
Integration of Interactive and Automatic Provers

Jia Meng

Computer Laboratory, University of Cambridge
Jia.Meng@cl.cam.ac.uk

Abstract. Interactive and resolution based automatic provers have both
been used widely. Interactive provers offer users expressive formalisms
and flexibility and are suitable for proving theorems of any user defined
logics. However, they provide limited automation. In comparison, reso-
lution based automatic provers provide automation, but only allow first
order logic with equality. I am investigating combining the two types of
provers through integrating an interactive prover Isabelle and a resolu-
tion based automatic prover Vampire. This paper gives an overview of
the integration and describes the techniques used in it. It also lists some
experimental results.

1 Introduction

Interactive theorem provers support expressive formalisms which allow users
to define functions, recursive types and embed complicated logics and theories.
However users must guide each step of proofs and hence require significant human
efforts. Resolution based provers are automatic but only allow first order logic
with equality. We investigate combining the interactive provers’ flexibility and
resolution provers’ automation through integration.
In this paper I describe the progress of integrating a generic interactive the-

orem prover Isabelle [6] and a resolution prover Vampire [8].

1.1 Isabelle and Vampire

Isabelle is a powerful interactive theorem prover based on the typed λ-calculus.
It is generic: users can embed various logics inside. Currently the supported
logics include HOL (Higher Order Logic), HOLCF (the definitional extension
of Church’s Higher-Order Logic with Scott’s Logic for Computable Functions),
FOL (First Order Logic), ZF (ZF Set Theory based on FOL).
A proof goal in Isabelle is a statement expressed in some logic. Users need

to specify what tactics and rules to use in order to prove a goal or decompose it
into several smaller subgoals. A rule is a previously proved lemma or theorem.
A tactic tells Isabelle how the rules should be applied. There are several built-in
classical reasoning tactics, such as blast and fast (based on tableau methods)
as well as equality reasoning tactics, such as auto and simp (based on equality
rewriting). They take on a default set of classical rules and equalities in the



16 Jia Meng

current context of the goal and attempt to find a proof automatically. However,
users still need to choose the right tactics and this requires proof skills.

Vampire is one of the leading resolution theorem provers for first-order logic
with equality. Its paramodulation rule deals with equality. In each of the past
three years it has won some category of the CADE ATP System Competition.

1.2 Aim of This Integration and Its Novelties

The aim [7] of integrating Isabelle and Vampire is that when a user attempts to
prove an Isabelle goal, instead of asking the user to specify what tactics or rules to
use, the goal will be translated to first-order logic clauses along with a suitable set
of rules. These rules are taken from the default configuration of blast and auto.
Isabelle’s existing provers use these rules already since they are already-proved
theorems. These clauses will then be sent to Vampire. Vampire will run in the
background, attempting to prove each unsolved subgoal. When a proof is found,
the proof will be sent back to Isabelle for verification. Vampire will combine the
classical and equality reasoning through resolution and paramodulation, and
will replace many Isabelle’s tools such as blast and auto. Furthermore, our
integration also aims to improve the automation by automatically proving goals
that cannot be proved by the Isabelle’s built-in tools.

There have been several previous attempts at integrating interactive and

automatic theorem provers. KIV has been integrated with 3T
AP by Ahrendt et

al. [1]. We are hoping to improve upon their results through the use of Vampire,
which is one of the world’s best automatic provers. The HOL system [2] has been
integrated with a model elimination prover developed by John Harrison [3] and
was later integrated with prover Gandalf by Joe Hurd [4]. However, the users
must collect relevant lemmas manually.

Two major novelties of our integration are:

– Users are less likely to have to collect lemmas manually. They do not have
to specify proof tactics either.

– As Vampire will run in the background, users will not have to wait for a
response from Vampire before continuing with the rest of the proof.

