
Information Flow Control for Concurrent Programs via
Program Slicing

Dennis Giffhorn

Universität Karlsruhe (TH), Germany

Dennis Giffhorn (Universität Karlsruhe (TH)) IFC for Concurrent Programs via Slicing PLID’08 1 / 19

Context

Slicing-based program security, focusing on Java

Program dependence analysis for full Java
(Hammer/Snelting: An improved slicer for Java, PASTE’04)

Slicing of concurrent programs
(Krinke: Context-sensitive slicing of concurrent programs,
ESEC/FSE’03)

Connection between IFC and slicing
(Snelting et al.: Efficient path conditions in dependence graphs for
software safety analysis, TOSEM’06)

Slicing-based IFC algorithm for sequential Java
(Hammer/Krinke: Intransitive noninterference in dependence graphs,
ISOLA’06)

Dennis Giffhorn (Universität Karlsruhe (TH)) IFC for Concurrent Programs via Slicing PLID’08 2 / 19

Information Flow Control

Does a program leak confidential information?

Data is classified with security levels high and low

Scenario: Attacker wants to gain information about high input data
and can observe parts of program behaviour

I Low-classified data at certain program points (e.g. input, output)
I The relative order of low-observable events
I Termination behaviour
→ low-observable behaviour

Noninterference (idea):
Two inputs that only differ on high input have to cause the same
low-observable behaviour
⇒ Attacker cannot draw conclusions about high input

Dennis Giffhorn (Universität Karlsruhe (TH)) IFC for Concurrent Programs via Slicing PLID’08 3 / 19

Sequential Programs

Sufficient to control explicit and implicit flow

l1 = pin;
if (pin > 12345)

l2 = 1;
print(l1+l2);

Explicit flow from pin to l1

Implicit flow from pin to l2

Attacker can see the output⇒ pin must not contain high data

Dennis Giffhorn (Universität Karlsruhe (TH)) IFC for Concurrent Programs via Slicing PLID’08 4 / 19

Sequential Programs

Sufficient to control explicit and implicit flow

l1 = pin;
if (pin > 12345)

l2 = 1;
print(l1+l2);

Explicit flow from pin to l1

Implicit flow from pin to l2

Attacker can see the output⇒ pin must not contain high data

Dennis Giffhorn (Universität Karlsruhe (TH)) IFC for Concurrent Programs via Slicing PLID’08 4 / 19

Sequential Programs

Sufficient to control explicit and implicit flow

l1 = pin;
if (pin > 12345)

l2 = 1;
print(l1+l2);

Explicit flow from pin to l1

Implicit flow from pin to l2

Attacker can see the output⇒ pin must not contain high data

Dennis Giffhorn (Universität Karlsruhe (TH)) IFC for Concurrent Programs via Slicing PLID’08 4 / 19

Probabilistic Channels

Not sufficient for concurrent programs

Problem: High data may influence interleaving

h = readPIN(); || l1 := 1;
while (h != 0) || print(l2);

h�-; ||
l1 := 2; ||
print(l1); ||

The larger the value of h,
I the larger the probability that l1 = 2 when printed
I the larger the probability that l1 is printed after l2

⇒ probabilistic channels

Dennis Giffhorn (Universität Karlsruhe (TH)) IFC for Concurrent Programs via Slicing PLID’08 5 / 19

Probabilistic Noninterference

A program input can cause a set of possible low-observable
behaviours

Each one has a certain probability (scheduler-dependent)

Probabilistic noninterference (idea):
Two inputs that only differ on high input have to cause the same
possible low-observable behaviours with the same probabilities
⇒ Attacker cannot draw conclusions about high input

Dennis Giffhorn (Universität Karlsruhe (TH)) IFC for Concurrent Programs via Slicing PLID’08 6 / 19

Probabilistic Channels

h = readPIN(); || l1 := 1;
while (h != 0) || print(l2);

h�-; ||
l1 := 2; ||
print(l1); ||

Necessary condition:

A data conflict between two concurrent accesses to a shared variable,
where at least one of which is a write

An order conflict between two concurrent low-observable events

Dennis Giffhorn (Universität Karlsruhe (TH)) IFC for Concurrent Programs via Slicing PLID’08 7 / 19

Probabilistic Channels

h = readPIN(); || l1 := 1;
while (h != 0) || print(l2);

h�-; ||
l1 := 2; ||
print(l1); ||

Necessary condition:

A data conflict between two concurrent accesses to a shared variable,
where at least one of which is a write

An order conflict between two concurrent low-observable events

Dennis Giffhorn (Universität Karlsruhe (TH)) IFC for Concurrent Programs via Slicing PLID’08 7 / 19

Probabilistic Channels

h = readPIN(); || l1 := 1;
while (h != 0) || print(l2);

h�-; ||
l1 := 2; ||
print(l1); ||

Necessary condition:

A data conflict between two concurrent accesses to a shared variable,
where at least one of which is a write

An order conflict between two concurrent low-observable events

Dennis Giffhorn (Universität Karlsruhe (TH)) IFC for Concurrent Programs via Slicing PLID’08 7 / 19

Probabilistic Channels

h = readPIN(); || l1 := 1;
while (h != 0) || print(l2);

h�-; ||
l1 := 2; ||
print(l1); ||

Necessary condition:

A data conflict between two concurrent accesses to a shared variable,
where at least one of which is a write

An order conflict between two concurrent low-observable events

Dennis Giffhorn (Universität Karlsruhe (TH)) IFC for Concurrent Programs via Slicing PLID’08 7 / 19

Observational Determinism

Low-observable behaviour does not depend on a conflict
→ no probabilistic channels
Such a program is observational deterministic

