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Abstract. In many of its practical applications, such as natural language
processing, automatic programming, expert systems, semantic web ontologies
and knowledge discovery in databases, Inductive Logic Programming (ILP) is
not used to substitute but rather to complement manual knowledge
acquisition.This manual acquisition is increasingly done using hybrid languages
integrating objects with rules or relations.  Since using a common
representation language for both manually encoded and ILP learned knowledge
is key to their seamless integration, this raises the issue of using such hybrid
languages for induction. In this paper, we present Cigolf, an ILP system that
uses the object-oriented logic language Flora for knowledge representation.
Cigolf takes as input a background knowledge base, a set of examples, and a
learning bias specification, all represented in Flora. It translates this object-
oriented input into a relational input specification for the ILP system Aleph. It
then uses a tabled Prolog version of Aleph to induce new knowledge and
translates back this learned knowledge into Flora. We describe the issues raised
by this bi-directional translation process and the solution we adopted. We also
compare the respective performance of Cigolf and Aleph on a few ILP
benchmarks to assess the overhead associated with using an object-oriented
logic representation language instead of a purely logic one for learning tasks.

1  Introduction

Inductive Logic Programming (ILP) stands out among machine learning techniques
by virtue of the following distinctive characteristics:
1. Ability to learn generic relations among several domain entity classes, each one

represented by a distinct universally quantified variable, overcoming the limitation
of attribute-based learning to the properties of a single domain entity class;

2. Ability to learn from both examples and intentional knowledge, as opposed to only
from examples;

3. Ability to learn recursive definitions.
These three unique features have made ILP a leading contender for the following

machine learning applications:
1. Automatic programming in CASE [6];



2. Knowledge acquisition for Natural Language Processing (NLP) systems, expert
systems in deterministic yet structurally complex domains and semantic web
ontologies [5];

3. Mining multiple table databases, as opposed to simplistic single table transaction
databases [4].
For all these applications, while complete automation remains often unrealistic,

consolidated manual knowledge acquisition techniques, and in some cases partially
reusable knowledge bases are available. Thus, the ability of ILP to complete, from
data, prior intentional knowledge that was manually modeled is crucial. In addition,
much of the knowledge needed by these applications is relational in nature,
reinforcing the special adequacy of ILP. Finally, both automatic programming and
NLP knowledge acquisition require learning recursive rules.

Recently, these key application niches of ILP are one by one making the switch to
object-oriented or hybrid object-rule representation languages for the manually
encoded part of their knowledge base. Object-Orientation (OO) has become the
leading paradigm for modeling and programming languages in modern software
engineering. Similarly, the most widely used languages in symbolic NLP are based on
typed feature structures [12] that incorporate key OO concepts such as complex
composite structures with type signatures and inheritance. Modern expert systems in
deterministic1 domains usually represent knowledge in a formalism that integrates
rules with an OO language such as Java, C++, or a description logic. Semantic web
ontology languages are also evolving towards a hybrid, classes plus rules language.
Finally, the SQL standard and the main DBMS vendors have recently switched from
the purely relational data model to the object-relational one.

An impedance mismatch is thus slowly creeping between, on the one hand, the OO
and hybrid languages used for manual knowledge acquisition in the niche applications
of ILP, and on the other hand, the purely rule and relation oriented language used by
available ILP systems. This mismatch hinders ILP potential for seamlessly integrating
machine learning with manual modeling in comprehensive knowledge, data and
software engineering workbenches.

In this paper, we suggest that to maintain its edge in its niche applications, ILP
should consider to follow the language paradigm shift that occurred within these
applications.  We show the feasibility and practicality of Inductive Object-Oriented
Logic Programming (IOOLP) by presenting Cigolf2, an implemented system able to
learn a first-order theory from examples, background knowledge and a bias
specification, all four represented in the hybrid OO Horn logic language Flora [16], a
Frame Logic [8] dialect.

