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Preface

As previous editions of CICLOPS, the 2008 version in Udine brings together
researchers interested in the sequential and parallel implementation of logic and
constraint programming languages and systems. CICLOPS promotes the free ex-
change of ideas and early dissemination of potentially premature and promising
ideas. CICLOPS 2008 continues a tradition of successful workshops on Imple-
mentations of Logic Programming Systems, previously held with considerable
success in Budapest (1993) and Ithaca (1994), the Compulog Net workshops
on Parallelism and Implementation, and CICLOPS-es in Paphos (2001), Copen-
hagen (2002), (2003), St.-Malo (2004), Sitges (2005), Seattle (2006), and Porto
(2007). With thirteen papers, the program is full, varied and interesting, and
it shows both the need for this workshop and the potential for the future: you
should feel very sorry if you cannot attend the workshop. The program committee
did a great job in reviewing the papers and they have already given valuable feed-
back to the authors. Together with the interaction during the workshop, which
is by tradition informal, lively and open, this CICLOPS again truly serves as a
credible stepping stone to formal publication. We thank all authors, reviewers,
and attendees for their efforts and interest.

Manuel Carro
Bart Demoen

Madrid and Leuven, November 2008
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Implementing Thread Cancellation in
Multithreaded Prolog Systems

Atef Suleiman and John Miller

School of Electrical Engineering and Computer Science
Washington State University (Tri-Cities)

West 201B, Richland, WA 99354-2125, USA
{asuleiman,jhmiller}@tricity.wsu.edu

Abstract. The Prolog primitive thread_cancel/1, which simply can-
cels a thread as recommended in ISO/IEC DTR 13211-5:2007, is con-
spicuously absent in well-maintained, widely used multithreaded Prolog
systems. The ability to cancel a thread is useful for application develop-
ment and is critical to Prolog embeddability. The difficulty of cancelling
a thread is due to the instant mapping of Prolog multithreading prim-
itives to the native-machine thread methods. This paper reports on an
attempt to implement thread cancellation using self-blocking threads. A
thread blocks at the same safe execution point where the state of the
underlying virtual machine is defined. A blocked thread awaits a notifi-
cation to resume or terminate. A resumed thread may be redirected to
self-block by a blocking primitive. Experimental results based on a pro-
totype implementation show that using self-blocking threads not only
simplifies the implementation of thread cancellation but also improves
the performance of message-passing primitives.

Key words: Prolog, concurrency, threads

1 Introduction

Explicit expressions of concurrency advance Prolog’s standing as a practical
programming language capable of exploiting modern multiprocessor computers.
Prolog programs consist largely of static code, knowledge expressed as facts and
rules, accessible to any number of execution threads running concurrently, in
parallel or otherwise. Additionally, due to their declarative and high-level na-
ture, Prolog programs retain and expose opportunities for parallel execution
unparalleled in conventional programming languages. To facilitate expressions
of concurrency, a thread model is proposed in ISO/IEC DTR 13211-5:2007 [1],
variants of which are implemented in well-maintained, widely used Prolog sys-
tems, such as Ciao [2], SWI-Prolog [3], XSB [4], Yap [5] and others. The model
includes a set of low-level primitives for thread creation, synchronization and
communication. In addition to sharing the static database on a read-only basis,
Prolog threads may modify and share the dynamic database in a mutually ex-
clusive manner. Recent research in definition and implementation of high-level
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parallelism primitives shows that a relevant speedup is obtainable by exploiting
parallelism expressly at the source-language level [6, 7]. As this research activity
illustrates, there are situations in which a need to cancel a thread arises after
the thread has already started.

The need for cancelling a thread is illustrated by the high-level primitive
threaded/1 defined in [6]. Given a conjunction of well-formed goals, this prim-
itive simulates an and-parallel operator executing the goals concurrently using
a dedicated thread for each goal. The primitive succeeds if all goals succeed;
otherwise, if a goal fails or raises an exception, it fails. Hence, once a thread
at some point returns a failure result for a goal it has executed, the remaining
threads should be cancelled since they serve no purpose at that point. A similar
need for cancelling a thread arises when a threaded goal executes successfully as
part of a deterministic disjunction executing concurrently. These and other prac-
tical examples, such as an asynchronously generated cancel condition initiated
by a user request to exit a running program, show that thread cancellability is
a desirable method of Prolog threads.

The option of cancelling a Prolog thread is provided by the primitive
thread cancel/1, described in [1] as follows:

thread cancel/1 cancels a thread. Any mutexes held by the thread shall
be automatically released. The main Prolog thread cannot be cancelled.
Other than this, any thread can cancel any other thread. It is expected
that all the resources consumed by the thread be released upon thread
cancellation.

Prolog systems, however, implement thread cancel/l in a variable way. XSB
shares the responsibility for cancelling a thread with the programmer, whereas
SWI-Prolog defers the implementation of thread cancel/l altogether to the
programmer, with the insight that the primitive is best implemented depending
on the thread model of the problem at hand. In Ciao, the outcome of cancelling
a thread is partly defined and depends wholly on the state of the target thread.
The implementation of thread cancel/l in these and other otherwise-compliant
Prolog systems suggests that the above description for thread cancel/1 may
be easier said than done.

The difficulty of cancelling a thread is due to blocking functions. Standard
library functions, such as read, accept, wait, are subject to blocking as they
are dependent on external events, e.g., the availability of input, establishment
of a network connection, occurrence of a specified event. A thread attempting
to cancel a blocked thread must be able to interact with the function inside
which the target thread is blocked. The interaction may be initiated by either
the cancelling thread, by means of signalling, or the cancelled thread, by means
of polling. The latter method is adapted by POSIX threads [8], on which the
majority of Prolog systems is based.
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Also referred to as Pthreads, POSIX threads is a set of C functions for man-
aging threads, mutual exclusion and condition variables.1 A Prolog thread is
directly mapped to a POSIX thread, running a Prolog engine within a multi-
engined Prolog virtual machine. Cancelling a Prolog thread in the context of
POSIX threads is a well-defined process insofar as the semantics of the latter is
concerned.

POSIX specifies a subset of blocking functions as cancellation points. A block-
ing function designated as cancellation-point is expected to call an internal or
external Pthreads function, e.g., pthread testcancel, at sufficient intervals and
be prepared for the possibility that the function may not return due to the thread
being cancelled. Consequently, any function calling a cancellation-point function
must be equally prepared to give up control without further notice. A function
prepares for the possible loss of control by registering thread-specific cleanup
functions to be executed in the event of thread cancellation. The process of can-
celling a Prolog thread may, thus, proceed as follows. Given a proper accounting
of consumed resources using pthread cleanup push and pthread cleanup pop
within every lexical scope containing a cancellation point, a thread cancels an-
other thread asynchronously by calling pthread cancel, which flags the target
thread as cancelled and returns immediately. If the target thread is active, the
Prolog engine traps the thread at a safe execution point and destroys it by ex-
iting the thread startup function. Otherwise, if the target thread is blocked or
is to block, Pthreads takes over control at the next cancellation point and be-
gins the actual cancellation process by calling the thread cleanup functions in
a last-in-first-out order. Apart from excluding certain blocking functions, most
notably pthread mutex lock, from the standard list of cancellation points, the
process of cancelling a POSIX thread seems transparent enough to support an
orderly cancellation of the adjoining Prolog thread.