I have experimented the link up between Isabelle/ZF (with equality) and
Vampire. Isabelle/ZF is based on first order set theory and is untyped. The rest
of this paper discusses the following aspects of the work involved:

1. Translation between Isabelle/ZF formalism and first-order logic.

2. Minimisation of Vampire proof search space.

3. Vampire’s weight and precedence assignments to function and predicate sym-
bols.

4. Settings of Vampire and their influence to proof performance.

5. A collection of results.

6. Conclusion and future work.



Integration of Interactive and Automatic Provers 17

2 Translation Between Isabelle/ZF and First-Order Logic

A practical way of translating between the two formalisms is essential for effi-
cient proving by Vampire. Therefore I have carried out many experiments which
consisted of taking blast, fast, clarify, auto, simp invocations from existing
proofs and attempting to reproduce proofs using Vampire. During a proof, a
set of classical rules and equality rewriting rules in the current Isabelle context
are translated to first-order axiom clauses. The goals are negated, converted to
clauses and sent to Vampire.
As it was experimentation, the translation between the formalisms was done

manually.
Isabelle/ZF formulas (rules and goals) that are already in first-order logic

(FOL) form can be translated directly to clauses using Clause Normal Form
(CNF) transformation. For other Isabelle/ZF formulas that are not expressed in
FOL form, reformulation of the formulas is required before CNF transformation.

2.1 Transformation of Formulas Not in FOL Form

Isabelle/ZF rules, such as the elimination rule for set intersection (IntE),

∀cAB P [c ∈ A ∩B ∧ (c ∈ A ∧ c ∈ B → P )→ P ]

need to be translated into a FOL formula (∩E),

∀cAB [c ∈ A ∩B → (c ∈ A ∧ c ∈ B)]

since the predicate variable P is not allowed in FOL. This translation is correct:
the first formula is the elimination rule written in the natural deduction form and
we need to unfold it in order to eliminate the predicate variable P . Although the
predicate P disappears, we are not losing information during a proof. Suppose
we are going to prove a goal

[(i ∈ S1 ∩ S2) ∧ C1 ∧ C2 . . . ∧ Cn]→ Q

where C1 . . .Cn and Q are formulas. In Isabelle, this goal is proved by applying
the set intersection elimination rule IntE. Firstly c ∈ A ∩ B is instantiated to
i ∈ S1 ∩ S2, and P to Q (c, A, B, P are universally quantified variables). Then
the goal is replaced by a new subgoal

[C1 ∧ C2 . . . ∧ Cn ∧ i ∈ S1 ∧ i ∈ S2]→ Q

The negation of this subgoal generates the same set of clauses as what we will
have if we resolve the negation of the original goal with the formula ∩E above.
Moreover, rules such as domainE,

∀a r P [(a ∈ domain(r) ∧ ∀y (〈a, y〉 ∈ r → P ))→ P ]



18 Jia Meng

should be translated into

∀a r [a ∈ domain(r)→ ∃y (〈a, y〉 ∈ r)]

We also need to remove Isabelle’s terms, such as
⋂

x∈A
B(x), since they are

not present in first-order logic. A term y ∈
⋂

x∈A
B(x) is translated into

∀x [x ∈ A→ y ∈ B(x)] ∧ ∃a [a ∈ A]

In addition, a formula φ(
⋂

x∈A
B(x)) is equivalent to ∃v [φ(v) ∧ ∀u (u ∈ v ↔

u ∈
⋂

x∈A
B(x))].

2.2 Some Other Issues of Translation

A subset relation R ⊆ S is equivalent to ∀x (x ∈ R → x ∈ S) (this reduces the
subset relation to the membership relation).

Experiments show that Vampire can find a proof much more quickly if the
subset relation is replaced by its equivalent membership relation. This is prob-
ably because during most of the complex proofs, subset relations have to be
reduced to equivalent membership relations anyway. The experimental results
are shown in section 5.1

Some formulas involve set equality as A = B. During many proofs set equal-
ity predicates should be reduced to two subset predicates by resolution: A ⊆ B

and B ⊆ A. However, Vampire usually gives the positive equality literal (equal)
a low priority relative to other literals in the same clause. Therefore the posi-
tive equality literal is likely to be selected and resolved last during resolution.
Experiments show that better performance can be achieved when set equality
predicates are replaced by the subset predicates, which will be further reduced
to formulas involving membership predicates as shown above. The experimental
results are shown in section 5.2.

2.3 Minimising Search Space

The size of the search space (in terms of the number of clauses) plays a significant
role in the performance of resolution provers. Formula renaming [5] has been used
to reduce the number of clauses generated during CNF transformation.