                                                          
1 In non-deterministic domains, Bayesian and decision networks have become the dominant

representation scheme.
2 F-Logic in reverse



2 Outline of the approach

When we started working on IOOLP, our aim was to be able to empirically evaluate
its feasibility and practicality as early as possible. Our key idea for fast prototyping
Cigolf was to reuse an existing OOLP language together with an existing ILP engine
and focus on bi-directional translation between the OOLP language and the standard
LP language used by the ILP engine.

Within this framework, our next design step was to choose both the ILP engine and
the OOLP language to be reused. For the engine choice, we used the following
criteria: (1) versatility of the ILP task classes that it can carry out, (2) proven
effectiveness in practical, real world domains and (3) declarative implementation that
facilitates modifications. For the language choice, we used following criteria: (1)
covering of OO concepts, (2) expressive power, (3) well-studied formal semantics and
associated deductive inference mechanism properties, (4) proven effectiveness in
diverse practical applications, and (5) proximity from the chosen ILP engine
language.

These criteria led us to base Cigolf on the ILP engine Aleph[15] and on the OOLP
language Flora. We review their main characteristics in turn in what follows,
emphasizing those that make them fit our criteria.

2.1 Aleph

Among the freely available ILP systems, Aleph was the only one to meet our three
criteria to serve as the inductive engine of Cigolf. First, Aleph is probably the most
versatile ILP engine for the following reasons:
• In contrast to most ILP systems that implement a single induction algorithm, Aleph

implements a variety of them, which turns it into a comprehensive workbench able
to partially emulate3 the functionalities of six other systems: Progol, FOIL, FORS,
MIDOS, Tilde and WARMR;

• It consequently supports a variety of supervised and unsupervised relational
learning tasks including classification, numerical regression, outlier analysis,
clustering and association pattern discovery;

• It supports learning from positive examples only in addition to standard learning
from both positive and negative examples;

• It can learn single or multiple predicate definitions;
• It can learn autonomously or interactively;
• Its knowledge representation language is full pure Prolog, including recursive rules

and function symbols, whereas most ILP systems ban one or the other;
• It is easily extensible and customizable by allowing user defined hypothesis

refinement operators, evaluation functions and other search heuristics;
• It provides over 50 parameters for setting and tuning the learning task.

                                                          
3 Naturally, these Aleph emulations tend to be less efficient and scalable than the corresponding

specialized engines.



Second, it has been successfully used in various applications, including molecular
biology, drug design and natural language grammar learning. Third, it is implemented
mostly declaratively in the largely standard conformant YAP Prolog [3]

2.2 Flora

Flora (Frame LOgic tRAnslator) is a highly declarative, object-oriented, dynamic,
high-order, tabled extension of Prolog with well-founded negation as failure.

Syntactically and semantically, the Flora language integrates three languages that
extend Prolog in orthogonal yet synergetic ways: Frame Logic (F-Logic), Transaction
Logic (TR) [1] and HiLog [2]. F-Logic is an object-oriented logic programming
language that overcomes the limitations of purely relational languages such as Prolog,
to elegantly model taxonomic knowledge as well as complex and semi-structured
data. TR is a dynamic logic programming language that provides backtrackable,
declarative update predicates to overcome the inability of Prolog to correctly
represent, execute and reason about database updates, transactions and procedural
knowledge, within its logical framework. HiLog extends Prolog with high-order
syntactic sugar while semantically remaining first-order. It thus overcomes the
inability of Prolog to express meta-level rules and queries declaratively, within its
logical framework, and it does so without incurring the inference complexity blow up
of semantically high-order languages. The Flora deductive engine currently available
runs on top of the tabled Prolog engine XSB[14]. It consists of two main components:
the Flora compiler that transforms a Flora program into a semantically equivalent
XSB program, and the Flora shell that provides an interactive command and query
run time layer on top of XSB.

