
Amorphous Slicing for EFSMs
PLID’08

David Clark
King’s College London

Tuesday 15 July 2008

Collaborators

• Kalli Androutsopoulos

• Dave Binkley

• Mark Harman

• Laurie Tratt

Talk outline

• Slicing state based models

• existing work

• Definition of EFSMs

• Korel’s ATM example

• Data and Control Dependence

• Slicing algorithm

• Applying the algorithm to Korel’s ATM example

• Comments, issues and conclusions

Slicing State-based Models

• State-based model: Statecharts/Finite State Machines and
variants.

• Extended Finite State Machines (EFSMs).

• FSMs extended with a store and store update actions on
transitions.

• programming language with abstract, flexible control
structures and non-determinism.

Some Questions

?

SM

program

program

program

refine refine

slice

SM

slice
EFSM

Existing work on Slicing State-based Models

• Korel, Singh, Tahat & Vaysburg: “Slicing State-based
Models” [2003].

• Labbé and Gallois [2001?] Brief paper giving some definitions
for slicing communicating extended automata. CD close to
ranganath et al. NTSCD

• Fox and Luangsodai [2006] and and or state dependencies in
state charts

• Labbé and Lapitre [2007] report on the CARVER tool

• Scaeffer and Poetzsch-Heffter

First is our jumping off point.

EFSM: formal definition

• A set of States, S .

• A set of Transitions, T .

• A set of Events, Ev .

• A store represented by a set of local variables, Var.

• A set of Phrases, P where P has grammar:

C ∈ Com x ∈ Var E ∈ Exp B ∈ BExp n ∈ Z

P ::= C | B

C ::= x := E | C1; C2

E ::= x | n | E1 + E2 | E1 − E2 | E1 ∗ E2 |

B ::= ¬B | B1 ∧ B2 | E1 < E2 | E1 == E2

EFSM: formal definition

• A Transition, t ∈ T , is given by

• A source state src(t) ∈ S .
• A label, lbl(t), where lbl(t) has the form e1[b]/e2.c where

e1, e2 ∈ Ev , b ∈ B, c ∈ C and all parts of the label are optional.
• A target state tgt(t) ∈ S .

• States of S are atomic.

• Machines are possibly non-deterministic.

• Actions can involve store updates or generation of events or
both.

• Logical guards, where they exist, refer to the store

Example

[p==pin]
start S1

S4 S5

S7

Exit

S2/S3

S6

write("Enter PIN");
attempts=0

Card(pin,sb,cd)/

T1

T2

T3
T23

PIN(p)
[(p != pin) and (attempts ==3)]/

write("Wrong Pin, Ejecting Card");

Receipt/Print("Balance=",cb);
write("Checking");

T15

T14

Withdrawal(w)/
cb=cd−w

T13
cb=cb+d

Deposit(d)/

T12
Balance/write("Balance=",cb);

T17
Withdrawal(w)/

sb=sb−w

sb=sb+d
Deposit(d)/

T18

T19

write("Balance=",sb);
Balance/

T21
Exit/write("Ejecting card");

Receipt/Print("Balance=",sb;

write("Savings");

T8

Savings

T7
Checking

Done

T9

Done
T10

PIN(p)
[(p != pin) and (attempts <3)]/

write("Wrong Pin, ReEnter");
attempts = attempts+1;
Prompt for PIN;

T4

PIN(p)

Problem with Korel et alia Definition of Slicing

• Closely follows program slicing: assumes exit state (final state)

• Slice on variable sb on transition T18 in first example

• The slice is clearly too large

• Their definition simply removes the two transitions and one
state which are not on any path from start that reaches T18

• Their solution is to shrink the number of nodes by introducing
non-determinism

ATM EFSM slice

Data Dependence

Let D(T) be the set of variables defined on transition T and U(T)
be the set of variables used on transition T .

Definition (data dependence for EFSMs)

[Korel et alia] There is data dependence between transitions Ti

and Tk w.r.t. variable x if

• x ∈ D(Ti),

• x ∈ U(Tk), and

• there is a path (transition sequence) from Ti to Tk along
which x is not defined.