For instance, the rule Ap contractE generates 135 clauses using standard
CNF transformation. After applying formula renaming to this rule, the CNF
transformation generates 15 clauses.

In the attempt of proof reproduction in Vampire, four proof goals required
the use of Ap contractE. None of the four goals were proved when standard CNF
transformation was used. However, three of them were proved after applying the
formula renaming method.



Integration of Interactive and Automatic Provers 19

3 Weight, Precedence Assignment

During a resolution proof, if we want a literal to be eliminated sooner, then it
should have a higher weight relative to other literals in the same clause. This
difference in weights gives an ordering on literals. Vampire uses Knuth-Bendix
Ordering (KBO) [9] to compute this ordering on literals. Furthermore, KBO is
parameterized by weights and precedences of functions and predicates, which
can be assigned explicitly by users. Correct weight, precedence assignment is
important for several reasons.
An Isabelle proof usually requires definitions of constants, functions, etc. to

be unfolded before tactics can be applied. However, these definitions can be
sent to Vampire as equality clauses, so that users do not have to specify which
definition should be unfolded. In order to have Vampire replace the definiendum
by the definiens through ordered paramodulation, we need to assign greater
weights to functions that occur in the definiendum.
An example was a proof of lemma I contract E in an Isabelle/ZF theory file

Comb.thy. It proves that combinator I (the identity combinator) has no possible
contraction. An axiom clause of definition I = KSS was included in the Vampire
axiom set. Without assigning a higher weight to I relative to K and S, ordered
paramodulation will never replace I by KSS as the latter is much heavier than
the former (all function symbols have the same weight by default). After the
assignment was done, Vampire proved the goal quickly.
More importantly, Isabelle rules have information indicating whether a rule

should be used as an elimination rule (forward chaining) or an introduction rule
(backward chaining). This information is lost after the rules are translated into
clauses. Weight and precedence assignment in Vampire is probably the only way
to preserve this information. However the resulting KBO is a partial ordering
on terms with variables. Therefore in some situations, it is possible that weight
assignment will not produce any effect.

4 Settings of Vampire

Vampire allows users to specify various settings of the prover. Considerable ex-
perimentation with numerous settings of Vampire was carried out in order to
find the best combinations of these settings. This was done by attempting to
prove around 250 lemmas taken from Isabelle/ZF’s theory files equalities.thy
and Comb.thy. Each lemma presents between 1 and 4 separate goals.
The experiments show that the default setting of Vampire is usually good.

Moreover, the literal selection mode is the most important factor in deter-
mining the speed of proofs. Four selection modes (selection4, selection5,
selection6 and selection7) are better than the others. Vampire also supports
Set of Support Strategy (SOS). Most of the goals require us to turn on SOS in
order to find proofs.
The experiments show that five combinations of settings are better. They

were written to five separate setting files so that five Vampire processes can run
in parallel. The result of some tests is shown next.



20 Jia Meng

5 Results

5.1 Comparisons of Subset and Membership Relations

In order to investigate whether we should reduce subset relations to the equiv-
alent membership relations, proofs of 32 goals were carried out. These goals
involve either positive subset predicates or negative subset predicates, or both.
Without replacing any subset predicate, only 17 goals were proved. However,
after I removed all subset predicates 30 goals were proved. A more detailed
comparison is shown in Table 1 below.

Table 1. Number of Goals Proved with and without Subset Relations

Positive Subset Negative Subset Both

Number of Goals Involving 14 31 13

Number of Goals Proved if
only Keeping

11 18 6

Number of Goals Proved if
Removing Both Positive
and Negative Subset

13 30 13

Some explanation of Table 1 may be useful. The intersection of row Number

of Goals Involving and column Positive Subset indicates the total number
of goals where positive subset predicates exist. These goals may involve negative
subset predicates as well. The intersection of row Number of Goals Proved if

Removing Both Positive and Negative Subset and Positive Subset indi-
cates that 13 goals were proved (out of 14 goals that involve positive predicates)
once all subset predicates (both positive and negative) were removed. Similarly
for other columns and rows.