However, as evident by the lack of support for thread cancel/1 in well-
maintained Prolog systems, the direct mapping approach to thread cancellation
faces implementation issues related, in part, to Prolog signals and garbage col-
lection. As recommended in [1], a Prolog thread should be able to signal another
thread to execute a goal as a soft interrupt at safe points, including, for exam-
ple, the point at which a Prolog thread is suspended waiting for a message from
a message queue. At that point, neither POSIX signals nor Pthreads cancella-
tion points provide a mechanism for processing Prolog signals. While a Prolog
thread can process a POSIX signal, thus receive a Prolog signal, it can not ex-
ecute the signal, while the thread is blocked by a cancellation-point function.
Similarly, memory and atom garbage collection algorithms require a high level
of cooperation among Prolog threads incompatible with low-level mapping of
Prolog threads to Pthreads. For example, when an active Prolog thread triggers
atom garbage-collection, all other threads must suspend and produce their list
of atoms. Here, again, a Prolog thread blocked by a cancellation-point function
can not be guaranteed to heed a garbage-collection interrupt in any specifiable
1 Condition variables are synchronization objects that allow threads to wait for certain

events (conditions) to occur.
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manner. In order to effect a working level of cooperation among Prolog threads,
a high-level mapping of Prolog threads to Pthreads is required.

This paper reports on an attempt to implement thread cancellation using
self-blocking threads. A self-blocking thread blocks at the same safe execution
point where the state of the underlying Prolog engine is defined. A blocked
thread awaits a notification to resume or terminate. A resumed thread may be
reinstructed to self-block by a blocking primitive. Experimental results based
on a proof-of-concept implementation show that using self-blocking threads is
a viable approach for creating Prolog threads with the provision of facilitating
their cancellation at any point during execution.

Section 2 presents the approach of self-blocking threads in the context of
enabling synchronous cancellation of active and blocked threads. Section 3 in-
cludes implementation notes related to select blocking primitives. Section 4
presents the results of a performance comparison between self-blocking and
directly-mapped threads. Section 5 briefly describes existing implementations
of thread cancel/1. Section 6 concludes with a summary of the cost-benefits
of self-blocking threads.

2 An Execution Engine and Self-Block

Cancelling an active thread is a straightforward task. The thread is simply tagged
as cancelled and the actual cancellation takes place upon the thread reaching a
safe execution point. Cancelling a blocked thread, on the other hand, is a complex
task requiring the consent and cooperation of the blocking function. Figure 1(a)
shows a conceptual depiction of active and blocked threads inside the execution
engine of a Prolog virtual machine. The difficulty of cancelling a thread lies with
those threads that are blocked as a result of calling blocking functions. Figure
1(b) depicts the same threads in a new formation: active threads continue to be
active; blocked threads are blocked on their own accord, using a self-blocking
mechanism. The blocking functions are replaced by their cooperative counter-
parts, which are asynchronous, persistent and capable of instructing threads to
block (suspend) or unblock (resume) as it may be warranted during execution.
The task of cancelling a blocked thread is specifiable independent of the cancel
method of the underlying native thread.

A blocking function directs a calling thread to self-block by returning a code
indicating a pending result, based on which the thread self-blocks (suspends)
waiting to be resumed or cancelled. A blocked thread is resumed by notifying
the thread to continue execution from the point at which it was suspended, and
is cancelled by notifying the thread to exit using the same control path used
by an active thread exiting normally. A blocked thread may also be notified
to perform atom-garbage collection or execute a goal as an interrupt. Multiple
notifications are serialized using mutual exclusion. A notifying thread acquires
exclusive control of the target thread prior to notification, with the caveat that
control is granted only if the thread is suspended. A thread is suspended using
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(a) Direct mapping (b) Self-blocking

Fig. 1. Graphical depiction of active and blocked threads.

the interrupt-vector mechanism commonly used in single-threaded systems to
break into the top-level loop.

2.1 Implementing the Self-Block

The self-block is implemented using a standard synchronization composite of a
mutex, condition variable and counter. Each thread is associated with a compos-
ite instance, which is initialized upon thread creation in sync with the creating
thread. A blocking thread atomically unlocks the mutex and waits for the con-
dition variable to be signalled by another thread. A signalling thread locks the
mutex momentarily and signals the condition variable of the target thread. A
blocked thread whose condition variable has been signalled re-locks its mutex,
increments the counter and resumes execution. In addition to its standard role
of preventing a race condition, the mutex is used to query the status of a thread.
A thread queries the status of another thread by attempting to lock its mutex. If
the attempt is successful, the thread is idle; otherwise, it is running. The counter
is intended to be used in a test-yield loop to compel a signalled thread to assume
ownership of its mutex.

The start-up algorithm for self-blocking threads is outlined in Figure 2. The
algorithm takes a Prolog engine as input and proceeds as follows. First, it ini-
tializes a synchronization composite and swaps a reference to it with that of the
temporary composite initialized by the creating thread for synchronizing with
the current, newly created, thread (Lines 1-3). Second, it momentarily locks the
mutex and signals the condition variable of the creating thread so that the lat-
ter may proceed (Line 4). Third, the algorithm iteratively suspends and resumes
calling the execution engine for as often as the latter indicates a pending result
(Lines 6-10). Lastly, the synchronization composite is destroyed and the native
thread of control exits detaching from the adjoining Prolog engine.
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Input : A Prolog engine self
initialize (composite = {mutex,condition,counter})1:
lock (mutex)2:
swap (self.composite, composite)3:
lock (mutex), signal (condition), unlock (mutex)4:
composite ← self.composite5:
do6:

wait (condition, mutex)7:
counter ← counter + 18:
execution engine (self)9:

while self.result is a pending result10:
terminate (composite)11:

Fig. 2. Start-up algorithm of self-blocking threads.

2.2 Implementing thread cancel/1

Cancelling a thread involves first suspending the thread, then destroying it. Since
suspending and destroying a thread are well-defined tasks, they are implemented
by the predicates thread suspend/1 and thread destroy/1. With a negligible
risk of raising an unintended exception, thread cancel/1 is defined as follows:

thread_cancel(Thread) :-

thread_suspend(Thread),

thread_destroy(Thread).