Let us now evaluate Flora in terms of the criteria we defined above for the OOLP
language to reuse in Cigolf. In terms of OO concepts, the Flora language inherits from
F-Logic complex objects, object identity, encapsulation, type and class hierarchies
with multiple inheritance, overriding, overloading and late binding. The Flora engine
currently implements all these concepts except encapsulation. It also lacks automatic
type checking. Integrating TR and HiLog with F-Logic, allows the Flora engine to
implement two other key OO concepts declaratively, within its logical framework:
state changing and reflection methods. While some other OOLP languages implement
encapsulation and type checking, all of them rely on procedural extra-logical Prolog
predicates to implement state change and reflection, thus not truly bringing these last
two concepts within the OOLP paradigm.

In terms of expressive power, Flora stands at the high end of the scale among
OOLP languages thanks to its integration of F-Logic, with TR, HiLog and the well-
founded negation provided by the underlying XSB engine. The same is true with
respect to its theoretical foundations: all three components of the Flora language,  F-
Logic, TR and HiLog possess a correct and refutation complete proof theory. In terms
of practical applicability, Flora has been successfully used for disparate data
integration, semantic web ontology engineering and security policy management.

To assess proximity to standard Prolog, one must first note that while many
different approaches have been taken to integrate logic with objects, it is possible to



identify two main broad classes: (1) embedding logic inside objects, such as
Pluto[10], and (2) embedding objects inside logic, such as Flora. Flora’s embedding of
objects inside logic makes it closer to standard Prolog. Overall, Flora thus fitted our
five conceptual criteria much better than other OOLP languages. On the practical
side, the fact the Flora engine is implemented by compiling Flora programs into
Prolog programs allowed a large part of the bi-directional translation between Cigolf
and Aleph learning task specifications and results, to be implemented in Cigolf by
reusing and modifying the Flora compiler.

To give a feel for the structure and syntax of a Flora program and to illustrate how
it can be used as an ILP language, we give in Prog.1 a partial Flora representation of
the Bongard classification problem shown in Fig. 1. Every example is a set of
geometric figures. The problem is to induce a set of generic spatial relations between
figure classes that together differentiate the positive examples in lower board, from
the negative ones in the upper board.

Fig. 1. A Bongard classification problem

% Background knowledge: class hierarchy together with type signatures
 (1)  circle::shape.
 (2)  square::shape.
.(3)  triangle::shape[direction*=>dir].
 (4)  shape[in*=>>shape,leftOf*=>>shape].
 (5)  bgEx[shapes*=>>shape].
% Example base: object creation together with attribute value assignments
% Only the positive example on line 1, column 4 is shown
 (6)  ta22:triangle[direction->down].
 (7)  tb22:triangle[in->>ta22,direction->down].
 (8)  ex22:bgEx[shapes->>{ta22,tb22}].
% Background knowledge: deductive rules
(9)   X:shape[in->>B]:-X[in->>C],C[in->>B].
(10)  X:shape[leftOf->>B]:-X[leftOf->>C],B[in->>C].
% Queries on backrgound knowledge and example base



(11) ?-X:shape[leftOf->>Y].
(12) ?-X[M->>Y].

Prog. 1 An example Flora program representing a simple Bongard problem.

A Flora program is made of four main types of clauses: two corresponding to its
OO part, the class hierarchy definition facts and object creation facts corresponding,
and two to its corresponding logical part.

A Flora class hierarchy fact follows the syntactic pattern:
class::superclass[attr1 typOp1 type1,...,attrN typOpN typeN] to
specify the superclass of a class together with its proper attribute filler and method
return type constraints. There are four typing operators in Flora: *=>, *=>>, => and
=>>. The presence or absence of the * prefix distinguishes between inheritable and
non-inheritable type constraints, whereas the > and >> suffixes indicates whether
the attribute is single valued or set valued.

Object creation facts follow the syntactic pattern
object:class[attr

1
 assignOp

1
 value

1
,...,attr

N
 assignOp

N
 value

N
] to

create a new instance of a class while assigning its proper attribute and method return
values. There are four value assignment operators *->, *->>, -> and  ->>, that
follow the same prefix and suffix conventions than the typing operators.