5.2 Tests on Equality Literals

I tried to prove twelve goals involving equality literals. Eleven of these goals
have negative equalities and one has a unit clause with a positive equality literal.
Vampire quickly found a proof for the goal containing the positive equality, as
I had expected: in a unit clause, a positive equality is definitely selected and
resolved with some negative equality literal (a negative equality literal receives
a higher weight than other literals occurring in the same clause). In comparison,
only one goal involving a negative equality was proved. Once I removed all
negative equalities using subset and then membership literals, 10 goals were
proved.

5.3 First Comparison of Isabelle/ZF and Isabelle/ZF-Vampire

The aim of the first comparison was to find out how well can Isabelle/ZF-Vampire
integration prove goals that were originally proved by Isabelle’s built-in tools,



Integration of Interactive and Automatic Provers 21

such as blast, auto, simp, clarify etc. This experiment is also important to
demonstrate whether the integration can improve automation by combining the
built-in tools, which need to be performed separately in Isabelle.

The initial set of tests was proving around 250 lemmas. They were taken
from equalities.thy and Comb.thy. Around 70 axiom clauses were included
in the axiom set. Most of the goals were proved with this axiom set.

As the ultimate aim is to give Vampire a large set of axioms, tests with a
larger axiom set were necessary. During this second run of tests around 129 to 160
axioms clauses were used (As it was explained in section 1, these axiom clauses
are generated by the rules taken from the default configuration of blast and
auto.). Vampire tried to prove 37 lemmas (63 separate goals), which were drawn
from the previous 250 lemmas. Each lemma was attempted five times using the
five combinations of settings: defaultSetting uses default settings; setting1
to setting3 use Vampire’s literal selection mode selection5 to selection7 respec-
tively; setting4 turns on dynamic splitting. The lemmas from equalities.thy

were mainly proved by blast tactic (with other tactics such as clarify, simp
as well), while lemmas from Comb.thy are more complicated and many of them
also used auto tactic. The results are shown in Table 2 below.

The time limit for each attempt of proof was 60sec.

Table 2. Number of Goals Proved with the Large Axiom Set

Setting File Number of Goals
Proved from
Comb.thy

Number of Goals
Proved from
equalities.thy

Total Number of
Goals Proved

defaultSetting 21 28 49

setting1 22 28 50

setting2 21 27 48

setting3 21 28 49

setting4 18 27 45

Combination of all settings 24 28 52

Fifty-two goals out of 63 were proved by the combination of all five settings
within the time limit. Many tactics, such as blast, auto, can indeed be replaced
by Vampire.

The tests also indicate a potential that more goals can be proved by running
several Vampire processes with different settings in parallel, although the results
so far are not dramatic. In addition, there are 8 relatively complex goals where
the amount of time taken by each setting to find proofs varies significantly.
It shows that goals could be proved more quickly by running several Vampire
processes in parallel. Performance variance in different settings is more significant
when proving more complicated lemmas (here lemmas drawn from Comb.thy).



22 Jia Meng

5.4 Second Comparison of Isabelle/ZF and Isabelle/ZF-Vampire

A more important aim of this integration is to automatically prove goals that
cannot be proved by Isabelle’s built-in tools and hence reduce user interaction.
This second comparison examined whether the integration can prove goals that
were not proved by blast, auto, simp etc. Isabelle proofs of these goals consist
of several proof steps carried out by users. If these goals can be proved automat-
ically by Vampire, then Isabelle users will not have to specify the proof steps.
This set of experiments took 15 lemmas from Isabelle/ZF theory files Comb.thy
and PropLog.thy.

One point that we need to consider is at which stage of a proof, we should
send the current goal/subgoals to Vampire for an automatic proof. Induction is
sometimes necessary to prove a goal and we are not aiming to automate this
induction step. Therefore for those lemmas that were proved by induction in
Isabelle, I sent to Vampire those subgoals I was left with after induction was
performed.

The results are shown in Table 3. Some lemmas present more than one sub-
goal to Vampire. Ten lemmas were proved by Vampire. For those lemmas that
could not be proved by Vampire automatically, one or more subgoals’ proofs
were not found. The combination of the five Vampire settings was used during
the tests. The lemma IDs marked with asterisks indicate that I attempted to
eliminate all Isabelle proof steps for these lemmas.