Reactive Systems and Control Dependence

• “A New Foundation for Control Dependence and Slicing for
Modern Program Structures” by Ranganath, Amtoft,
Banerjee, Hatcliffe and Dwyer [2005 (and later versions)]

• modern: non-terminating threads, exceptions

• apply to EFSMs; deal with no exit state or many exit states,
i.e. potentially non-terminating reactive system

• EFSMs: dependence between transitions, rather than between
nodes

Control Sinks

• A control sink, K, for an EFSM is a set of transitions that
form a strongly connected component such that, for each
transition t in K each successor of t is in K.

• NB: framed using transitions rather than nodes.

• A maximal path is any path in an EFSM that terminates in a
final transition or is infinite.

• A set of sink-bounded paths in an EFSM from a transition
T , SinkPaths(T), contains all maximal paths π from T with
the property that there exists a control sink K such that

1. π contains transition Ts from K;
2. If π is infinite then all transitions in K occur infinitely often.

Non-Termination Insensitive Control Dependency

• In an EFSM, a transition Tj is (directly) control dependent on
a transition Ti if and only if Ti has at least one sibling Tk

such that

1. For all paths π ∈ SinkPaths(Ti), the source of Tj belongs to π;
2. there exists a path π ∈ SinkPaths(Tk) such that the source

node of Tj does not belong to π.

• Corresponds to “traditional” slicing in so far as it allows the
slice to omit loops present in the original graph

• Proposition: for EFSMs with a unique end node Ti is control
dependent on Tj in Korel’s sense iff Ti is NTICD on Tj .

Example

T8
S5

S6T5

T6
T7

T11

S3

start

S2 S4

T2

T4

T3
S7

S8

T1

T8 is NTICD on T1.

shrinking the slice

• We set out to make the slice as small as possible

• Resulting graph is not a subgraph of the original

• Natural result in the graph world?

Slicing Algorithm

• Transition of interest is Ti

• Use data dependence and control dependence definitions to
construct the (transitively closed) Machine Dependency Graph
(MDG) for Ti

• Mark the transitions appearing in the MDG

• Remove unmarked transitions
• We use exactly the same approach as the construction used in

the “Silent Moves” lemma for FSAs, treating unmarked
transitions as “silent moves”

• Collect garbage

• Merge states
• Another standard FSA minimisation algorithm: two states are

merged if they have identical outward transitions; this process
is repeated until no further states can be merged

MDG for Korel et al. example

MDG for T18

T1

T4 T8

T17

T18

After marking transitions

l18

After anonymising non−contributory transitions

start

exit

s1 s2
s3

s4 s5

s6 s7

l1 l4

l8

l17

After removing “silent moves”

l18

start

exit

s1 s2
s3

s4 s5

s6 s7

l1 l4

l8

l17

l18

After applying the "specification"

l8

l8

l8

l8
l8

l17

After garbage collection

After garbage collection

start s1 s2

s6 s7

l1 l4

l17

l18

l8

l8
l8

l17

l18

After merging states

l18

start s1 s2

s6

l1 l4

l8

l8

After merging

l17

Some comments

• Dubbed “Amorphous slicing” (although no equivalent to
program transformation used)

• Semantic correctness via simulation of paths through
transitions of interest in the original by paths in the slice +
“silent moves lemma” + state merging lemma.

• Currently building EFSM slicing tool

• Currently building slice animation tool

• have another paper which classifies different slicing
approaches for these models and puts them into a general
framework. Currently unpublished.

Some Issues

• Fairness condition implies no control dependencies inside a
control sink

• Proposition: relaxing the fairness condition does not change
dependencies outside of the control sinks.

• Investigating different ways of finding dependencies within
control sinks

• Silent moves removal algorithm does not always shrink the
graph

• Recently became aware of Torben Amtoft’s paper on slicing
using NTICD

Conclusions

• Have realised our initial aim of devising a slicing algorithm
which (at least some times) produces small slices

• Improves comprehensibility in some ways but needs an
animation tool for users to relate to the original graph easily

• Plenty of ongoing issues to resolve: a potentially large
research area

• Research is now part of the (EPSRC) project Slicing state
based Models (SLIM), employing two RAs

• Web page slim.dcs.kcl.ac.uk

• Soon: technical report at
www.dcs.kcl.ac.uk/technical-reports/