Together, Flora class definition and object creation facts are called F-Molecules.
Flora deductive rules and queries are essentially Prolog rules and queries in which
logical terms may be substituted by F-molecules. Logical variables can appear in any
position inside these molecules: as object name, class name, attribute name, method
name, attribute value, method return value or method input parameter. This freedom
provides Flora with a high-order syntax that is very powerful for concise meta-
programming, as illustrated by the query on line 18 which asks for all the triplets X,
M, Y such that X and Y are objects of any class and M is a set valued attribute of X
that includes Y in its value set.



2.3 The architecture of Cigolf
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Fig. 2. The Cigolf architecture.

The architecture of Cigolf is given in Fig. 2. It consists of four entirely new
components (shown in dark gray boxes), two modified reused components (shown in
light gray boxes) and two components reused “as they are”(shown in a white box),
namely the XSB tabled deductive engine and the Flora shell. The Cigolf shell accepts
the Flora compiler commands together with a set inductive commands and queries
equivalent to those of Aleph, but that work with learning problems encoded in OO
syntax. The Cigolf to Aleph learning bias translator translates the object-oriented
learning bias specification that we defined for Cigolf into an equivalent relational bias
specification accepted as input by Aleph. The Cigolf to Aleph example translator
translates the types contained in Flora objects that codify examples in Cigolf into
equivalent Aleph typing predicates. The Prolog to Flora translator translates the best
hypotheses returned by Aleph into Flora syntax. Due to Flora's high expressive
flexibility, there are many different syntactical alternatives for this translation. In
order to allow Cigolf to choose the alternative that conforms to the user specified
input OO bias, this translator consists of a Prolog rewrite rule base that is generated at
run time by our modified version of the Flora compiler. The Flora compiler was
modified to (a) recognize Flora objects that are Cigolf learning bias specification and
examples and dispatch them to the new components that handle them, and (b)
generate the learned knowledge back translation rules. The Aleph engine was
modified to run on top of the tabled deductive engine XSB instead of YAP Prolog,
resulting in AlephTP (Aleph in Tabled Prolog). This port was necessary because, one
the one hand, the Flora compiler generates code that requires tabling to execute
properly, especially to terminate and implement the well-founded semantics for



negation as failure, and, on the other hand, Aleph relies on some non-standard
features of YAP Prolog that are not available in XSB. To execute the Flora compiler
generated code passed to XSB through AlephTP, the run-time predicates of the Flora
shell must be loaded in XSB.

3 Object-oriented representation of ILP bias and examples

In Aleph, learning bias can be expressed in a variety of ways that include: induction
parameter setting directives, mode facts, integrity constraints, and pruning directives.
We now review how Cigolf codifies such bias in OO syntax.
The 50 induction parameters provided by AlephTP are encoded in Cigolf as attributes
of the special class settingILP. They are set by Flora facts instantiating one or
several objects of that class. For example, the fact below specifies that Cigolf must
learn from positive only examples clauses with at most than five literals.

(13) _:settingILP[evalfn->posonly, clauselength->5].

Cigolf modes are specified using facts of the form modeh(Recall,Ft) or
modeb(Recall,Ft) that indicate what terms can respectively appear in hy-
pothetic rule heads and bodies. Ft is a Flora term with variables labeled with unifi-
cation direction constraints. The labels are: ++ and -- for input and output vari-
ables, and ## for constants. Recall is an integer that indicates the maximum
number of alternative ways that Ft can be instantiated when applying deduction on
the hypothesized rule in the context of prior knowledge. For unlimited number of al-
ternatives Recall = ‘*’. For example, the mode definitions on lines (15a-16a)
below instruct Cigolf to only consider rules defining Bongard figures in terms of (a)
the inclusion relations between the shapes that it contains, (b) the classes of these
shapes, and (c) their directions. The alternative encoding on lines (15b-16b), takes ad-
vantage of Flora high-order and object embedding syntax to specify search for flexi-
ble rule patterns.