The algorithms for implementing thread suspend and thread destroy are listed
in Figure 3 and 4, respectively. Both algorithms begin by decoding the target
thread thread from the current actual arguments of the calling thread self . It
is assumed that access to shared resources, such as the list of existing threads
list of threads, is serialized using a locking mechanism.

The algorithm for thread suspend starts by locking the list of existing threads
and performing a series of tests, including whether the target thread is non-
existent (Lines 3-6), referenced by other threads (Lines 7-10) or itself the calling
thread (Lines 11-14), in which cases it throws an appropriate error-term or re-
turns a pending result; otherwise, it increments the reference counter of the
target thread and unlocks the list of existing threads (Lines 15-16). Next, the
algorithm suspends the target thread by first setting its interrupt vector, then
locking its mutex momentarily (Lines 17-22). Since it is possible that the target
thread suspends for a reason other than having been interrupted, the thread
interrupt vector is reset based on the return result. Lastly, the algorithm decre-
ments the reference counter of the target thread and continues execution with
the following instruction (Lines 23-26). Chances are that the next instruction
to be executed corresponds to thread destroy. In a like manner, thread destroy
algorithm destroys a target thread, provided the thread exists, is idle, different
from the calling thread and unreferenced by any other threads.



Implementing Thread Cancellation in Multithreaded Prolog Systems 7

thread ← decode (self,1)1:
lock (thread resource)2:
if thread /∈ list of threads then3:

unlock (thread resource)4:
throw existence error5:

end6:
if thread.reference > 0 then7:

unlock (thread resource)8:
throw permission error9:

end10:
if thread = self then11:

unlock (thread resource)12:
thread.signal ← thread.signal ∨13:
suspend signal
return signal result14:

end15:
thread.reference ← thread.reference + 116:
unlock (thread resource)17:
thread.signal ← thread.signal ∨18:
suspend signal
lock (thread.mutex)19:
if thread.result 6= signal result then20:

thread.signal ← thread.signal ∧21:
¬suspend signal

end22:
unlock (thread.mutex)23:
lock (thread resource)24:
thread.reference ← thread.reference − 125:
unlock (thread resource)26:
goto next instruction27:

Fig. 3. thread suspend algorithm

thread ← decode (self,1)1:
lock (thread resource)2:
if thread /∈ list of threads then3:

unlock (thread resource)4:
throw existence error5:

end6:
if thread = self ∨ thread.reference 6= 07:
∨ ¬ trylock(thread.mutex) then

unlock (thread resource)8:
throw permission error9:

end10:
destroy (thread)11:
unlock (thread resource)12:
goto next instruction13:

Fig. 4. thread destroy algorithm

3 Implementing Thread-Blocking Predicates

Blocking predicates, be they built-in or user-defined, i.e., foreign, block by in-
structing the calling thread to self-block. For Prolog systems that provide a
foreign-language interface, blocking foreign code communicates its blocking in-
structions by calling an appropriate interface function. The following are imple-
mentation notes related to select blocking predicates.

get code(+Stream, ?Code) gets the character code of a single character from
the (non-standard) input stream Stream and unifies it with the term Code.
The predicate behaves like the standard built-in get code/2, except that if the
stream position of Stream is end-of-stream and eof action(suspend) is a prop-
erty of Stream, then the calling thread suspends, with the expectation that the
foreign module that created Stream (e.g., an embedding application or shared
library) will call an appropriate interface function to resume the calling thread
when new characters become available.

thread get message(+Queue, ?Term) searches the message queue Queue for
a term unifiable with the term Term. If a term is found, the term is unified
with Term and deleted from Queue. Otherwise, if a term is not found, the
calling thread is added to a waiting list associated with Queue and instructed to
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block (suspend). The search, deletion and addition are performed in a mutually
exclusive manner.

thread send message(+Queue, @Term) searches the waiting list of the message
queue Queue for a thread whose receiving term is unifiable with the term Term. If
a thread is found, then the thread is deleted from the waiting list, the receiving
term is unified with Term, and the thread is instructed to unblock (resume).
Otherwise, if a receiving thread is not found, Term is added to Queue. The
search, deletion and addition are performed in a mutually exclusive manner.

mutex lock(+Mutex) acquires the Prolog mutex Mutex blocking if necessary. If
Mutex is already acquired by a thread other than the calling thread, then the
calling thread is added to a waiting list associated with Mutex and instructed to
suspend. If Mutex is previously acquired by the calling thread, then the recursion
counter of Mutex is incremented. Otherwise, if Mutex is free, the calling thread
acquires Mutex. The conditionals and corresponding actions are performed in a
mutually exclusive manner.

mutex unlock(+Mutex) releases the Prolog mutex Mutex. If Mutex is acquired
by the calling thread and the recursion counter of Mutex is greater than zero,
then the recursion counter is decremented. If Mutex is acquired by the calling
thread and the recursion counter of Mutex is zero, then Mutex is first released,
then acquired by the first thread, if any, on the waiting list of Mutex and the
thread is instructed to resume. The conditionals and corresponding actions are
performed in a mutually exclusive manner.

sleep(+Interval) suspends execution of the calling thread for the interval In-
terval. If Interval is an integer greater than zero, then the calling thread Self is
suspended immediately and resumed after Interval is elapsed as follows. If an
alarm is already set for a thread Thread and is expected to set off after interval
Interval thread is elapsed, and Interval > Interval thread, then the pair (Self, Inter-
val - Interval thread) is inserted into list List, containing ordered pairs of alarms
to be set and threads to be resumed. Otherwise, if Interval < Interval thread,
then the alarm is cancelled, a new alarm is created to set off after Interval is
elapsed, and the pair (Thread, Interval thread - Interval) is inserted into List.
The insertion and cancellation are performed in a mutually exclusive manner.
The alarm is a special thread that sleeps synchronously for and on behalf of the
intervals and threads in List.

4 Performance Evaluation

A prototype Prolog implementation was developed to assess the performance of
self-blocking threads on two popular operating systems: Linux and Windows.
The prototype is a simple compiler and emulator comparable in performance to
SWI-Prolog [3]. A select number of multithreading primitives were implemented
using the self-blocking method, as described in Section 3, and the direct mapping
method, as implemented in SWI-Prolog. The method in effect is determined at
build time using conditional compilation. Three performance parameters were
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measured: thread-creation time, message-passing time and synchronization time.
The latter parameters were also measured using SWI-Prolog. All measurements
were obtained by averaging ten runs per input per program. The computing
environment is comprised of a single computer, equipped with Intel Core 2 Quad
processor (2.5GHz), 3GB RAM (800MHz), dual-bootable with Linux Debian
version 4.0 and Windows Vista (32-bit).

