
Abstract Program Slicing

Damiano Zanardini

CLIP, Universidad Politécnica de Madrid

PLID’08, Valencia, July 15th, 2008

Damiano Zanardini (CLIP, UPM) PLID’08 Valencia, July 15th, 2008 1 / 9

Overviewp

An intuition

some basic ideas taken from published (to appear) work [SCAM’08]

The big issue

a brief discussion on practicality, usefulness, etc.

After all, it’s a workshop

future work, extensions, ideas

Damiano Zanardini (CLIP, UPM) PLID’08 Valencia, July 15th, 2008 2 / 9

Overviewp

An intuition

some basic ideas taken from published (to appear) work [SCAM’08]

The big issue

a brief discussion on practicality, usefulness, etc.

After all, it’s a workshop

future work, extensions, ideas

Damiano Zanardini (CLIP, UPM) PLID’08 Valencia, July 15th, 2008 2 / 9

Overviewp

An intuition

some basic ideas taken from published (to appear) work [SCAM’08]

The big issue

a brief discussion on practicality, usefulness, etc.

After all, it’s a workshop

future work, extensions, ideas

Damiano Zanardini (CLIP, UPM) PLID’08 Valencia, July 15th, 2008 2 / 9

Introductionp

Program slicing: PS is the slice of P with respect to the criterion S

Observations

S (the value of a set of vars) can be too restrictive, since the interest
may be on some data property (e.g., the nullity of references)

slices are sometimes too big for practical use (debugging, program
understanding)

dealing with properties relaxes the notion of dependency (abstract
dependency, ANI, etc.)

Slicing at the abstract level

might be successful in modelling interesting tasks and, at the same time,
obtaining smaller slices

Damiano Zanardini (CLIP, UPM) PLID’08 Valencia, July 15th, 2008 3 / 9

Introductionp

Program slicing: PS is the slice of P with respect to the criterion S

Observations

S (the value of a set of vars) can be too restrictive, since the interest
may be on some data property (e.g., the nullity of references)

slices are sometimes too big for practical use (debugging, program
understanding)

dealing with properties relaxes the notion of dependency (abstract
dependency, ANI, etc.)

Slicing at the abstract level

might be successful in modelling interesting tasks and, at the same time,
obtaining smaller slices

Damiano Zanardini (CLIP, UPM) PLID’08 Valencia, July 15th, 2008 3 / 9

Introductionp

Program slicing: PS is the slice of P with respect to the criterion S

Observations

S (the value of a set of vars) can be too restrictive, since the interest
may be on some data property (e.g., the nullity of references)

slices are sometimes too big for practical use (debugging, program
understanding)

dealing with properties relaxes the notion of dependency (abstract
dependency, ANI, etc.)

Slicing at the abstract level

might be successful in modelling interesting tasks and, at the same time,
obtaining smaller slices

Damiano Zanardini (CLIP, UPM) PLID’08 Valencia, July 15th, 2008 3 / 9

An example [SCAM’08]p

Well-formed lists: 〈1, 2, 3, 4, [0]〉++〈5, 6, [0]〉 = 〈1, 2, 3, 4, 5, 6, [0]〉
the properties of interested are represented by abstract domains for nullity
and well-formedness:

ρnil ρwf

wellFormed(x) ≡ notNil(x) ∧ lastEl(x).data = 0

Damiano Zanardini (CLIP, UPM) PLID’08 Valencia, July 15th, 2008 4 / 9

An example [SCAM’08]p

Append-reverse: 〈1, 2, 3, 4, [0]〉++〈5, 6, [0]〉 = 〈4, 3, 2, 1, 5, 6, [0]〉
list1 := a1;
list2 := a2;
while (notLast(list1)) {

tmp := list1.next;
list1.next := list2;
list2 := list1;
list1 := tmp;
} Aρwf(list2)
if (nil(list2) ∨ illFormed(list2)) {

res := nil } else { res := list2 }

Damiano Zanardini (CLIP, UPM) PLID’08 Valencia, July 15th, 2008 4 / 9

An example [SCAM’08]p

Append-reverse: 〈1, 2, 3, 4, [0]〉++〈5, 6, [0]〉 = 〈4, 3, 2, 1, 5, 6, [0]〉
list1 := a1;
list2 := a2;
while (notLast(list1)) {