(14)  modeh(1, ++A::bgEx).
(15a) modeb(10, --Y:##C[belong -> ++A:bgEx, in ->> --Z:##C2]).
(16a) modeb(*, ++Z[belong -> ++A:bgEx, direction -> --D:##E]).
(15b) modeb(*, ++A:bgEx[##S ->> --F:##C[##M->> --F2:##C1]]).
(16b) modeb(10, ++A:bgEx[##S->> --F:##C[##M->> --F2: ##C1, ##N-> --D]]).

Integrity constraints are rules of the form false :- Body, where Body is a
conjunction of Flora terms that must not be entailed from valid hypotheses and back-
ground knowledge. For example, the constraints below express that an object cannot
be contained in another object that it contains.

  (26) false :- X:shape[in ->> Y[in ->> X]].

Pruning directives have the form prune((CHead:-CBody)):-Body, where CHead:-
CBody are Flora rule patterns to discard from the hypothesis space when the condi-
tion Body follows from the background knowledge. For example, the directive below
excludes rules where there are one triangle is left of square.



(27) prune((E::bgEx :- T:triangle[belong -> E:bgEx,
                                  leftOf ->> S:square])).

Examples are Flora facts that instantiate modeh patterns. The positive ones are
prefixed by |-, while the negative ones are prefixed by |~, as for example in lines
28-29 below. The attributes of these two examples are specified as background
knowledge as shown  in Prog. 1 fror ex22.

(28) |~ ex1::bgEx.
(29) |- ex22::bgEx.

4 Extending the Flora compiler

The Flora compiler consists of two main parts: wrapping rules and trailer rules. The
wrapping rules rewrite domain knowledge represented as OO F-Molecules by first
flattening them into a conjunction of binary relations between two classes, objects,
attributes or method names, called F-Atoms. These F-Atoms are then substituted by
Prolog terms using wrapper predicates. The correspondence between some F-Atoms
patterns and their corresponding wrapper predicates is given in table 1.

Table 1. Main Flora F-Atoms patterns and their corresponding wrapper predicates.

F-Atom Wrapper predicate F-Atom Wrapper predicate
C1::C2 sub(C1,C2) C[A=>>T] mvdsig(C,A,T)
A:B isa(A,B) O[A*->V] ifd(O,A,V)
O[A->V] fd(O,A,V) O[A*=>V] ifdsig(O,A,V)
O[A->>V] mvd(O,A,V) O[A*->>V] imvd(O,A,V)
C[A=>T] fdsig(C,A,T) O[A*=>>V] imvdsig(O,A,V)

For example, the wrapping rules would rewrite the Flora rule on line 30 below into
the Prolog rule on line a.

(30)B:bgEx:-M:triangle[belong->B:bgEx,in->>P:triangle].
(a)derived_isa(B,bgEx):-isa(M,triangle),fd(M,belong,B),
               isa(B,bgEx),mvd(M,in,P),isa(P,triangle).

This example illustrates that F-Atoms in different context may get rewritten into
different wrapper predicates, such as derived_isa in a rule head and isa in a rule
body.  Wrapping rules alone rewrite a Flora program into a Prolog program only
syntactically. Semantic translation further requires concatenating trailer rules at the
end of the rewritten program. The trailer rule base is a domain independent Prolog
axiomatization, in terms of wrapper predicates, of the complex OO semantics of
Flora, inincluding inheritance, overwriting and object identity equality.