It should be noted that although both Linux and Windows use one-to-one
mapping between user threads and kernel threads, Linux threads appear to be
considerably more lightweight than Windows threads, possibly due in part to
the Windowing system of Windows being an integral part of Windows kernel.
The objective of this evaluation is to compare the performance of self-blocking
threads to that of directly mapped threads. A thread performance comparison
between Linux and Windows is outside the scope of this paper, let alone the
interests of its authors.

4.1 Thread Creation

As described in Section 2.1, the procedure for creating a self-blocking thread
requires that the calling thread blocks until the newly created thread initializes
its self-blocking mechanism. The thread-creation time parameter is intended to
quantify the overhead incurred by self-blocking threads during thread creation.

The execution time of thread creation of self-blocking and directly mapped
threads was measured directly using two simple programs written in C. The
first program measures the execution time of thread creation of directly mapped
threads. It trivially creates a variable number of threads by calling the func-
tion pthread create, tracking the wall time elapsed using the function clock.
The second program measures the execution time of thread creation of self-
blocking threads. It has the structure of the first program except that the call
to pthread create is embedded in a new function responsible for synchronizing
the calling thread with the thread to be created. The new function initializes a
temporary synchronization composite comprised of a mutex and condition vari-
able, and calls pthread create, passing a reference to the composite. It then
calls pthread cond wait and blocks waiting for the composite to be signalled
by the newly created thread. Meanwhile, the new thread first initializes its self-
blocking mechanism, then signals the composite of the calling thread so that the
latter may proceed.

As shown in Table 1, self-blocking threads are more expensive to create than
directly mapped threads. The average execution time of thread creation of a
self-blocking thread is about twice that of a directly mapped thread on both
Linux and Windows. On Linux, the execution time of thread creation increases
as the number of threads increases, approaching a measurable value when the
number of threads equals or exceeds 1, 000. On Windows, the execution time of
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thread creation is stable, around 200 µs per self-blocking thread and 100 µs per
directly mapped thread, regardless of the number of threads.2

Table 1. Comparison of average execution time of thread creation (µs per thread).

# of
threads

Linux Windows

Direct mapping Self-blocking Direct mapping Self-blocking

100 0 0 107 205

200 0 0 106 207

500 0 0 106 206

1000 2 6 107 205

2000 7 12 106 204

4000 10 15 106 204

4.2 Message Passing

The message-passing time parameter was first measured for the case of a single
sender/receiver, where neither implementation method has an apparent advan-
tage over the other. Here, passing a message involves sending the message and
waking up the receiving thread. The time measurements were obtained using
the program described in [9]. The program involves passing a message between
N threads M times. The threads are linked in a ring structure. The message
is an integer specifying the number of times the message is to be passed. Upon
receiving the integer-message, a thread decrements the integer and passes it to
the next thread. The message passing between threads continues until the inte-
ger becomes less than zero, at which point a thread simply exits. The program
is listed in Figure 5. The message-passing time measurements were estimated
for select numbers of threads performing message passing 1, 000, 000 times. The
results are presented in Table 2.3

Overall, the performance of self-blocking threads and directly mapped threads
are comparable on both Linux and Windows. On a closer examination, however,
the self-blocking approach is consistently, albeit slightly, faster than the direct
mapping approach as implemented in both the prototype and SWI-Prolog. The
2 On Windows, according to spawn-time measurement results obtained from Prototype

and SWI-Prolog, the execution time of POSIX thread creation is the dominant
component of the execution time of Prolog thread creation.

3 For assurance and sheer curiosity, the time measurements of Java threads were also
obtained and presented. On Linux, Java threads perform simple message passing
twice as fast as Prolog threads using either approach. The Java speedup is likely
due to Prolog’s need to validate, in a mutually exclusive manner, the existence of a
thread prior to accessing its message queue. The question as to why Java threads
were unable to maintain a similar speedup factor on Windows is outstanding.
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start(N, M) :- setup(0, Thread, Thread) :- !.
N1 is N - 1, setup(N, Thread, NextThread) :-
thread_self(Thread), Goal = process(Thread),
setup(N1, Thread, NextThread), thread_create(Goal, NewThread, [detached(true)]),
thread_send_message(NextThread, M), N1 is N - 1,
catch(process(NextThread), _, true). setup(N1, NewThread, NextThread).

process(Thread) :-
repeat,

thread_get_message(M),
M1 is M - 1,
thread_send_message(Thread, M1),
M1 < 0,

!.

Fig. 5. Program for measuring simple message-passing time.

number of threads that can be created in SWI-Prolog is limited to less than 100
threads, thus the time measurements corresponding to numbers of threads equal
or exceeding 100 are unobtainable. The simple message-passing time is relatively
stable, around 4 µs on Linux, 12 µs on Windows, per message, for a range of 10
to 400 threads. However, this parameter is likely to increase as the number of
threads increases due in part to cache exhaustion due, in turn, to the uncommon
memory requirements of Prolog threads.

Table 2. Comparison of average execution time of threads performing simple message-
passing (µs per message).

(a) Average execution time on Linux

# of
threads

self-blocking direct mapping
SWI-Prolog

5.6.61
Java

1.6.0 06

10 5.86 5.90 5.99 3.03

20 4.36 5.26 4.73 2.94

40 4.26 4.78 4.58 2.91

80 4.02 4.53 4.94 3.21

100 4.15 4.38 – 3.24

200 4.12 4.38 – 3.35

(b) Average execution time on Windows

# of
threads

self-blocking direct mapping
SWI-Prolog

5.6.61
Java

1.6.0 06

10 11.75 13.21 14.54 11.75

20 11.95 12.20 13.71 11.75

40 11.95 12.73 13.29 11.22

80 11.95 12.48 13.38 11.26

100 12.04 12.83 – 11.39

200 12.78 13.51 – 11.39



12 A. Suleiman, J. Miller

The message-passing time parameter was, second, measured for the case of
multiple senders/receivers, where self-blocking threads have a decisive advan-
tage over directly-mapped threads. Here, message passing may involve a series
of time-consuming operations, including adding (copying) a sender’s message to
a message queue, searching a list of waiting receivers for one whose skeletal mes-
sage matches a newly added message, searching a message queue for a message
matching a receiver’s skeletal message, waking up potential receivers or just a
matching receiver, and adding a new receiver to a list of waiting receivers.

The classic concurrency problem of the dining philosophers was used to il-
lustrate the speed advantage of self-blocking threads in programs that require
extensive message passing. The solution found in [10] was adapted to obtain wall
time measurements for a variable number of philosophers. The measurements are
depicted graphically in Figure 6.
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Self-blocking Direct mapping

(a) Linux
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Self-blocking Direct mapping

(b) Windows

Fig. 6. The Dining Philosophers benchmark (10, 000 eat-think cycle per philosopher.)

