, no solution can be identified even when the

problem is feasible, in cases in which the global constraints
are stringent.

The work in [9] proposes the application of process
mining techniques to solve the WSC problem. The approach
does not require the definition of several QoS parameters
and can consider time of the day or day of the year
dependency of the QoS values. Anyway, QoS constraints
can be guaranteed only statistically.

An overview of negotiation techniques applied to service
oriented environments is presented in [19], where average
system utility and probability of negotiation convergence
are analyzed for different negotiation parameters and
tactics. In [32], a negotiation framework based on an
extension of WS-Policy and assertion verification is pre-
sented. The goal of our negotiation approach is bargaining
QoS parameters in order to identify a feasible solution of the
optimization/reoptimization problem and reduce the num-
ber of processes invocation failures.

The problem of execution of large BPEL processes has
been studied in the area of workflows and grid for e-science
[18]. While BPEL finds a wide adoption in this area in the
last couple of years, it still faces scalability, mainly due to
hardware limitations. The experimentation discussed by
[18] with a workflow containing 84,000 tasks could not be
executed with a single workflow. Possible solutions are
creating a hierarchy of processes or distributing the work-
flow over a number of engines. For e-science workflows,
either local optimization or second generation linear
programming techniques based on lp-solve have been
proposed (e.g., the Vienna Grid [6]), while additional
research work is needed for cyclic processes [20], since in
the literature, at most cycle unfolding is considered and the
variability in loops number of iteration is not analyzed.
Moreover, negotiation is either not performed or performed
for each of the available tasks. In our paper, we propose an
optimization model that is applicable to the size of the
abovementioned processes to obtain an optimal solution
that significantly improves previous approaches, as dis-
cussed in Section 5, and strategies for negotiating QoS only
in critical cases where no solution can be found, thus
significantly limiting negotiation overhead.

7 CONCLUSIONS

In this paper, we have presented an optimization approach
for the composition of Web services using dynamic service
selection which allows specifying constraints on quality
requirements for the user both at local and global level, and
to fulfill constraints at runtime through adaptive reoptimi-
zation under variable QoS characteristics of Web services.
Peeling techniques have been implemented for the optimi-
zation of loop iterations and negotiation techniques are
exploited in order to identify a feasible solution of the
problem. With respect to other literature approaches, we
guarantee the fulfillment of global constraints under more
stringent conditions [35] and we identify the global optimal
solution instead of local optima or suboptima [7]. Future
work will consider the optimization of execution of multiple
process instances. This is a very critical issue since, in the
current implementation, if a very large number of reques-
tors are assigned to the same “best” service, critical load
conditions could be reached and the quality of service
degrades. Nonlinear aggregation function for quality

382 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 6, JUNE 2007

dimensions will be also considered and a hybrid local
search optimization approach that interleaves the solution
of linear integer programming problems with nonlinear
problems will be developed. Furthermore, the effectiveness
of other negotiation techniques and the boulware behavior
of service providers will be analyzed. Finally, the problem
of selection of Web services with variable periodical QoS
profiles requires further investigation for its interest in
business processes due to variable load conditions.

APPENDIX

Notation Summary

See Table 3.

ACKNOWLEDGMENTS

The work reported in this paper has been partially

supported by the MIUR MAIS and Tekne FIRB Projects,

and by DISCoRSO FAR Project. Thanks are expressed to

Professor Marco Trubian for many fruitful discussions on

optimization issues and to Dr. Gianpaolo Agosta and

Dr. Marco Comuzzi for peeling and negotiation technique

considerations.

REFERENCES

[1] V. Agarwal, K. Dasgupta, N. Karnik, A. Kumar, A. Kundu, S.
Mittal, and B. Srivastava, “A Service Creation Environment Based
on End to End Composition of Web Services,” Proc. Int’l World
Wide Web Conf. (WWW ’05), pp. 128-137, 2005.

[2] E. Amaldi and V. Kann, “The Complexity and Approximability of
Finding Maximum Feasible Subsystems of Linear Relations,”
Theoretical Computer Sciences, vol. 147, pp. 181-210, 1995.

[3] D. Ardagna and B. Pernici, “Global and Local QoS Guarantee in
Web Service Selection,” Proc. Business Process Managment Workshop
(BPM ’05), pp. 32-46, 2005. Extended version in Int’l J. Business
Performance Managment, vol. 1, no. 4, pp. 233-243, 2005.