The Flora compiler designed to translate an OOLP into an equivalent relational LP
for deduction with XSB, needed to be extended to perform such translation for
induction with AlephTP. To that effect, we created two additional wrapper predicate
classes: mode wrappers map_modeN/m+1 and complex type wrappers tcg_Vi/1.
For each Cigolf mode declaration of the form M(Recall,Ft), where M is modeh
or modeb, our induction-oriented version of the Flora compiler:



1. Creates a new wrapper predicate of the form
map_modeN(#tmo,D1tcg_V1,...,Dmtcg_Vm)
where N records that it wraps the Nth mode declaration, V1,...,Vm are the
variables occurring in the Flora term Ft, and D1,...,Dm are their respective
unification direction constraints;

2. Adds the following clauses to the AlephTP translation of the Cigolf input:
− An Aleph mode declaration of the form
:- M(Recall,map_modeN(#tmo,D1tcg_V1,...,Dmtcg_Vm)

− A fact tmo(N);
− For each Vi∈{V1,...,Vm}, a wrapper rule of the form:
tcg_Vi(V) :- Cvi,  where Cvi is the Flora wrapper predicate conjunction of
all the sub-terms of Cft in which Vi occurs;

− If M = modeb, a mode wrapper rule of the form:
map_modeN(N,V1,...,Vm) :- Cft, where Cft is the Flora wrapper
predicate conjunction that results from calling the Flora compiler onto Ft.

Finally, for each example Eft, whose OO type unifies with the Ft occurring in
the Nth Cigolf mode declaration modeh(Recall,Ft), our modified Flora compiler
adds an example wrapper fact of the form: map_modeN(N,A1,..,Am) to the
AlephTP input bias specification. A1,..,Am are constants of  Eft that unify with the
labeled variables of Ft. An example of such translation is given below. Lines 31-32
contain the Cigolf mode declarations and lines 33-34 the Cigolf examples. Lines b-c
contain the Aleph mode declarations with embedded Cigolf mode wrapper predicates.
These predicates are defined in line j-m in terms of Flora compiler wrapper predicates
and Cigolf example wrapper predicates. Lines d-e contains the Cigolf tmo (Type
Mode Order) wrapper predicates and lines f-i defines the Cigolf typing wrapper
predicates in terms of Flora wrapper predicates.

(31) modeh(1, ++A::bgEx).
(32) modeb(*, --Y:##C[belong -> ++A:bgEx, in ->> --Z:##C]).
(33) |- ex22::bgEx.
(34) |~ ex1::bgEx.
(b) :- modeh(1, map_mode1(#tmo,+tcg_A)).
(c) :- modeb(*,map_mode2(#tmo,-tcg_Y,#tcg_C, +tcg_A,-tcg_Z).
(d) tmo(1).
(e) tmo(2).
(f) tcg_Y(Y):- isa(Y,C), fd(Y,belong,A), mvd(Y,in,Z).
(g) tcg_C(C):- isa(Y,C), isa(Z,C).
(h) tcg_A(A):- fd(Y,belong,A).
(i) tcg_Z(Z):- mvd(Y,in,Z), isa(Z,C).
(j) map_mode2(2,Y,C,A,Z):- isa(Y,C), fd(Y,belong,A),  isa(A,bgEx), mvd(Y,in,Z),
                                                isa(Z,C).
(l) map_mode1(1,ex22). % in positive example file
(m) map_mode1(1,ex17). % in negative example file



5 Testing CIGOLF on ILP Benchmarks

We tested Cigolf on two standard relational classification benchmarks: a 30 example
Bongard problem and a 10 example train problem. The second problem consists of
learning rules that predict the direction of a train given the properties of its wagons.
For each problem, we compared a relational representation tested with AlephTP and
two OO representations tested with Cigolf. The first uses flat F-molecules with
variables only in object and class positions. The second uses embedded F-molecules
with variables also in attribute positions. These experiments provide a first assessment
of the run time overhead resulting from using a hybrid object-rule representation for
machine learning. Their goal is to check whether such overhead is an acceptable price
to pay for the sizable data preparation and interpretation speed-up achieved by
avoiding time-consuming and tedious manual translation to the purely relational
format of available ILP engines from the examples, background knowledge and
induced knowledge often available and usable only in an hybrid object-rule or object-
relational format.