As expected, self-blocking threads outperform directly mapped threads, by
a factor of 2 on Linux and by an order of magnitude on Windows. The source of
the speedup is transparent. In the self-blocking approach, a new sender signals at
most one potential receiver, whereas in the direct-mapping approach, the sender
must signal all waiting receivers, even though only one of which might succeed
in getting the sender’s message while the other receivers will attempt in vain to
unify their skeletal messages with the old messages of previous senders. In addi-
tion to performing needless unification, the majority of receivers effects needless
task-switches performed by the operating system at the behest of unassuming
senders.

4.3 Synchronization

The synchronization time parameter was measured using a simple program,
which creates a variable number of threads, each of which updates a shared
resource 10, 000 times. Mutual exclusion is achieved using a global mutex and
the synchronization primitives mutex lock/1 and mutex unlock/1. The average
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execution time per mutual exclusion was estimated by subtracting the wall time
required to execute an equal number of updates sequentially. The results are
presented in Table 3.

Table 3. Comparison of average execution time of threads updating a shared resource
(µs per mutual exclusion).

(a) Average execution time on Linux

# of
threads

self-blocking
direct mapping

(compliant)
direct mapping
(incompliant)

SWI-Prolog
5.6.61

10 7.53 7.97 0.56 0.86

20 7.90 8.01 0.75 0.95

40 7.47 8.52 0.91 1.02

80 7.53 8.70 0.96 1.08

100 6.88 8.78 0.99 –

200 7.89 8.93 1.01 –

(b) Average execution time on Windows

# of
threads

self-blocking
direct mapping

(compliant)
direct mapping
(incompliant)

SWI-Prolog
5.6.61

10 11.06 16.10 1.53 11.31

20 10.90 17.04 1.49 11.91

40 10.46 17.37 1.51 12.52

80 10.89 17.39 1.49 12.49

100 10.57 17.52 1.49 –

200 10.75 18.18 1.48 –

The performance of self-blocking and directly mapped threads in programs
that require extensive synchronization varies depending on the implementation of
Prolog mutex. For implementations potentially compliant with [1], self-blocking
threads compare favorably to directly mapped threads on Linux. On Windows,
the former (self-blocking) threads outperform the latter threads by a factor as
high as 1.7. Moreover, on Windows, the prototype’s compliant implementation
using self-blocking threads outperforms SWI-Prolog incompliant implementation
using directly mapped threads. The criteria for compliance, for the purpose of
this comparison, is that a Prolog mutex is indestructible while it is in use, e.g.,
one or more threads are blocked attempting to acquire the mutex. As shown in
Table 3, lifting this requirement of indestructibility can result in a synchroniza-
tion speed characteristic of low-level programming languages, however, to the
negation of the premise of using self-blocking threads, which is to provide a safe
and user-friendly Prolog multithreaded environment.
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5 Related work

While Prolog systems agree on how to create threads, they differ widely on how
to cancel them.

SWI-Prolog [3] and Yap [5] defer the implementation of thread cancel/1 to
the programmer with the insight that thread cancellation is best implemented
based on the thread model of the application at hand. In the boss/worker thread
model, for example, thread cancel/1 may be implemented by communicating
to the thread to be cancelled a specially coded message instructing the thread
to exit or abort. In a computation-intensive application, for another example,
cancelling a thread may be achieved by signalling the thread to execute a goal
quoting a control primitive, such as thread exit(cancelled).

In XSB [4], thread cancelation is a joint responsibility of the system and
the application. The latter initiates the process of canceling a thread by call-
ing thread cancel/1, giving the thread to be cancelled as an argument. For its
part, XSB internally flags the given thread as canceled and waits for the thread
execution to reach a call or execute port, at which point XSB throws a cancela-
tion error ending its role in the thread cancelation process. The target thread,
henceforth, is expected to catch the error, release any allocated resources and
exit voluntarily.

Ciao [2] provides a primitive named eng kill/1, which attempts to cancel
the thread associated with a given goal identifier. The attempt may succeed,
fail, block or render the system in an unstable state, depending on whether,
irrespectively, the thread to be cancelled is trappable at a standard port, the
goal identifier is valid, the thread is blocked by a system call, or other noted,
however unspecified, situations.

Other Prolog systems, such as BinProlog and Qu-Prolog, provide other vari-
ations on the theme of thread cancellation. However, the primitives tasked with
cancelling a thread are summarily documented. Attempts to learn of the in-
ternals of these primitives, through haphazard queries written with ill intents,
showed that thread cancellation in these systems is problematic.

6 Conclusion

This paper presented an experimental implementation approach for creating
Prolog threads with the provision of facilitating their destruction at any point
during execution. The approach is based on self-blocking threads, a common
implementation technique for managing thread interactions in multithreaded
applications. The ability to cancel a thread safely and synchronously improves
Prolog’s standing as a useful programming language, capable of expressing vari-
able solutions to complex concurrent problems for prototyping or production
purposes. Additionally, it preserves the integrity of Prolog’s traditional top-level
loop program and improves Prolog’s embeddability into multi-paradigm, multi-
language applications.
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Thread cancellability with self-blocking threads increases the complexity of
system and extension development, as might be expected of features of high-
level programming languages. Standard library functions, such as seek, sleep,
select, may not be used directly to implement built-in and library predicates.
Instead, these functions are reemployed within newly designed, more complex
functions which are reentrant, persistent, asynchronous and able to communicate
intermediate results. This added complexity may be viewed as a fair price, paid
at the right layer in the right currency, C, in exchange for preserving Prolog’s
dictum of combining simplicity and power at the user level.

Although native in their own right, self-blocking threads exhibit the pro-
grammability of green threads,4 as they are at most one standard port away from
relinquishing processor control and one wake-up call from regaining it. As such,
they are fit to yield the main benefits of both native and green multithreaded
environments, namely parallelism and portability. Used in this capacity, the self-
blocking approach constitutes a cost-efficient compromise between using native
preemptive threads [11] and nonnative cooperative threads [12].

The performance of self-blocking threads compares favorably to that of di-
rectly mapped threads, despite that the time cost of creating a self-blocking
thread is twice that of a directly mapped thread, due to the initial cost of the
former’s self-blocking mechanism. Self-blocking threads support a wide range of
algorithms for implementing message passing, a primary means of thread com-
munication and synchronization [1]. For programs that require extensive message
passing, experimental results showed that execution times vary by up to an or-
der of magnitude, depending on the operating system and the algorithm used
for matching the messages of senders and receivers. Given that directly mapped
threads can hardly do without a message queue and message passing, the run
time advantage of self-blocking threads should offset the initial cost of their
self-blocking mechanisms.