tmp := list1.next;
list1.next := list2;
list2 := list1;
list1 := tmp;
} Aρwf(list2)
if (nil(list2) ∨ illFormed(list2)) {

res := nil } else { res := list2 }

Damiano Zanardini (CLIP, UPM) PLID’08 Valencia, July 15th, 2008 4 / 9

An example [SCAM’08]p

Append-reverse: 〈1, 2, 3, 4, [0]〉++〈5, 6, [0]〉 = 〈4, 3, 2, 1, 5, 6, [0]〉
list1 := a1;
list2 := a2;
while (notLast(list1)) {

tmp := list1.next;
list1.next := list2;
list2 := list1;
list1 := tmp;
} Aρwf(list2)
if (nil(list2) ∨ illFormed(list2)) {

res := nil } else { res := list2 }

Damiano Zanardini (CLIP, UPM) PLID’08 Valencia, July 15th, 2008 4 / 9

An example [SCAM’08]p

Append-reverse: 〈1, 2, 3, 4, [0]〉++〈5, 6, [0]〉 = 〈4, 3, 2, 1, 5, 6, [0]〉
list1 := a1;
list2 := a2;
while (notLast(list1)) {

tmp := list1.next;
list1.next := list2;
list2 := list1;
list1 := tmp;
} Aρwf(list2)
if (nil(list2) ∨ illFormed(list2)) {

res := nil } else { res := list2 }

Damiano Zanardini (CLIP, UPM) PLID’08 Valencia, July 15th, 2008 4 / 9

An example [SCAM’08]p

Append-reverse: 〈1, 2, 3, 4, [0]〉++〈5, 6, [0]〉 = 〈4, 3, 2, 1, 5, 6, [0]〉
list1 := a1;
list2 := a2;
while (notLast(list1)) {

tmp := list1.next;
list1.next := list2;
list2 := list1;
list1 := tmp;
} Aρwf(list2)
if (nil(list2) ∨ illFormed(list2)) {

res := nil } else { res := list2 }

Damiano Zanardini (CLIP, UPM) PLID’08 Valencia, July 15th, 2008 4 / 9

An example [SCAM’08]p

Append-reverse: 〈1, 2, 3, 4, [0]〉++〈5, 6, [0]〉 = 〈4, 3, 2, 1, 5, 6, [0]〉
list1 := a1;
list2 := a2;
while (notLast(list1)) {

tmp := list1.next;
list1.next := list2;
list2 := list1;
list1 := tmp;
} Aρwf(list2)
if (nil(list2) ∨ illFormed(list2)) {

res := nil } else { res := list2 }

Damiano Zanardini (CLIP, UPM) PLID’08 Valencia, July 15th, 2008 4 / 9

An example [SCAM’08]p

Append-reverse: 〈1, 2, 3, 4, [0]〉++〈5, 6, [0]〉 = 〈4, 3, 2, 1, 5, 6, [0]〉
list1 := a1;
list2 := a2;
while (notLast(list1)) {

tmp := list1.next;
list1.next := list2;
list2 := list1;
list1 := tmp;
} Aρwf(list2)
if (nil(list2) ∨ illFormed(list2)) {

res := nil } else { res := list2 }

Damiano Zanardini (CLIP, UPM) PLID’08 Valencia, July 15th, 2008 4 / 9

An example [SCAM’08]p

Append-reverse: 〈1, 2, 3, 4, [0]〉++〈5, 6, [0]〉 = 〈4, 3, 2, 1, 5, 6, [0]〉
list1 := a1; any
list2 := a2; Aρwf(list2)
while (notLast(list1)) {

tmp := list1.next;
list1.next := list2; ...
list2 := list1;
list1 := tmp;
} Aρwf(list2)
if (nil(list2) ∨ illFormed(list2)) {

res := nil } else { res := list2 } Aρnil
(res)