Table 2. Cigolf and AlephTP test runs on the Bongard and Train problem.
Bongard Train

Model Learned
Rules Time

Bottom
Clause

Size

Bottom
Clause

Generalizations

Learned
Rules Time

Bottom
Clause

Size

Bottom
Clause

Generalizations
AlephTP 2 3.14s 20 216 2 9.1s 25 882
Cigolf1 2 13.94s 60 227 2 5.7s 22 374
Cigolf2 2 8.62s 21 42 2 6.9s 29 404

The results given in Table 3 are encouraging in the sense that the efficiency
overhead between of IOOLP with Cigolf as compared to relational ILP with AlephTP
is generally small. Interestingly, the second OO representation that more fully exploits
Flora’s flexible high-order syntax even outperforms AlephTP in some cases. A more
systematic analysis of various bias specifications and their interaction with the use of
tabling for learning, should bring interesting insights on the interactions between
object-oriented modelling, high-order syntax and induction search space size.

6 Related works

Learning knowledge in a hybrid language that integrates first-order Horn rules with
object-centered descriptions with inheritance was implemented in two main previous
systems: WiM-D[13] and CILGG [7]. These two proposals share with ours the main
idea: reusing an existing ILP engine to perform induction and developing a bi-
directional translation between the hybrid language and the ILP engine's purely rela-
tional language.

In terms of language, WiM-D differs from Cigolf in that it implements learning in
a subset of F-Logic that excludes methods, set valued attributes and class attributes,



while Cigolf implements learning in Flora, a superset of F-Logic that extends it with
HiLog high-order syntax and Transaction Logic declarative backtrackable updates
predicates. In terms of learning capabilities, WiM-D is less versatile than Cigolf for it
cannot, for example, learn from noisy data.

In terms of language, CILGG differs from Cigolf in that it implements learning in
CARIN-ALN [9], an extension of Datalog that allows terms in rule bodies and queries
to be substituted by concepts defined in the description logic ALN. CARIN-ALN dif-
fers from Flora in four ways: with respect to description-rule integration, to relational
terms, to description terms, and to semantics. With respect to description-rule inte-
gration, Flora is more expressive than CARIN-ALN for allowing description terms in
rule heads. With respect to relational terms, Flora is more expressive than CARIN-
ALN for allowing function symbols. With respect to description terms, Flora also
seems to be more expressive than CARIN-ALN. First, cyclic and disjunctive defini-
tions are allowed in Flora class signatures while excluded from ALN descriptions.
Semantically, CARIN-ALN differs from Flora in that it works under the open-world
assumption while Flora works under the closed-world assumption. However, for
learning purposes, CILGG changes the semantics of CARIN-ALN to a hybrid semi-
closed world assumption.

7 Conclusions

A key role of ILP in machine learning research is to explore the issues involved in
learning representations that are even more intuitive, flexible, abstract and closer to
the knowledge level. In this paper, we proposed to go further in that direction by
learning in Flora, a language that extends the purely relational first-order Horn logic
of traditional ILP with object-orientation, high-order syntax, declarative database
updates predicates and well-founded negation. We demonstrated the conceptual and
computational feasibility of inducing knowledge represented in Flora by reusing and
integrating components from a relational ILP system and a deductive OOLP system.
This integration resulted in Cigolf, the first comprehensive IOOLP system. Cigolf is
sufficiently versatile and expressive to serve as a test bed to assess the strength and
applicability of the IOOLP paradigm for many different learning tasks. In particular,
it opens the door for the seamless integration of relational machine learning with
mainstream object-oriented data, knowledge and software engineering.

In future work, we intend to test the scalability of Cigolf for larger classification
tasks, as well as its versatility to perform other classes of learning tasks. The research
presented here is part of a larger project that aims to develop a multi-agent software
engineering methodology and environment that supports two complementary paths
for automated agent code generation: one from manually built UML models, and the
other from input/output training examples. In this project, Flora is used as the
common target language integrating these two paths. Potentially incomplete Flora
code is first generated from the UML model. Cigolf then uses this code as background
knowledge to inductively complete it, based on the examples.
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