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Importance of mobile code security

Applications today may run anywhere, with data and code
moving freely between servers, PC's and portable devices.

Since mobile code gets executed with the privileges of the user
who downloaded the code the risk of damage due to malicious
or faulty mobile code is very high.

Many of the techniques currently deployed in computer
security are not e�ective when it comes to mobile code.
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Approaches to Mobile Code Security

The ongoing use of mobile devices has motivated intensive research
focused on deploying techniques suitable for ensuring security of
mobile code:

Sandboxing

Proof Carrying Code [2, G.Necula, 1997]

Model Carrying Code [4, Sekar et al, 2001]

Sound Model Carrying Code
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Proof Carrying Code

Overview Description

Code producer establishes
security properties.

Code producer performs a
mathematical proof
(certi�cate) stating that
the code satis�es the
property.

Code consumer receives
code and certi�cate and
mechanically checks that
the certi�cate is valid.
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Caveats

The burden of constructing the certi�cate is put on the code
producer

The code producer must forsee the security needs of the
consumers, which may vary widely.

Certi�cate is not reusable. If the policy changes a new
certi�cate must be constructed.
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Model Carrying Code

Overview Description

Producer generates mobile
code and program model.

Consumer receives mobile
code and model.

Consumer mechanically
checks wether the model
conforms the policy.

Based on the outcome,
consumer may re�ne its
security policy.
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Caveats

The burden of model generation is put on the consumer side.

The generated models in this work are unsound. Therefore,
the fact that the model satis�es the security policy does not
guarantee that the actual program does.

An enforcement model, with the consequent computational
overhead, is instrumented even when the model satis�es the
security policy.

Barthe, Crespo, Puebla, Sanchez Lightweight veri�cation



Introduction
Overview of approaches to mobile code security

Model Generation
Further Work

Caveats

The burden of model generation is put on the consumer side.

The generated models in this work are unsound. Therefore,
the fact that the model satis�es the security policy does not
guarantee that the actual program does.

An enforcement model, with the consequent computational
overhead, is instrumented even when the model satis�es the
security policy.

Barthe, Crespo, Puebla, Sanchez Lightweight veri�cation



Introduction
Overview of approaches to mobile code security

Model Generation
Further Work

Caveats

The burden of model generation is put on the consumer side.

The generated models in this work are unsound. Therefore,
the fact that the model satis�es the security policy does not
guarantee that the actual program does.

An enforcement model, with the consequent computational
overhead, is instrumented even when the model satis�es the
security policy.

Barthe, Crespo, Puebla, Sanchez Lightweight veri�cation



Introduction
Overview of approaches to mobile code security

Model Generation
Further Work

Sound Model Carrying Code

Overview

Source Code

Compiler

Byte Code

Producer

Model

Model 

Generator

Trusted

Intermediary

Security

Policy

Property

Verifier

Execute User

Accepted Rejected

Consumer

Description

Producer writes source code
and compiles it.

Trusted intermediary
generates model and digitally
signs bytecode and model.

Consumer mechanically
checks wether the model
conforms its policy.

If the property is veri�ed,
program is authorized to be
executed, otherwise, user
may choose wether to
execute it.
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Contributions

A more �exible security model than PCC is proposed, that:

allows model reuse.

does not put any additional burden on code producer side.

allows code consumer to customize the security policies.
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Key Issues

How do we generate sound models?

We use program slicing[1, Hatcli� et al,1999]. When stating slicing
correctness one proves:

P ≡C PS

This notion of equivalence needs to entail soundness:

Φ(PS) ⇒ Φ(P)

where Φ is a property.
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Key Issues

Which language is suitable for expressing high level security
properties?

We use a fragment of LTL. The idea is that the user will be able to
specify properties such as:

bounds on resource usage, e.g. this program will not send
more than 3 SMS. (Safety property).

protocol enforcement, e.g. every time a �le is opened it should
be eventually closed. (Liveness property).
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Key Issues

How do we check wether a model conforms a security policy?

We transform the model to obtain a �nite state space model
and then we perform exhaustive veri�cation.

This transformation is made based on the assumption that we
have lower and upper bounds on the amount of iterations of
every loop.

This can be obtained either by forcing the programmer to
insert annotations on loop headers or by performing
conservative static analysis.

So far we can treat loops with linear updates, and linear loop
bounds
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Key Issues

How do we generate the sound models?

