
Decompilation is an information-flow problem
(Or, information flow meets program transformation)

Boris Feigin

Computer Laboratory, University of Cambridge

PLID 2008

joint work with Alan Mycroft

1 / 22

Motivation

“Given suitable tools we can present the [cryptographic]
key as a constant in the computation which is carried out
using that key and then we can optimise the code given
that constant. This will cause the key to be intimately
intertwined with the code which uses it.”

Playing ‘Hide and Seek’ with Stored Keys
Shamir and van Someren (1999)

2 / 22

Typical source and target languages

v ∈ Value = Z
r ∈ Register = {r0, r1, . . . , r31}

while-language (source):
e ::= v | x | op e1, . . . , en

c ::= x := e | skip | c0; c1

| if e then c0 else c1 | while e do c

RISC assembly (target):
ι ::= movi rd , v | mov rd , rs | ld rd , [rs] | st [rd], rs
| op rd , r1, . . . , rn | jz r , l | jnz r , l | nop | ι0; ι1

3 / 22

Definitions

I C(−) is a compiler from source language S to target
language T .

I The observational equivalence relations of S and T are
(respectively) ∼S and ∼T .

I Decompilation recovers a source program semantically
equivalent to the original. D(−) is a decompiler iff

D(C(e)) ∈ [e]∼S

This is the weakest possible definition of decompilation.
I In certain cases there is a trivial solution for D(−): emit an interpreter for T written in S

incorporating the text of the program (in T) to be decompiled.

I How well can a decompiler do in principle?
I IOW, how much information about the source program can be inferred from the output of the

compiler?

4 / 22

Definitions

I C(−) is a compiler from source language S to target
language T .

I The observational equivalence relations of S and T are
(respectively) ∼S and ∼T .

I Decompilation recovers a source program semantically
equivalent to the original. D(−) is a decompiler iff

D(C(e)) ∈ [e]∼S

This is the weakest possible definition of decompilation.
I In certain cases there is a trivial solution for D(−): emit an interpreter for T written in S

incorporating the text of the program (in T) to be decompiled.

I How well can a decompiler do in principle?
I IOW, how much information about the source program can be inferred from the output of the

compiler?

4 / 22

Example

C(“x := 42”) = C(“y := 42; x := y”) =

= C(“z := 6; y := 7; x := z × y”) =

= “mov r0, 42”

C(−) does constant folding, constant propagation, etc.

5 / 22

Program equivalence

I ≡ (“bit-for-bit” equality of programs)

e ≡ e ′ ⇐⇒ strcmp(e, e ′) == 0

I ∼α (α-equivalence)

6 / 22

Program equivalence

I Recall: two expressions are contextually equivalent (e ∼ e ′)
whenever

e ∼ e ′ ⇐⇒ ∀Ctx[−] Ctx[e] ∼= Ctx[e ′]

where Ctx[−] ranges over contexts of the language and ∼= is
some observation (say, convergence).

I Restriction to programs (d ranges over inputs):

e ∼ e ′ ⇐⇒ ∀d ∈ D [[e]](d) = [[e ′]](d)

7 / 22

Program equivalence

I Recall: two expressions are contextually equivalent (e ∼ e ′)
whenever

e ∼ e ′ ⇐⇒ ∀Ctx[−] Ctx[e] ∼= Ctx[e ′]

where Ctx[−] ranges over contexts of the language and ∼= is
some observation (say, convergence).

I Restriction to programs (d ranges over inputs):

e ∼ e ′ ⇐⇒ ∀d ∈ D [[e]](d) = [[e ′]](d)

7 / 22

Example: size t strlen(const char *str)

const char *s = str;

while(*s)
s++;

return (s - str);

size_t len = 0;

for(; str[len]; len++)
;

return len;

8 / 22

Intuition

Define the relation f −1(Q), the kernel of f w.r.t. Q (Clark et al.,
2005):

x f −1(Q) x ′ ⇐⇒ (f x) Q (f x ′)

E.g.
“x := 42” C−1(≡) “y := 42; x := y”

Programs compiled by “less normalizing” compilers are more
susceptible to decompilation. We tend to have the case that:

∼α ⊂ C−1
1 (≡) ⊂ C−1

2 (≡) ⊂ . . . ⊂ C−1
n (≡) ⊂ ∼S

where C1(−) to Cn(−) are progressively more optimizing compilers.