The utility of self-blocking threads extends beyond simplifying thread can-
cellation to enabling the implementation of high-level features, such as the sep-
aration of thread creation and execution, the implementation of suspend and
resume primitives, backtracking, multiple executions and execution modes. The
ability to separate thread creation from execution, proposed in passing in [13],
facilitates the implementation of a high level API, which subsumes the one rec-
ommended in [1], which in turn facilitates the implementation of yet higher-level
parallel operators analogous to those introduced in [6] and [7]. Experiments are
being conducted to evaluate the merits of new multithreading primitives in terms
of simplicity and expressiveness, as well as performance.

Acknowledgments. The authors thank Jan Wielemaker and Richard O’Keefe
for their insightful, differing views. This research was supported by the Office of
Science (BER), U.S. Department of Energy, Grant No. DE-FG02-05ER64105.

4 Green threads are threads that are scheduled by a virtual machine instead of natively
by the underlying operating system.
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Abstract. We introduce a new programming language construct, Inter-
actors, supporting the agent-oriented view that programming is a dialog
between simple, self-contained, autonomous building blocks.
We define Interactors as an abstraction of answer generation and refine-
ment in Logic Engines resulting in expressive language extension and
metaprogramming patterns.
As a first step toward a declarative semantics, we sketch a pure Prolog
specification showing that Interactors can be expressed at source level,
in a relatively simple and natural way.
Interactors extend language constructs like Ruby, Python and C#’s mul-
tiple coroutining block returns through yield statements and they can
emulate the action of fold operations and monadic constructs in func-
tional languages.
Using the Interactor API, we describe at source level, language extensions
like dynamic databases and algorithms involving combinatorial genera-
tion and infinite answer streams.
Keywords: Prolog language extensions, logic engines, semantics of metapro-
gramming constructs, generalized iterators, agent oriented programming
language constructs

1 Introduction

Interruptible Iterators are a new Java extension described in [1]. The underlying
construct is the yield statement providing multiple returns and resumption of
iterative blocks, i.e. for instance, a yield statement in the body of a for loop
will return a result for each value of the loop’s index.

The yield statement has been integrated in newer Object Oriented languages
like Ruby [2, 3] C# [4] and Python [5] but it goes back to the Coroutine Iterators
introduced in older languages like CLU [6] and ICON [7].

A natural generalization of Iterators, is the more radical idea of allowing
clients to communicate to/from inside blocks of arbitrary recursive computa-
tions. The challenge is to achieve this without the fairly complex interrupt based
communication protocol between the iterator and its client described in [1]. This
suggests some form of structured two-way communication between a client and
the usually autonomous service the client requires from a given language con-
struct, often encapsulating an independent component.
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Agent programming constructs have influenced design patterns at “macro
level”, ranging from interactive Web services to mixed initiative computer hu-
man interaction. Performatives in Agent communication languages [8] have made
these constructs reflect explicitly the intentionality, as well as the negotiation
process involved in agent interactions. At a more theoretical level, it has been
argued that interactivity, seen as fundamental computational paradigm, can ac-
tually expand computational expressiveness and provide new models of compu-
tation [9].

In a logic programming context, the Jinni agent programming language [10]
and the BinProlog system [11] have been centered around logic engine constructs
providing an API that supported reentrant instances of the language processor.
This has naturally led to a view of logic engines as instances of a generalized
family of iterators called Fluents [12], that have allowed the separation of the
first-order language interpreters from the multi-threading mechanism, while pro-
viding a very concise source-level reconstruction of Prolog’s built-ins.

Building upon the Fluents API described in [12], this paper will focus on
bringing interaction-centered, agent oriented constructs from software design
frameworks and design patterns to programming language level.

The resulting language constructs, that we shall call Interactors, will express
control, metaprogramming and interoperation with stateful objects and external
services. They complement pure Horn Clause Prolog with a significant boost in
expressiveness, to the point where they allow emulating at source level virtually
all Prolog builtins, including dynamic database operations.

2 First Class Logic Engines

Our Interactor API is a natural extension of the Logic Engine API introduced
in [12]. An Engine is simply a language processor reflected through an API that
allows its computations to be controlled interactively from another Engine very
much the same way a programmer controls Prolog’s interactive toplevel loop:
launch a new goal, ask for a new answer, interpret it, react to it.

A Logic Engine is an Engine running a Horn Clause Interpreter with LD-
resolution [13] on a given clause database, together with a set of built-in opera-
tions. The command

new_engine(AnswerPattern,Goal,Interactor)

creates a new Horn Clause solver, uniquely identified by Interactor, which
shares code with the currently running program and is initialized with Goal
as a starting point. AnswerPattern is a term, usually a list of variables occur-
ring in Goal, of which answers returned by the engine will be instances. Note
however that new engine/3 acts like a typical constructor, no computations are
performed at this point, except for allocating data areas. In our actual implemen-
tation, with all data areas dynamic, engines are lightweight and engine creation
is extremely fast.
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The get/2 operation is used to retrieve successive answers generated by an
Interactor, on demand. It is also responsible for actually triggering computations
in the engine.

get(Interactor,AnswerInstance)

It tries to harvest the answer computed from Goal, as an instance of AnswerPattern.
If an answer is found, it is returned as the(AnswerInstance), otherwise the
atom no is returned. As in the case of the Maybe Monad in Haskell, returning
distinct functors in the case of success and failure, allows further case analy-
sis in a pure Horn Clause style, without needing Prolog’s CUT or if-then-else
operation.

Note that bindings are not propagated to the original Goal or AnswerPattern
when get/2 retrieves an answer, i.e. AnswerInstance is obtained by first stan-
dardizing apart (renaming) the variables in Goal and AnswerPattern, and then
backtracking over its alternative answers in a separate Prolog interpreter. There-
fore, backtracking in the caller interpreter does not interfere with the new Inter-
actor’s iteration over answers. Backtracking over the Interactor’s creation point,
as such, makes it unreachable and therefore subject to garbage collection.

An Interactor is stopped with the stop/1 operation that might or might not
reclaim resources held by the engine. In our actual implementation we are using
a fully automated memory management mechanism where unreachable engines
are automatically garbage collected.
So far, these operations provide a minimal Coroutine Iterator API, powerful
enough to switch tasks cooperatively between an engine and its client and emu-
late key Prolog built-ins like if-then-else and findall [12], as well as higher
order operations like fold and best of.

3 From Fluents to Interactors

We will now describe the extension of the Fluents API of [12] that provides a
minimal bidirectional communication API between interactors and their clients.

The following operations provide a “mixed-initiative” interaction mechanism,
allowing more general data exchanges between an engine and its client.

