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1 Introduction

Here we present an overview of a selection of tools for execution and proof based on
temporal logic, and will outline both the general techniques used and problems encoun-
tered in implementing them. The tools considered will mainly be theorem-provers and
(logic-based) programming languages. Specifically:

– clausal temporal resolution [13, 18] and its implementation as Clatter [10], TRP [28,
27] and TRP++ [26];

– executable temporal logics [4, 15] and its implementation as METATEM [3], Con-
current METATEM [14, 31] and MAGENTA [17, 19, 21, 20].

In addition, we will briefly mention induction-based temporal proof [5], temporal logic
programming [1], and model checking [7].

Rather than providing detailed algorithms, this presentation will concentrate on general
principles, outlining current problems and future possibilities.

Acknowledgements Much of this work has been supported by funding from the Engi-
neering and Physical Sciences Research Council (EPSRC)1, and has involved collabo-
ration with a variety of outstanding colleagues from within the Logic and Computation
group2. I thank them all for their endeavours.

2 What is Temporal Logic?

2.1 Some History

Temporal logic was originally developed in order to represent tense in natural lan-
guage [36]. Within Computer Science, it has achieved a significant role in the formal
specification and verification of concurrent and distributed systems [35]. Much of this
popularity has been achieved as a number of useful concepts, such as safety, liveness
and fairness can be formally, and concisely, specified using temporal logics [12, 33].

1 http://www.epsrc.ac.uk
2 http://www.csc.liv.ac.uk/research/logics
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2.2 Some Intuition

In their simplest form, temporal logics can be seen as extensions of classical logic,
incorporating additional operators relating to time. These operators are typically: ‘ g’,
meaning “in the next moment in time”, ‘ ’, meaning “at every future moment”, and
‘♦’, meaning “at some future moment”. These additional operators allow us to express
statements such as

(send ⇒ ♦received)

to characterise the statement

“it is always the case that if we send a message then, at some future moment it
will be received”.

The flexibility of temporal logic allows us to use formulae such as

(send ⇒ g(received ∨ send))

which is meant to characterise

“it is always the case that, if we send a message then, at the next moment in
time, either the message will be received or we will send it again”

and
(received ⇒ ¬send)

meaning

“it is always the case that if a message is received it cannot be sent again”.

Thus, given formulae of the above form then, if we try to send a message, i.e. ‘send’,
we should be able to show that it is not the case that the system continually re-sends the
message (but it is never received) i.e. the statement

send ∧ ¬received

should be inconsistent.

2.3 Some Applications

The representation of dynamic activity via temporal formalisms is used in a wide va-
riety of areas within Computer Science and Artificial Intelligence, for example Tem-
poral Databases, Program Specification, System Verification, Agent-Based Systems,
Robotics, Simulation, Planning, Knowledge Representation, and many more. While we
are not able to describe all these aspects here, the interested reader should see, for ex-
ample, [33, 34, 7, 41, 29].

There are many different temporal logics (see, for example [12]). The models of
time which underly these logics can be discrete, dense or interval-based, linear, branch-
ing or partial order, finite or infinite, etc. In addition, the logics can have a wide range of
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operators, such as those related to discrete future-time (e.g: g, ♦, ), interval future-
time (e.g: U , W ), past-time (e.g: w♦• , , S , Z ), branching future-time (e.g: A,
E), fixed-point generation (e.g: µ, ν) and propositional, quantified propositional or full
first-order variations. Even then, such temporal logics are often combined with standard
modal logics. For example, typical combinations involve TL + S5 modal logic (often
representing ‘Knowledge’), or TL + KD45 (Belief) + KD (Desire) + KD (Intention).

Here, we will mainly concentrate on one very popular variety, namely discrete lin-
ear temporal logic, which has an underlying model of time isomorphic to the Natural
Numbers (i.e. an infinite sequence with distinguished initial point) and is also linear,
with each moment in time having at most one successor. (Note that the infinite and lin-
ear constraints ensure that each moment in time has exactly one successor, hence the
use of a single ‘ g’ operator.)

3 Where’s the Difficulty?

Temporal Logics tend to be complex. To give some intuition why this is the case, let us
look at a few different ways of viewing (propositional) temporal logic.