9 / 22

Intuition

Define the relation f −1(Q), the kernel of f w.r.t. Q (Clark et al.,
2005):

x f −1(Q) x ′ ⇐⇒ (f x) Q (f x ′)

E.g.
“x := 42” C−1(≡) “y := 42; x := y”

Programs compiled by “less normalizing” compilers are more
susceptible to decompilation. We tend to have the case that:

∼α ⊂ C−1
1 (≡) ⊂ C−1

2 (≡) ⊂ . . . ⊂ C−1
n (≡) ⊂ ∼S

where C1(−) to Cn(−) are progressively more optimizing compilers.

9 / 22

Intuition

Define the relation f −1(Q), the kernel of f w.r.t. Q (Clark et al.,
2005):

x f −1(Q) x ′ ⇐⇒ (f x) Q (f x ′)

E.g.
“x := 42” C−1(≡) “y := 42; x := y”

Programs compiled by “less normalizing” compilers are more
susceptible to decompilation. We tend to have the case that:

∼α ⊂ C−1
1 (≡) ⊂ C−1

2 (≡) ⊂ . . . ⊂ C−1
n (≡) ⊂ ∼S

where C1(−) to Cn(−) are progressively more optimizing compilers.

9 / 22

Compiler correctness

C(−) is fully abstract (Abadi, 1998) iff

e ∼S e ′ ⇐⇒ C(e) ∼T C(e ′) (1)

Abadi observes that the forward implication “means that the
translation does not introduce information leaks”.

10 / 22

Compiler correctness

C(−) is fully abstract (Abadi, 1998) iff

e ∼S e ′ ⇐⇒ C(e) ∼T C(e ′) (1)

Abadi observes that the forward implication “means that the
translation does not introduce information leaks”.

10 / 22

Non-interference

e ∼S e ′ ⇒ C(e) ∼T C(e ′) (2)

Zero information flow (from high-security inputs to low-security
outputs) for a program M:

σ ∼low σ′ ⇒ [[M]](σ) ≈ [[M]](σ′) (3)

where two states are equivalent up to ∼low when their low-security
parts are equal.

11 / 22

Relating non-interference and software protection

Let P and Q be binary relations over domains D and E
respectively. Then, given f : D → E , say that f : P ⇒ Q whenever

∀x , x ′ ∈ D x P x ′ ⇒ (f x) Q (f x ′)

The correspondence is explicit:

[[M]](−) : ∼low ⇒ ≈ C(−) : ∼S ⇒ ∼T

The substitution {C / [[M]], ∼S / ∼low, ∼T / ≈} unifies the
equations nicely.

12 / 22

Relating non-interference and software protection

Let P and Q be binary relations over domains D and E
respectively. Then, given f : D → E , say that f : P ⇒ Q whenever

∀x , x ′ ∈ D x P x ′ ⇒ (f x) Q (f x ′)

The correspondence is explicit:

[[M]](−) : ∼low ⇒ ≈ C(−) : ∼S ⇒ ∼T

The substitution {C / [[M]], ∼S / ∼low, ∼T / ≈} unifies the
equations nicely.

12 / 22

Parallels

I Programs are secret (high-security) inputs. Compiled binaries
are the public (low-security) outputs (≡).

I Attackers attempt to infer (as much as possible about) the
inputs from the outputs. (Decompilation.)

Caveat: in practice, the goal of decompilation is to recover any
readable source program.

13 / 22

Parallels

I Programs are secret (high-security) inputs. Compiled binaries
are the public (low-security) outputs (≡).

I Attackers attempt to infer (as much as possible about) the
inputs from the outputs. (Decompilation.)

Caveat: in practice, the goal of decompilation is to recover any
readable source program.

13 / 22

Secure information flow for compilers?