3.1 A yield/return operation

First, like the yield return construct of C# and the yield operation of Ruby
and Python, our return/1 operation

return(Term)

will save the state of the engine and transfer control and a result Term to its
client. The client will receive a copy of Term simply by using its get/2 operation.
Similarly to Ruby’s yield, our return operation suspends and returns data from
arbitrary computations (possibly involving recursion) rather than from specific
language constructs like a while or for loop.
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Note that an Interactor returns control to its client either by calling return/1
or when a computed answer becomes available. By using a sequence of return/get
operations, an engine can provide a stream of intermediate/final results to its
client, without having to backtrack. This mechanism is powerful enough to im-
plement a complete exception handling mechanism (see [12]) simply by defining

throw(E):-return(exception(E)).

When combined with a catch(Goal,Exception,OnException), on the client
side, the client can decide, upon reading the exception with get/2, if it wants
to handle it or to throw it to the next level.

3.2 Interactors and Coroutining

The operations described so far allow an engine to return answers from any
point in its computation sequence. The next step is to enable an engine’s client
to inject new goals (executable data) to an arbitrary inner context of an engine.
Two new primitives are needed:

to_engine(Engine,Data)

used to send a client’s data to an Engine, and

from_engine(Data)

used by the engine to receive a client’s Data.
A typical use case for the Interactor API looks as follows:

1. the client creates and initializes a new engine
2. the client triggers a new computation in the engine, parameterized as follows:

(a) the client passes some data and a new goal to the engine and issues a
get operation that passes control to it

(b) the engine starts a computation from its initial goal or the point where
it has been suspended and runs (a copy of) the new goal received from
its client

(c) the engine returns (a copy of) the answer, then suspends and returns
control to its client

3. the client interprets the answer and proceeds with its next computation step
4. the process is fully reentrant and the client may repeat it from an arbitrary

point in its computation

Using a metacall mechanism like call/1 (which can also be emulated in terms
of engine operations [12]) or directly through a source level transformation [14],
one can implement a close equivalent of Ruby’s yield statement as follows:

ask_engine(Engine,(Answer:-Goal), Result):-

to_engine(Engine,(Answer:-Goal)),

get(Engine,Result).

engine_yield(Answer):-

from_engine((Answer:-Goal)),

call(Goal),

return(Answer).
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where ask engine sends a goal (possibly built at runtime) to an engine, which
in turn, executes it and returns a result with an engine yield operation.

As the following example shows, this allows the client to use from outside
the (infinite) recursive loop of an engine as a form of updatable persistent state.

sum_loop(S1):-engine_yield(S1=>S2),sum_loop(S2).

inc_test(R1,R2):-

new_engine(_,sum_loop(0),E),

ask_engine(E,(S1=>S2:-S2 is S1+2),R1),
ask_engine(E,(S1=>S2:-S2 is S1+5),R2).

?- inc_test(R1,R2).

R1=the(0 => 2),

R2=the(2 => 7)

Note also that after parameters (the increments 2 and 5) are passed to the
engine, results dependent on its state (the sums so far 2 and 7) are received
back. Moreover, note that an arbitrary goal is injected in the local context of
the engine where it is executed, with access to the engine’s state variables S1 and
S2. As engines have separate garbage collectors (or in simple cases as a result
of tail recursion), their infinite loops run in constant space, provided that no
unbounded size objects are created.

4 A (mostly) Pure Prolog Specification

At a first look, Interactors deviate from the usual Horn Clause semantics of
pure Prolog programs. A legitimate question arises: are they not just another
procedural extension, say, like assert/retract, setarg, global variables etc.?

We will show here that the semantic gap between pure Prolog and its exten-
sion with Interactors is much narrower than one would expect. The techniques
that we will describe can be seen as an executable specification of Interactors
within the well understood semantics of logic programs (SLDNF resolution).

Toward this end, we will sketch an emulation, in pure Prolog, of the key
constructs involved in defining Interactors.

There are four distinct concepts to be emulated:

1. we need to eliminate backtracking to be able to access multiple answers at
a time

2. we need to emulate copy term as different search branches and multiple uses
of a given clause require fresh instances of terms, with variables standardized
apart

3. we need to emulate suspending and resuming an engine
4. engines should be able to receive and return Prolog terms

We will focus here on the first two, that are arguably less obvious, by pro-
viding actual implementations. After that, we will briefly discuss the feasibility
of the last two.
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4.1 Metainterpreting Backtracking

First, let’s define a clause representation, that can be obtained easily with a
source-to-source translator. Clauses in the database are represented with difference-
list terms, structurally isomorphic to the binarization transformation described
in [14]. The code of a classic Prolog naive reverse + permutation generator pro-
gram becomes:

:-op(1150,xfx,<=).

clauses([

[app([],A,A) |B]<=B,
[app([C |D],E,[C |F]) |G]<=[app(D,E,F) |G],

[nrev([],[]) |H]<=H,
[nrev([I |J],K) |L]<=[nrev(J,M),app(M,[I],K) |L],

[perm([],[]) |N]<=N,
[perm([O |P],Q) |R]<=[perm(P,S),ins(O,S,Q) |R],

[ins(T,U,[T |U]) |V]<=V,
[ins(W,[X |Y],[X |Z]) |X0]<=[ins(W,Y,Z) |X0]

]).

Note that we can assume that variables are local to each clause and therefore
they have been standardized apart accordingly1.

First, let’s define the basic inference step (equivalent to an LD-resolution
step, [13]) as a simple “arrow composition” operation:

compose(F1,F2,A<=C):-copy_term(F1,A<=B),copy_term(F2,B<=C).

We can now add a new “arrow” to a list of existing arrows, provided that the
composition succeeds:

match_one(F1,F2,Fs,[NewF |Fs]):-compose(F1,F2,F3),!,NewF=F3.
match_one(_,_,Fs,Fs).

and lift this to have an arrow (seen as representing the current goal), select from
a list of clauses the ones that match:

match_all([],_,Fs,Fs).

match_all([Clause |Cs],Arrow,Fs1,Fs3):-
match_one(Arrow,Clause,Fs1,Fs2),

match_all(Cs,Arrow,Fs2,Fs3).

We can add a stopping condition to mark the success of an LD-derivation as
matching an arrow of the form Answer<=[]

derive_one(Answer<=[],_,Fs,Fs,As,[Answer |As]).
derive_one(Answer<=[G |Gs],Cs,Fs,NewFs,As,As):-
match_all(Cs,Answer<=[G |Gs],Fs,NewFs).

1 Allowing shared variables would bring a different, but nevertheless interesting se-
mantics, with “inter-clausal variables” seen as write-once global variables.