Propositional temporal logic can be thought of as

1. a specific decidable (PSPACE-complete) fragment of classical first-order logic
For example, the semantics of (discrete, linear) propositional temporal logic can be
given by translation as:

i |= gp → p(i+1)
i |=♦p → ∃ j. ( j ≥ i) ∧ p( j)
i |= p → ∀ j. ( j ≥ i) ⇒ p( j)

[this can be a problem as proof/execution techniques often find it hard to isolate
exactly this fragment]

2. a multi-modal logic, comprising two modalities, [1] and [∗], which interact closely
The induction axiom in discrete temporal logic

` (ϕ ⇒ gϕ) ⇒ (ϕ ⇒ ϕ)

can be viewed as the interaction axiom between modalities

` [∗](ϕ ⇒ [1]ϕ) ⇒ (ϕ ⇒ [∗]ϕ)

Thus, [1] is usually represented as ‘ g’, while [∗] is usually represented as ‘ ’
[while mechanising modal logics is relatively easy, multi-modal problems become
complex when interactions occur between the modalities; in our case the interaction
is of an inductive nature]

3. a characterisation of simple induction
The induction axiom in discrete temporal logic

` (ϕ ⇒ gϕ) ⇒ (ϕ ⇒ ϕ)
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can alternatively be viewed as

[∀i. ϕ(i) ⇒ ϕ(i+1)] ⇒ [ϕ(0) ⇒∀ j. ϕ( j)]

[again, this use of induction can cause problems]

4. a logic over sequences, trees or partial-orders (depending on the model of time)
For example, a sequence-based semantics can be given for discrete linear temporal
logic:

si,si+1, . . . ,sω |= gp if, and only if, si+1, . . . ,sω |= p
si,si+1, . . . ,sω |=♦p if, and only if, there exists a j ≥ i such that s j, . . . ,sω |= p
si,si+1, . . . ,sω |= p if, and only if, for all j ≥ i then s j, . . . ,sω |= p

[this shows that temporal logic can be used to characterise a great variety of, poten-
tially complex, computational structures]

5. a syntactic characterisation of finite-state automata over infinite words (ω-automata)
For example

– formulae such as p ⇒ gq give constraints on possible state transitions,
– formulae such as p ⇒♦r give constraints on accepting states within an au-

tomaton, and
– formulae such as p ⇒ s give global constraints on states in an automaton.

[this shows some of the power of temporal logic as a variety of different ω-automata
can be characterised in this way]

3.1 A Little Complexity

The decision problem for a simple propositional (discrete, linear) temporal logic is al-
ready PSPACE-complete [37]; other variants of temporal logic may be worse! When we
move to first-order temporal logics, things begin to get unpleasant. It is easy to show that
first-order temporal logic is, in general, incomplete (i.e. not recursively-enumerable [38,
2]). In fact, until recently, it has been difficult to find any non-trivial fragment of first-
order temporal logic that has reasonable properties. A breakthrough by Hodkinson et.
al. [23] showed that monodic fragments of first-order temporal logic could be complete,
even decidable.

4 What Tools?

The main tools that we are interested in are used to carry out temporal verification,
via resolution on temporal formulae, and temporal execution, via direct execution of
temporal formulae. In our case, both of these use temporal formulae within a specific
normal form, called Separated Normal Form (SNF) [16].
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4.1 SNF

A temporal formula in Separated Normal Form (SNF) is of the form

n�

i=1

(Pi ⇒ Fi)

where each of the ‘Pi ⇒ Fi’ (called clauses or rules) is one of the following

start ⇒
r�

k=1

lk (an initial clause)

q�

j=1

m j ⇒ g
r�

k=1

lk (a step clause)

q�

j=1

m j ⇒ ♦l (a sometime clause)

where each l, lk or m j is a literal and ‘start’ is a formula that is only satisfied at the
“beginning of time”.

Thus, the intuition is that:

– initial clauses provide initial constraints;
– step clauses provide constraints on the next step; and
– sometime clauses provide constraints on the future.

We can provide simple examples showing some of the properties that might be repre-
sented directly as SNF clauses.

– Specifying initial conditions: start ⇒ sad
– Defining transitions between states: (sad ∧ ¬rich) ⇒ gsad
– Introducing new eventualities (goals): (¬resigned ∧ sad) ⇒ ♦famous

sad ⇒ ♦happy
– Introducing permanent properties: lottery-win ⇒ g rich which, in SNF, be-

comes
lottery-win ⇒ grich
lottery-win ⇒ gx

x ⇒ grich
x ⇒ gx

Translation from an arbitrary temporal formula into SNF is an operation of polynomial
complexity [16, 18].