Damiano Zanardini (CLIP, UPM) PLID’08 Valencia, July 15th, 2008 4 / 9

An example [SCAM’08]p

Append-reverse: 〈1, 2, 3, 4, [0]〉++〈5, 6, [0]〉 = 〈4, 3, 2, 1, 5, 6, [0]〉
list1 := a1; any
list2 := a2; Aρwf(list2)
while (notLast(list1)) {

tmp := list1.next;
list1.next := list2; ...
list2 := list1;
list1 := tmp;
} Aρwf(list2)
if (nil(list2) ∨ illFormed(list2)) {

res := nil } else { res := list2 } Aρnil
(res)

Damiano Zanardini (CLIP, UPM) PLID’08 Valencia, July 15th, 2008 4 / 9

An example [SCAM’08]p

Append-reverse: 〈1, 2, 3, 4, [0]〉++〈5, 6, [0]〉 = 〈4, 3, 2, 1, 5, 6, [0]〉
list1 := a1; any
list2 := a2; Aρwf(list2)
while (notLast(list1)) {

tmp := list1.next;
list1.next := list2; ...
list2 := list1;
list1 := tmp;
} Aρwf(list2)
if (nil(list2) ∨ illFormed(list2)) {

res := nil } else { res := list2 } Aρnil
(res)

Damiano Zanardini (CLIP, UPM) PLID’08 Valencia, July 15th, 2008 4 / 9

An example [SCAM’08]p

Append-reverse: 〈1, 2, 3, 4, [0]〉++〈5, 6, [0]〉 = 〈4, 3, 2, 1, 5, 6, [0]〉
list1 := a1; any
list2 := a2; Aρwf(list2)
while (notLast(list1)) {

tmp := list1.next;
list1.next := list2; ...
list2 := list1;
list1 := tmp;
} Aρwf(list2)
if (nil(list2) ∨ illFormed(list2)) {

res := nil } else { res := list2 } Aρnil
(res)

Damiano Zanardini (CLIP, UPM) PLID’08 Valencia, July 15th, 2008 4 / 9

An example [SCAM’08]p

Append-reverse: 〈1, 2, 3, 4, [0]〉++〈5, 6, [0]〉 = 〈4, 3, 2, 1, 5, 6, [0]〉

list2 := a2;

Aρwf(list2)
if (nil(list2) ∨ illFormed(list2)) {

res := nil } else { res := list2 }

Damiano Zanardini (CLIP, UPM) PLID’08 Valencia, July 15th, 2008 4 / 9

Basic ideasp

When a command can be removed

it preserves some property
(as x := x + 2 preserves the parity of x)

such property was obtained by propagating the slicing criterion
backwards from the end of the program (WLOG)
(e.g., in the example, the final nullity of res is propagated backwards
to the well-formedness of list2)

A semantic characterization of these requirements can be given

Damiano Zanardini (CLIP, UPM) PLID’08 Valencia, July 15th, 2008 5 / 9

Basic ideasp

Abstract semantics and slicing criteria

an abstract semantics [[]]#S is induced by the slicing criterion S , which
specifies the property to be preserved by the slicing

∀σ. [[P]]#S (σ) = [[PS]]#S (σ)

criterions are expressed as agreements between two states: A(σ1, σ2)
means that both states behave the same w.r.t. the abstract property
specified by A
S requires the output of the program and of the slice to agree on A:

A
(

[[P]](σ), [[PS]](σ)
)

Damiano Zanardini (CLIP, UPM) PLID’08 Valencia, July 15th, 2008 5 / 9

Basic ideasp

Which kind of machinery is needed, in practice

a way to compute when a command does not make a difference (is
invariant) on the abstract property

A ([[C]](σ), σ)

saying that A is invariant on C means that C cannot be distinguisehd
from skip as regards the property of interest

the computation of such results must be sound, i.e., the invariance
must be guaranteed

Damiano Zanardini (CLIP, UPM) PLID’08 Valencia, July 15th, 2008 5 / 9

Basic ideasp

Which kind of machinery is needed, in practice

how criteria (properties) are propagated backwards through the code,
i.e., given A′ after C , find the best A before C such that

∀σ1, σ2. A(σ1, σ2) ⇒ A′ ([[C]](σ1), [[C]](σ2))

these are example (Hoare-like) rules for propagating agreements
through a program