We use program slicing. When stating slicing correctness one
proves:

P ≡C PS

This notion of equivalence needs to entail soundness:

Φ(PS) ⇒ Φ(P)

where Φ is a property.

This will be the focus of the rest of the talk.
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The Language: Syntax

The abstract syntax of the instructions is the following:

i ::= nop | x := e | goto l | ifeq e l | call f (e . . . e)
e ::= e ⊕ e | x | v

where

x ranges over Var (variable names)

l over Loc (locations)

v over integers

f over Func (function names)

⊕ represents common binary operations

The programs are abstracted as functions betwen locations Loc and
instructions i .
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The Language: Semantics

We de�ne the structural operational semantics of the language in
terms of the following:

The state of the variables of the computation will be
abstracted by
Σ = Var → Z
The set of non-terminal states of the program is captured by:
ΓNT = Loc × Σ

The set of terminal states of the program is captured by:
ΓT = Σ

We assume the existence of a semantic function for
expressions:
J_KExp : Exp → Σ → Z
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The Language: Semantics (cont.)

We de�ne the transition relation  ⊆ ΓNT × ΓT as the least
relation satisfying the following rules:

P l = x := e JeKExpσ = v

(l , σ) (succ(l), [σ | x : v ])

P l = goto l ′

(l , σ) (l ′, σ)

P l = ifeq e l ′ JeKExpσ = 0

(l , σ) (succ(l), σ)

P l = nop

(l , σ) (succ(l), σ)

P l = call f (e1 . . . en)

(l , σ) (succ(l), σ)
P l = return

(l , σ) σ

P l = ifeq e l ′ JeKExpσ 6= 0

(l , σ) (l ′, σ)
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The Language: Control Flow Graph

A control �ow graph G = (N,E , n0, e) is a labeled directed graph
in which:

N is the set of nodes that represent the statements in the
program.

E is the set of labeled edges that represents the control �ow
between graph nodes.

n0 is the start node.

e is the end node.

We assume the programs satisfy the unique end node property.

We assume the programs yield reducible graphs.
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Slicing for model generation

A program slice consists of the parts of the original program
that potentially a�ect the variable values at a program point
of interest[5, Weiser,1984]. The points of interest are called
slicing criterion.

We will consider the slicing criterion to be a set C ⊆ N of
nodes of the CFG.

The slicing transformation has three phases:
1 Various forms of program dependencies between nodes are

computed to form a program dependence graph (PDG).
2 We compute a set that contains the nodes in C and is closed

under the re�exive transitive closure of the union of the
dependencies. This set is called Slice Set(SC ).

3 We transform the instructions of the program depending on
wether the node corresponding to them appears in Sc .
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Program Dependencies

We will consider the following dependencies:

Node n is data-dependent on m, written m
dd→ n, if there exists

a variable v de�ned at node m and used at node n, without
being updated in between.

Node n is control-dependent on node m, written m
cd→ n, if m

has at least 2 successors, one from which every maximal path
contains n, and the other in from which in any maximal path n

does not occur, or m strcitly preceeds any occurrence of n.

Node n is divergence-dependent on m, written m
Ωd→ n, if m is

a divergence point and there's a path in the CFG between m

and n.

The slice set is then de�ned as:

SC = {m : m(
dd→ ∪ cd→ ∪ Ωd→)∗︸ ︷︷ ︸

d→∗

n, n ∈ C}
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Slicing Transformation

Given program p the residual program ps has the same nodes as p
but its codemap is modi�ed as follows:

1 forall n ∈ SC , code2(n) = code1(n).
2 forall n /∈ SC we have the following cases:

1 If code1(n) = goto m then code2(n) = goto m
2 If code1(n) = ifeq e m then code2(n) = goto k where k is the

nearest postdominator of nodes n + 1 and m.
3 If code1(n) = return then code2(n) = return
4 Else code2(n) = nop
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Correctness

Correct slice

Now, ps is a correct slice of p w.r.t. C if for any initial store σ, the
initial states are C -bisimilar [3, Ranganath et al,2007].

We have shown that:

the slicing transformation de�ned previously produces correct
slices w.r.t. to the last de�nition.

the notion of correct slice entails soundness, that is, if a
property is valid on the slice then is also valid on the original
program.
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Further work

Extend the model conformance checking techniques: beyond
linear updates in loops.

Extend these ideas other language constructions: data types,
abstraction, etc.

More examples.

Identify a class of properties for which this approach is also
complete.

Implementation.
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