We also need the concept of a merged SNF clause: any SNF clause is a merged SNF
clause and, given two merged SNF clauses A ⇒ gB and C ⇒ gD, we can generate a
new merged SNF clause (A∧C) ⇒ g(B∧D).
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4.2 Clausal Resolution

Given a set of clauses in SNF, we can apply resolution rules, such as

Initial Resolution: start ⇒ (A∨ l)
start ⇒ (B∨¬l)
start ⇒ (A∨B)

Step Resolution: P ⇒ g(A∨ l)
Q ⇒ g(B∨¬l)

(P∧Q) ⇒ g(A∨B)

Temporal Resolution (simplified)3: A ⇒ g ¬l
Q ⇒ ♦l
Q ⇒ (¬A)W l

As we will see later, it is this temporal resolution rule that causes much of the difficulty.

4.3 Executable Temporal Logics

We use the Imperative Future approach [4]:

– transforming the temporal specification into SNF;
– from the initial constraints, forward chaining through the set of temporal rules rep-

resenting the agent; and
– constraining the execution by attempting to satisfy goals, such as ♦g (i.e. g even-

tually becomes true).

Since some goals might not be able to be satisfied immediately, we must keep track of
the outstanding goals and reconsider them later. The basic strategy used is to attempt to
satisfy the oldest outstanding eventualities first and keep a record of the others, retrying
them as execution proceeds.

Example Imagine a ‘car’ agent which can go, turn and stop, but can also run out of
fuel (empty) and overheat.

The agent’s internal definition might be given by a temporal logic specification in SNF,
for example,

start ⇒ ¬moving
go ⇒ ♦moving

(moving∧go) ⇒ g(overheat∨ empty)

The car agent’s behaviour is implemented by forward-chaining through these formulae.

– Thus, moving is false at the beginning of time.
– Whenever go is true, a commitment to eventually make moving true is given.

3 (¬A)W l is satisfied either if ¬A is always satisfied, or if ¬A is satisfied up to a point when l
is satisfied.
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– Whenever both go and moving are true, then either overheat or empty will be made
true in the next moment in time.

This provides the basis for temporal execution, and has been extended with execution
for combinations with modal logics, deliberation mechanisms [17], resource-bounded
reasoning [19] and a concurrent operational model [14].

5 Implementations

5.1 Clausal Temporal Resolution

The essential complexity in carrying out clausal temporal resolution is implementing
the temporal resolution rule itself. First, let us note that the Temporal Resolution rule
outlined earlier is not in the correct form. The exact form of this rule is

Temporal Resolution (full): A1 ⇒ gB1

. . . ⇒ . . .

An ⇒ gBn

Q ⇒ ♦l
Q ⇒ ( � n

i=1¬Ai)W l

where each Ai ⇒ gBi is a merged SNF clause and each Bi satisfies Bi ⇒ (¬l ∧
n�

j=1

A j).

Thus, in order to implement this rule, a set of step clauses satisfying certain proper-
ties must be found; such a set is called a loop. This process has undergone increasing
refinement, as has the implementation of clausal temporal resolution provers in general:

1. The original approach proposed was to conjoin all sets of step clauses to give, so
called, merged SNF clauses and then treat these merged clauses as edges/transitions
in a graph. Finding a loop is then just a question of extracting a strongly connected
component from the graph, which is a linear operation [39].

The problem here is explicitly constructing the large set of merged SNF clauses.

2. Dixon [8–10] developed an improved (breadth-first) search algorithm, which formed
the basis of the ‘Clatter’ prover. This search approach effectively aimed to gen-
erate only the merged SNF clauses that were required to find a loop, rather than
generating all such clauses.

The problem with the Clatter family of provers was the relatively slow link to
the classical resolution system (which was used to carry out the step resolution
operations).

3. Hustadt then developed TRP [28]. The idea here was to use arithmetical transla-
tions to translate as much as possible of the process to classical resolution opera-
tions and then use an efficient classical resolution system. In addition, TRP used a
translation of the breadth-first loop search algorithm into a series of classical reso-
lution problems suggested in [11]. (TRP is also able to deal with the combination
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of propositional temporal logic with various modal logics including KD45 and S5.)
The resulting system was evaluated against other decision procedures for this form
of temporal logic and was shown to be very competitive [28, 27].

The main problems with TRP were that it was implemented in Prolog and that
the data/term representation/indexing techniques could be improved.