[4] D.F. Bacon, S.L. Graham, and O.J. Sharp, “Compiler Transforma-
tions for High-Performance Computing,” ACM Computing Sur-
veys, vol. 26, no. 4, pp. 345-420, 1994.

[5] P.A. Bonatti and P. Festa, “On Optimal Service Selection,” Proc.
Int’l World Wide Web Conf. (WWW ’05), pp. 530-538, 2005.

[6] I. Brandic, S. Benkner, G. Engelbrecht, and R. Schmidt, “Support
for Time-Critical Gridworkflow Applications,” Proc. Int’l Conf.
e-Science and Grid Computing (e-Science ’05), pp. 108-115, 2005.

[7] G. Canfora, M. Penta, R. Esposito, and M.L. Villani, “QoS-Aware
Replanning of Composite Web Services,” Proc. Int’l Conf. Web
Services (ICWS ’05), 2005.

[8] J. Cardoso, “Quality of Service and Semantic Composition of
Workflows,” PhD thesis, Univ. of Georgia, 2002.

[9] F. Casati, M. Castellanos, U. Dayal, and M.C. Shan, “Probabilistic,
Context-Sensitive, and Goal-Oriented Service Selection,” Proc. Int’l
Conf. Service Oriented Computing (ICSOC ’04), pp. 316-321, 2004.

[10] S. Ceri, F. Daniel, M. Matera, and F. Facca, “Model-Driven
Development of Context-Aware Web Applications,” ACM Trans.
Internet Technology, vol. 7, no. 2, 2007.

[11] S. Chandrasekaran, J.A. Miller, G. Silver, I.B. Arpinar, and A.P.
Sheth, “Performance Analysis and Simulation of Composite Web
Services,” Electronic Market: The Int’l J. Electronic Commerce and
Business Media, vol. 13, no. 2, 2003.

[12] J.S. Chase, D.C. Anderson, P.N. Thakar, A.M. Vahdat, and R.P.
Doyle, “Managing Energy and Server Resources in Hosting
Centers,” Proc. Symp. Operating Systems and Principles (SOSP ’01),
pp. 103-116, 2001.

[13] D.B. Claro, P. Albers, and J.K. Hao, “Selecting Web Services for
Optimal Composition,” Proc. Int’l Conf. Web Services (ICWS ’05)
Workshop Proc., 2005.

[14] D. Comer, Internetworking with TCP/IP Volume 1: Principles
Protocols, and Architecture, fifth ed. Prentice Hall, 2006.

[15] M. Comuzzi and B. Pernici, “An Architecture for Flexible Web
Service QoS Negotiation,” Proc. Int’l Enterprise Distributed Object
Conf. (EDOC ’05), pp. 70-82, 2005.

[16] L.A.G. Dacosta, P.F. Pires, and M. Mattoso, “Automatic Composi-
tion of Web Services with Contingency Plans,” Proc. Int’l Conf. on
Web Services (ICWS ’04) Workshop Proc., 2004.

[17] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and
Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Trans.
Evolutionary Computation, vol. 6, no. 2, pp. 182-197, 2002.

[18] W. Emmerich, B. Butchart, L. Chen, B. Wassermann, and S.L.
Price, “Grid Service Orchestration Using the Business Process
Execution Language (BPEL),” J. Grid Computing, vol. 3, pp. 283-
304, 2006.

ARDAGNA AND PERNICI: ADAPTIVE SERVICE COMPOSITION IN FLEXIBLE PROCESSES 383

TABLE 3
Notation Summary

[19] P. Faratin, C. Sierra, and N.R. Jennings, “Negotiation Decision
Functions for Autonomous Agents,” Int’l J. Robotics and Autono-
mous Systems, vol. 24, nos. 3-4, 1998.

[20] G.C. Fox and D. Gannon, “Workflow in Grid Systems,”
Concurrency and Computation: Practice and Experience, vol. 18,
no. 10, pp. 1009-1019, 2006.

[21] M.C. Jaeger, G. Muhl, and S. Golze, “QoS-Aware Composition of
Web Services: An Evaluation of Selection Algorithms,” Proc. Int’l
Conf. Cooperative Information Systems, 2005.