{A} C {A′} {A′} C ′ {A′′}
{A} C ; C ′ {A′′}

a-concat

{A u Ab} Cw {A u Ab}
{A u Ab} while (b) do Cw {A u Ab}

a-while

Damiano Zanardini (CLIP, UPM) PLID’08 Valencia, July 15th, 2008 5 / 9

Basic ideasp

Which kind of machinery is needed, in practice

when a piece of data depends on other data at the abstract level

to track the flow of information in the case of assignments
syntax is not enough, not even a reasonable approximation: the
difference between concrete and abstract lies in the semantics
e.g., the sign of xy2 only depends on x

in this direction:

binary domains (null/non-null, zero/non-zero, etc.)?
in this case, independence of (a property of) an expression from (a
property of) a variable means that knowing the answer to questions
about x is not needed to answer about the result
e.g., if answering to is x null? is irrelevant to the question is e
positive?, then the sign of e does not depend on the nullity of x
using BDDs would be practical?

Damiano Zanardini (CLIP, UPM) PLID’08 Valencia, July 15th, 2008 5 / 9

Trying to think generalp

What we have

the presented version of slicing reasons about abstractions (properties) of
the (final) value of variables

in one sense, [[]]#S is an abstraction of the denotational semantics

What we (fore)see

yet, what if non-denotational information is included in the abstraction?

e.g., suppose [[]]#S be an abstraction of the trace semantics

this may allow to reason about the history of the computation

Damiano Zanardini (CLIP, UPM) PLID’08 Valencia, July 15th, 2008 6 / 9

Trying to think generalp

What we have

the presented version of slicing reasons about abstractions (properties) of
the (final) value of variables

in one sense, [[]]#S is an abstraction of the denotational semantics

What we (fore)see

yet, what if non-denotational information is included in the abstraction?

e.g., suppose [[]]#S be an abstraction of the trace semantics

this may allow to reason about the history of the computation

Damiano Zanardini (CLIP, UPM) PLID’08 Valencia, July 15th, 2008 6 / 9

Preserving program propertiesp

Possibilities

this approach could possibly allow reasoning about complex, functional
properties of a program

termination: PS {must|can|cannot} terminate iff P
{must|can|cannot} terminate

information flow: x {must|can|cannot} flow to y in PS iff it
{must|can|cannot} flow to y in P

Damiano Zanardini (CLIP, UPM) PLID’08 Valencia, July 15th, 2008 7 / 9

Preserving program propertiesp

Possibilities

this approach could possibly allow reasoning about complex, functional
properties of a program

termination: PS {must|can|cannot} terminate iff P
{must|can|cannot} terminate

information flow: x {must|can|cannot} flow to y in PS iff it
{must|can|cannot} flow to y in P

A general framework

in all cases, the problem is to compute invariance, to propagate
properties, to deal with abstract dependence

clearly, formalizing and manipulating the property of interest can be
quite tricky

Damiano Zanardini (CLIP, UPM) PLID’08 Valencia, July 15th, 2008 7 / 9

Preserving program propertiesp

An example

suppose h cannot flow to l while l ′′ must flow to l

l := h+l ′′

...
if (b) { l := l ′+1 } else { l := l ′+l ′′ }
...

in this case, removing the conditional would break the first
requirement, since there could be a flow from h to l

of course, the absence of must-flow requirements would imply that
the empty program is always a correct slice (unless self-flows are
forbidden)

Damiano Zanardini (CLIP, UPM) PLID’08 Valencia, July 15th, 2008 7 / 9

Related workp

To be completed...

ANI (Giacobazzi & Mastroeni)

abstract dependencies (Rival, Mastroeni & Zanardini)

symbolic execution (King)

conditioned slicing (Canfora et al.)

logic for information flow (Amtoft & Banerjee)

invariance on commands?

. . .

Damiano Zanardini (CLIP, UPM) PLID’08 Valencia, July 15th, 2008 8 / 9

Referencesp

MZ08

I. Mastroeni and D. Zanardini. Data Dependencies and Program
Slicing: from Syntax to Abstract Semantics. In Proc. ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation (PEPM),
2008.

Zan08

D. Zanardini. The Semantics of Abstract Program Slicing. In Proc.
International Working Conference on Source Code Analysis and
Manipulation (SCAM), 2008. To appear.

Damiano Zanardini (CLIP, UPM) PLID’08 Valencia, July 15th, 2008 9 / 9