We would like to have zero information flow compilers:

C(−) : ∼S ⇒ ≡

I Relational reading: C(−) may leak only the equivalence class
of its input programs.

I C(−) must be perfectly optimizing (undecidable for
Turing-complete languages).

I Though, cf. superoptimization (Massalin, 1987).

14 / 22

Secure information flow for compilers?

We would like to have zero information flow compilers:

C(−) : ∼S ⇒ ≡

I Relational reading: C(−) may leak only the equivalence class
of its input programs.

I C(−) must be perfectly optimizing (undecidable for
Turing-complete languages).

I Though, cf. superoptimization (Massalin, 1987).

14 / 22

Implications

In general, a compiler must leak more than just the equivalence
class of its input programs. We are interested in applying
techniques from quantitative information flow to deriving concrete
bounds on the leakage.

E.g.: the identity “compiler” (λx .x) leaks its input completely.

15 / 22

Possible applications

I Randomized compilation and information-flow security for
non-deterministic languages

I cf. non-deterministic encryption schemes

I Obfuscation (more generally: software protection)

16 / 22

Virtualization

Essentially, fast whole-system emulation. Examples: KVM,
VMware, Xen, . . .

(virtual machine) transparency n.

making virtual and native hardware indistinguishable
under close scrutiny by a dedicated adversary

(Garfinkel et al., 2007)

e ∼x86 e ′ ⇐⇒ [[vm]](e) ≈ [[vm]](e ′)

17 / 22

Virtualization

Essentially, fast whole-system emulation. Examples: KVM,
VMware, Xen, . . .

(virtual machine) transparency n.

making virtual and native hardware indistinguishable
under close scrutiny by a dedicated adversary

(Garfinkel et al., 2007)

e ∼x86 e ′ ⇐⇒ [[vm]](e) ≈ [[vm]](e ′)

17 / 22

Virtualization

Essentially, fast whole-system emulation. Examples: KVM,
VMware, Xen, . . .

(virtual machine) transparency n.

making virtual and native hardware indistinguishable
under close scrutiny by a dedicated adversary

(Garfinkel et al., 2007)

e ∼x86 e ′ ⇐⇒ [[vm]](e) ≈ [[vm]](e ′)

17 / 22

From compilers to interpreters and back again

I Partial evaluation

[[e]](d) = [[sint]](e, d) = [[[[mix]](sint, e)]](d)

I Non-interference?

e ∼S e ′ ⇐⇒ ∀d [[int]](e, d) ≈ [[int]](e ′, d)

e ∼S e ′ ⇐⇒ [[mix]](int, e) ≈ [[mix]](int, e ′)

18 / 22

From compilers to interpreters and back again

I Partial evaluation

[[e]](d) = [[sint]](e, d) = [[[[mix]](sint, e)]](d)

I Non-interference?

e ∼S e ′ ⇐⇒ ∀d [[int]](e, d) ≈ [[int]](e ′, d)

e ∼S e ′ ⇐⇒ [[mix]](int, e) ≈ [[mix]](int, e ′)

18 / 22

Overview

I Optimizing compilers obey a “non-interference”-like property

I Perfect optimization is impossible, so information leaks are
inevitable

I An information-flow approach to program transformation?

19 / 22

Challenges

I Probability distributions over programs
I Shannon information theory / Kolmogorov complexity /

Scott’s information systems

I “Real” compilers don’t come with formalized equational
theories

20 / 22

Related work

I Decompilation: Mycroft (1999), Katsumata and Ohori (2001),
Ager et al. (2002).

I Full abstraction: Mitchell (1993), Abadi (1998),
Kennedy (2006).

I Reverse engineering by power analysis etc.: Vermoen (2007).

I Randomized compilation: Cohen (1993), Forrest et al. (1997).

I Nullspace of compilers: Veldhuizen and Lumsdaine (2002).

I Obfuscation: Barak et al. (2001), Dalla Preda and
Giacobazzi (2005).

I Virtual machines and partial evaluation: Feigin and
Mycroft (2008).

21 / 22

Questions?

22 / 22