[22] C.L. Hwang and K. Yoon, Multiple Criteria Decision Making, Lecture
Notes in Economics and Mathematical Systems. Springer-Verlag,
1981.

[23] A. Lazovik, M. Aiello, and M. Papazoglou, “Associating Asser-
tions with Business Proesses and Monitoring Their Execution,”
Proc. Int’l Conf. Service Oriented Computing (ICSOC ’04), pp. 94-104,
2004.

[24] A. Lazovik, M. Aiello, and M. Papazoglou, “Planning and
Monitoring the Execution of Web Service Requests,” J. Digital
Libraries, pp. 1-31, 2005.

[25] Z. Maamar, Q.Z. Sheng, and B. Benatallah, “Interleaving Web
Services Composition and Execution Using Software Agents and
Delegation,” Proc. Web Services and Agent-Based Eng. (WSABE ’03),
2003.

[26] D. Menascé, “QoS Issues In Web Services,” IEEE Internet
Computing, vol. 6, no. 6, pp. 72-75, 2002.

[27] M. Ouzzani and A. Bouguettaya, IEEE Internet Computing, vol. 37,
no. 3, pp. 34-44, 2004.

[28] A.A. Patil, S.A. Oundhakar, A.P. Sheth, and K. Verma,
“METEOR-S Web Service Annotation Framework, Proc. World
Wide Web Conf. (WWW ’04), pp. 553-562, 2004.

[29] Mobile Information Systems—Infrastructure and Design for Flexibility
and Adaptivity, B. Pernici, ed. Springer, 2006.

[30] M. Pistore, A. Marconi, P. Bertoli, and P. Traverso, “Automated
Composition of Web Services by Planning at the Knowledge
Level,” Proc. Int’l Joint Conf. Artificial Intelligence (IJCAI ’05),
pp. 1252-1259, 2005.

[31] B. Srivastava and J. Koehler, “Web Service Composition—Current
Solutions and Open Problems, Proc. Int’l Conf. Automated Planning
and Scheduling (ICAPS ’03), 2003.

[32] E. Wohlstadter, S. Tai, T.A. Mikalsen, I. Rouvellou, and P.T.
Devanbu, “QoS: Middleware to Sweeten Quality-Of-Service
Policy Interactions,” Proc. Int’l Conf. Software Eng. (ICSE ’04),
pp. 189-199, 2004.

[33] L. Wolsey, Integer Programming. John Wiley and Sons, 1998.
[34] T. Yu and K.J. Lin, “Service Selection Algorithms for Composing

Complex Services with Multiple QoS Constraints,” Proc. Int’l Conf.
Service-Oriented Computing (ICSOC ’05), 2005.

[35] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnamam, and H. Chang,
“QoS-Aware Middleware for Web Services Composition,” IEEE
Trans. Software Eng., vol. 30, no. 5, May 2004.

[36] L. Zhang and D. Ardagna, “SLA-Based Profit Optimization in
Autonomic Computing Systems, Proc. Int’l Conf. Service Oriented
Computing (ICSOC ’04), pp. 173-182, 2004.

Danilo Ardagna received the PhD degree in
computer engineering in 2004 from Politecnico
di Milano, from which he graduated in December
2000. Now, he is an assistant professor of
Information Systems at the Department of
Electronics and Information. His research inter-
ests include Web services composition, auto-
nomic computing, and computer system costs
minimization.

Barbara Pernici is a full professor of computer
engineering at Politecnico di Milano. Her re-
search interests include cooperative information
systems, service management, workflow man-
agement systems, information systems model-
ing and design. She is an editor of the ACM
Journal of Data and Information Quality, the
Requirements Engineering Journal, and the
International Journal of Cooperative Information
Systems. She was chief scientist of the Italian

FIRB MAIS (Multichannel Adaptive Information Systems) project from
2002 to 2006 and participated in many European projects, among which
were WS-Diamond, WIDE, F3, EQUATOR, and ITHACA. She has been
the chair of Working Group 8.1 (Information Systems Design) of the
International Federation for Information Processing (IFIP) for the period
2004-2006. She is the second vice-chair of IFIP Technical Committee 8
(TC8, Information Systems) for 2007-2009.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

384 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 6, JUNE 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