4. The latest variety of clausal temporal resolution system is TRP++, implemented by
Konev [26]. Here, TRP is re-implemented in C++ and is refined with a number of
contemporary data representation and indexing techniques.

TRP++ currently performs very well in comparison with other provers for proposi-
tional temporal logic.

5.2 Executable Temporal Logics

The Imperative Future style of execution provides a relatively simple approach to exe-
cuting temporal logic formulae. As described above, beginning at the initial conditions
we simply forward chain through the step clauses/rules generating a model, all the time
constraining the execution with formulae such as ‘♦g’.

The development in this area has not primarily been concerned with speed. As we
will see below, the developments has essentially involved refining and extending the in-
ternal capabilities of the programs and allowing for more complex interactions between
programs.

Thus, the implementations of this approach, beginning with METATEM, proceeded
as follows.

1. The first approach, reported in [22], essentially used a Prolog meta-interpreter to
implement the system. The forward chaining aspect is relatively standard, and the
management of outstanding eventualities (i.e. formulae such as ‘♦g’) was handled
with a queue structure.

In order to maintain completeness (in the propositional case) a form of past-time
loop checking had to be employed. This involved retaining a large proportion, and
sometimes all, of the history of the computation and checking for loops over this as
every new computation state was constructed. (Note that this loop-checking aspect
is usually omitted from the later languages.)

The main problems with this approach were the lack of features, particularly those
required for programming rational agents, such as internal reasoning, deliberation
and concurrency.

2. In [14], Concurrent METATEM was developed. This allowed for multiple asyn-
chronous, communicating METATEM components and provided a clean interaction
between the internal (logical) computation and the concurrent operational model.

Concurrent METATEM was implemented in C++ but was relatively slow and static
(i.e. process scheduling was implemented directly).
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3. Kellett, in [30, 31], developed more refined implementation techniques for Concur-
rent METATEM. Here, individual METATEM programs were compiled into (linked)
pairs of I/O automata [32], one to handle the internal computation, the other to han-
dle the interaction with the environment. Such automata can then, potentially, be
cloned (for process spawning) and moved (for load balancing and mobility).
While Concurrent METATEM provides an interesting model of simple multi-agent
computation, work was still required on the internal computation mechanism for
each individual agent.

4. More recently, the internal computation has been extended by providing a belief
dimension, allowing meta-control of the deliberation 4, allowing resource-bounded
reasoning and incorporating agent abilities [17, 19, 20].
This has led to the MAGENTA language in which rational agents can be imple-
mented, and in which complex multi-agent organisations can be developed. Cur-
rently, the internal MAGENTA implementation is provided by Prolog, but work
is under way to provide a Java implementation of both individual and group as-
pects [21].

5.3 Other Techniques

In this section, we will briefly mention a few other systems related to temporal logic
that we are working on.

Induction-based Temporal Proof As mentioned above, first-order temporal logics are
complex. In particular, full first-order temporal logic is not recursively-enumerable.
However, as we still wish to prove theorems within such a logic, we have been devel-
oping techniques to support this. Such a system is described in [5], where an induction-
based theorem-prover is enhanced with heuristics derived from the clausal temporal
resolution techniques (see above) and implemented in λClam/λProlog.

Temporal Logic Programming Standard logic programming techniques were trans-
ferred to temporal logic in [1]. However, because of the incompleteness of first-order
temporal logics, the language was severely restricted. In fact, if we think of SNF above
then the fragment considered is essentially that consisting of initial and step clauses.
Thus, implementation for such a language is a small extension of classical logic pro-
gramming techniques and constraint logic programming techniques.

Model Checking Undoubtedly the most popular application of temporal logic is in
model checking. Here, a finite-state model capturing the executions of a system is
checked against a temporal formula. These finite state models often capture hardware
descriptions, network protocols or complex software [24, 7]. While much model-checking
technology was based on automata-theoretic techniques, advances in symbolic [6] and
on-the-fly [25] techniques have made model checking the success it is. Current work
on abstraction techniques and Java model checking, such as [40], promise even greater
advances.

4 Deliberation here means the process of deciding in which order to attempt outstanding even-
tualities at each computation step.
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6 Summary

We have overviewed a selection of tools for execution and proof within temporal logic.
Although these tools are generally prototypes, they are increasingly used in realistic
scenarios, and more sophisticated versions appear likely to have a significant impact in
both Computer Science and Artificial Intelligence.
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