I The same input produces always the same low-observable behaviour
I It is sufficient to check implicit and explicit flow

Security for concurrent programs:
Observational determinism + sane implicit and explicit flow

Generalization of prob. NI:
Only one possible low-observable behaviour with probability = 1

Dennis Giffhorn (Universität Karlsruhe (TH)) IFC for Concurrent Programs via Slicing PLID’08 8 / 19

IFC for Concurrent Programs via Program Slicing

A three-phase approach
1 Annotate the program
2 Check observational determinism
3 Check explicit and implicit flow

I Algorithm of Hammer/Krinke.
I Developed for full sequential Java

Dennis Giffhorn (Universität Karlsruhe (TH)) IFC for Concurrent Programs via Slicing PLID’08 9 / 19

Program Dependence Graph

h = readPIN(); || l1 := 1;
while (h != 0) || print(l2);

h�-; ||
l1 := 2; ||
print(l1); ||

Statements are the nodes

The definition of a variable defined at v reaches its use at w
(not redefined inbetween) (Data Dependence).

v controls the execution of w (termination-insensitive)
(Control Dependence)

v controls the execution of w (termination-sensitive)
(Weak Control Dependence)

Dennis Giffhorn (Universität Karlsruhe (TH)) IFC for Concurrent Programs via Slicing PLID’08 10 / 19

Program Dependence Graph

h = readPIN(); || l1 := 1;
while (h != 0) || print(l2);

h�-; ||
l1 := 2; ||
print(l1); ||

thread_1 thread_2

wh i le (h>=0)

h--;

l1 = 2; print(l1)

print(l2)

l1 = 1;

control dependence

data dependence
weak control dependence

h = pin() ;

Dennis Giffhorn (Universität Karlsruhe (TH)) IFC for Concurrent Programs via Slicing PLID’08 11 / 19

Program Annotation

h = readPIN(); || l1 := 1;
while (h != 0) || print(l2);

h�-; ||
l1 := 2; ||
print(l1); ||

Phase 1: Annotate program

Annotation mechanism similar to Hammer/Krinke

Sources of information are annotated with a providing level
Observable statements are annotated with a requiring level

I h = readPIN() gets providing level high
I both print-statements get requiring level low

Dennis Giffhorn (Universität Karlsruhe (TH)) IFC for Concurrent Programs via Slicing PLID’08 12 / 19

Conflict Dependence

h = readPIN(); || l1 := 1;
while (h != 0) || print(l2);

h�-; ||
l1 := 2; ||
print(l1); ||

Augment the PDG with conflict dependences

representing a data conflict or an order conflict

Data conflicts: Directed from the write-access to the other one

Order conflicts: Between two concurrent low-observable events,
bidirected

Dennis Giffhorn (Universität Karlsruhe (TH)) IFC for Concurrent Programs via Slicing PLID’08 13 / 19

Conflict Dependence
h = readPIN(); || l1 := 1;
while (h != 0) || print(l2);

h�-; ||
l1 := 2; ||
print(l1); ||

thread_1 thread_2

wh i le (h>=0)

h--;

l1 = 2; print(l1)

print(l2)

l1 = 1;

control dependence

data dependence

confl ict dependence

weak control dependence

h = pin() ;

Dennis Giffhorn (Universität Karlsruhe (TH)) IFC for Concurrent Programs via Slicing PLID’08 14 / 19

Check Observational Determinism
Phase 2: Check observational determinism

Compute a slice for the low-class. statements

If the slice contains a conflict dependence, the program is not
obs. det. → reject program

thread_1 thread_2

wh i le (h>=0)

h--;

l1 = 2; print(l1)

print(l2)

l1 = 1;

control dependence

data dependence

confl ict dependence

weak control dependence

h = pin() ;

Dennis Giffhorn (Universität Karlsruhe (TH)) IFC for Concurrent Programs via Slicing PLID’08 15 / 19

Check Implicit and Explicit Flow
Phase 3: Check implicit and explicit flow

Basic idea: Compute a slice for the low-class. statements

If it contains a statement with a provided level of high, reject the
program

thread_1 thread_2

wh i le (h>=0)

h--;

l1 = 2; print(l1)

print(l2)

l1 = 1;

control dependence

data dependence

confl ict dependence

weak control dependence

h = pin() ;

Dennis Giffhorn (Universität Karlsruhe (TH)) IFC for Concurrent Programs via Slicing PLID’08 16 / 19

Related Work

Exploiting observational determinism is not a new idea
McLean: Proving noninterference and functional correctness using
traces (JCS 1992)

I Obs. det. for trace-based specifications

Roscoe: CSP and determinism in security modelling (IEEE SP 1995)
I Algorithm for obs. det. for CSP calculus

Zdancevic/Myers: Observational determinism for concurrent program
security (CSFW 2003)

I Low-security observational determinism
I Abscence of data conflicts + sane implicit and explicit flow
I Non-standard type system

Huisman et al.: A temporal logic characterization of observational
determinism (CSFW 2006)

I Termination-sensitive extension
I Model checking produces counter-examples

Dennis Giffhorn (Universität Karlsruhe (TH)) IFC for Concurrent Programs via Slicing PLID’08 17 / 19

Future Work

PDGs can be computed for mature languages, e.g. C, C++, Java
→ implementation and evaluation
Obs. det. restricts inter-thread communication of low data

I Message-passing mechanisms?
I Declassification?

Not compositional
→ incremental development of secure systems is complicated

Dennis Giffhorn (Universität Karlsruhe (TH)) IFC for Concurrent Programs via Slicing PLID’08 18 / 19