Table 3. Number of More Complex Goals Proved by Vampire

Lemma
ID

Number of Isabelle Proof
Steps Eliminated

Number of Subgoals
Sent to Vampire

Number of Subgoals
Proved by Vampire

1 4 2 2

2 2 2 1

3 3 2 2

4 2 1 1

5* 2 1 1

6* 4 1 1

7* 2 1 1

8* 3 1 1

9* 4 1 1

10* 6 1 1

11 3 3 1

12* 3 1 0

13* 2 1 0

14 10 2 1

15 4 2 2



Integration of Interactive and Automatic Provers 23

6 Conclusion and Future Work

The current experimentation clearly demonstrates the potential of integrating
Isabelle and Vampire. User interaction with Isabelle during a proof is significantly
reduced. We will next implement the automatic communication between the two
provers. This implementation will consist of several parts:

– Automatic translation of formulas between Isabelle/ZF and Vampire’s First
Order Logic. This should not be difficult once we have found a practical way
for this translation.

– Implementing an interface between the two provers. At some point during an
Isabelle proof, a goal or some subgoals may be sent to the automatic provers.
One or more automatic provers may sit at some servers over the network,
running several processes (with different settings) in parallel and attempt to
solve any unsolved subgoal. Since it might take a while for the automatic
provers to find a proof, users should be able to carry on with the rest of the
proof. The way that these automatic and interactive provers interact may
be important to the overall performance of the integration. As there is much
communication between the provers, we need to ensure the communication
can be carried out quickly and efficiently.

– Proof reconstruction in Isabelle. Once a proof is found by Vampire, we need
to send the proof back to Isabelle for verification. However, resolution based
provers’ proofs are hard to read, especially if Skolemization is used. We need
to implement such proof reconstruction efficiently in Isabelle.

Furthermore, future work will also include investigation on how to use Vam-
pire’s weight and precedence assignments more effectively.
Trials on other Vampire’s settings will help fine tune Vampire’s performance.
In addition, integration of other supported logics of Isabelle with Vampire

will take place.

References

1. Wolfgang Ahrendt, Bernhard Beckert, Reiner Hähnle, Wolfram Menzel, Wolfgang
Reif, Gerhard Schellhorn, and Peter H. Schmitt. Integrating automated and interac-
tive theorem proving. In Wolfgang Bibel and Peter H. Schmitt, editors, Automated
Deduction — A Basis for Applications, volume II: Systems and Implementation
Techniques of Applied Logic Series, No. 9, pages 97–116. Kluwer, Dordrecht, 1998.

2. M. J. C. Gordon and T. F. Melham. Introduction to HOL (A theorem-proving
environment for higher order logic). Cambridge University Press, 1993.

3. John Harrison. A mizar mode for HOL. In Joakim von Wright, Jim Grundy, and
John Harrison, editors, Theorem Proving in Higher Order Logics: 9th International
Conference, TPHOLs’96, volume 1125 of Lecture Notes in Computer Science, pages
203–220, Turku, Finland, 1996. Springer-Verlag.

4. Joe Hurd. Integrating Gandalf and HOL. In Yves Bertot, Gilles Dowek, André
Hirschowitz, Christine Paulin, and Laurent Théry, editors, Theorem Proving in
Higher Order Logics, 12th International Conference, TPHOLs ’99, volume 1690 of



24 Jia Meng

Lecture Notes in Computer Science, pages 311–321, Nice, France, September 1999.
Springer.

5. Andreas Nonnengart and Christoph Weidenbach. Computing Small Clause Normal
Forms. In Alan Robinson and Andrei Voronkov, editors, Handbook of Automated
Reasoning, chapter 6, pages 335 – 367. Elsevier, Amsterdam, Netherlands, 2001.

6. Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Springer, 1994. LNCS
828.

7. Lawrence C Paulson. Automation for interactive proof. Grant Proposal to the U.K.
Engineering and Physical Sciences Research Council, 2002.

8. A. Riazanov and A. Voronkov. The Design and Implementation of Vampire. AI
Communications, 15(2-3):91–110, 2002.

9. A. Riazanov and A. Voronkov. Efficient checking of term ordering constraints.
Preprint CSPP-21, Department of Computer Science, University of Manchester,
February 2003.