Interactors: Logic Engine Interoperation with Pure Prolog Semantics 23

With these building blocks in place, an LD-derivation of all answer instances of
a query can be defined as:

all_instances(AnswerPattern,Goal,Clauses,Answers):-

Gs=[AnswerPattern<=[Goal]],
derive_all(Gs,Clauses,[],Answers).

where derive all lifts the derivation process to progressively solve all existing
and newly generated goals:

derive_all([],_,As,As).

derive_all([Arrow |Fs],Cs,OldAs,NewAs):-
derive_one(Arrow,Cs,Fs,NewFs,OldAs,As),

derive_all(NewFs,Cs,As,NewAs).

Finally, we can integrate the clause database:

all_answers(X,G,R):-clauses(Cs),all_instances(X,G,Cs,R).

and try out a few goals:

?- all_answers(Xs+Ys,app(Xs,Ys,[1,2,3]),Rs).
Rs = [[]+[1, 2, 3], [1]+[2, 3], [1, 2]+[3], [1, 2, 3]+[]]

?- all_answers(P,perm([1,2,3],P),Ps).

Ps = [[1, 2, 3], [2, 1, 3], [2, 3, 1], [1, 3, 2], [3, 1, 2], [3, 2, 1]]

Note, that for non-ground queries, answers computed this way keep variable
equalities as expected:

?- List=[A,B,B,A],all_answers(R,nrev(List,R),Rs).
List = [A, B, B, A],

Rs = [[_A, _B, _B, _A]]

Note that, except for relying on copy term and a cut that can be replaced with
a negation as failure, the metainterpreter is entirely written in pure Prolog.

4.2 Emulating copy term

We can emulate the effect of copy term in the previously described metainter-
preter by observing that a logical variable can be “split” into two new ones and
consequently a Prolog term can be recursively deconstructed and rebuilt as two
fresh terms, identical to it up to uniform variable renamings.

fork_term(’$v’(T1,T2), R1,R2):-R1=T1,R2=T2.
fork_term(T, T1,T2):-

nonvar(T),functor(T,F,N),(F/N) \== (’$v’/2),

functor(T1,F,N),functor(T2,F,N),

fork_args(N,T,T1,T2).

fork_args(0,_,_,_).

fork_args(I,T,T1,T2):-I>0,
I1 is I-1,arg(I,T,X),
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fork_term(X,A,B),

arg(I,T1,A),arg(I,T2,B),

fork_args(I1,T,T1,T2).

One can see that this produces indeed two fresh copies of the original term:

?- fork_term(f(A,B,g(B,A)),T1,T2).

A = ’$v’(_A1, _A2),

B = ’$v’(_B1, _B2),

T1 = f(_A1, _B1, g(_B1, _A1)),

T2 = f(_A2, _B2, g(_B2, _A2)).

Note that functor and arg can be seen as generic abbreviations for predi-
cates describing the building/decomposition operations for each function symbol
occurring in the program and $v/2 can be assumed to be any function symbol not
occurring in the program. Along the lines of [15] one can see that this function-
ality can be also expressed through a simple program transformation provided
that nonvar/1 can be expressed using negation as failure as

nonvar(X):- not(X=0),not(X=1).

We will obtain a slightly different definition of composition, that would re-
quire replacing both the clause and the resolvent with one of the copies while
using the other pair of copies for the arrow compositions.

compose(F1,F2, A<=C, NewF1,NewF2):-

fork_term(F1,A<=B,NewF1),
fork_term(F2,B<=C,NewF2).

One can now see that after propagating the extra arguments through the clauses
of the metainterpreter described in subsection 4.1, together with the source
level transformations we just mentioned, a metainterpreter that does not re-
quire copy term can be derived.

4.3 Implementing suspend/resume and term/exchanges

The metainterpreter described in subsection 4.1 can be easily modified to re-
turn the current goal list when observing a return(X) instruction and then
be resumed at will, by adding a clause similar to the one handling the case
Answer<=[]. At this point, data exchange operations and to engine and from engine
can be implemented through an extra argument added to the metainterpreter.

5 Interactors and Higher Order Constructs

As a first glimpse at the expressiveness of the Interactor API, we will implement,
in the tradition of higher order functional programming, a fold operation [16]
connecting results produced by independent branches of a backtracking Prolog
engine:
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efoldl(Engine,F,R1,R2):-

get(Engine,X),

efoldl_cont(X,Engine,F,R1,R2).

efoldl_cont(no,_Engine,_F,R,R).

efoldl_cont(the(X),Engine,F,R1,R2):-

call(F,R1,X,R),

efoldl(Engine,F,R,R2).

Classic functional programming idioms like reverse as fold are then implemented
simply as:

reverse(Xs,Ys):-

new_engine(X,member(X,Xs),E),

efoldl(E,reverse_cons,[],Ys).

reverse_cons(Y,X,[X |Y]).

Note also the automatic deforestation effect [17] of this programming style
- no intermediate list structures need to be built, if one wants to aggregate the
values retrieved from an arbitrary generator engine with an operation like sum
or product.

6 Emulating Dynamic Databases with Interactors

The gain in expressiveness coming directly from the view of logic engines as an-
swer generators is significant. We refer to [12] for source level implementations
of virtually all essential Prolog built-ins (exceptions included). The notable ex-
ception is Prolog’s dynamic database, requiring the bidirectional communication
provided by interactors.

The key idea for implementing dynamic database operations with Interac-
tors is to use a logic engine’s state in an infinite recursive loop, similar to the
coinductive programming style advocated in [18], to emulate state changes in its
client engine.

First, a simple difference-list based infinite server loop is built:

queue_server:-queue_server(Xs,Xs).

queue_server(Hs1,Ts1):-

from_engine(Q),

server_task(Q,Hs1,Ts1,Hs2,Ts2,A),

return(A),

queue_server(Hs2,Ts2).

Next we provide the queue operations, needed to maintain the state of the
database.

server_task(add_element(X),Xs,[X |Ys],Xs,Ys,yes).
server_task(push_element(X),Xs,Ys,[X |Xs],Ys,yes).
server_task(queue,Xs,Ys,Xs,Ys,Xs-Ys).



26 Paul Tarau

server_task(delete_element(X),Xs,Ys,NewXs,Ys,YesNo):-

server_task_delete(X,Xs,NewXs,YesNo).

Then we implement the auxiliary predicates supporting various queue opera-
tions:

server_task_remove(Xs,NewXs,YesNo):-

nonvar(Xs),Xs=[X |NewXs],!,
YesNo=yes(X).

server_task_remove(Xs,Xs,no).

server_task_delete(X,Xs,NewXs,YesNo):-

select_nonvar(X,Xs,NewXs),!,

YesNo=yes(X).
server_task_delete(_,Xs,Xs,no).

select_nonvar(X,XXs,Xs):-nonvar(XXs),XXs=[X |Xs].
select_nonvar(X,YXs,[Y |Ys]):-nonvar(YXs),YXs=[Y |Xs],
select_nonvar(X,Xs,Ys).

Finally, we put it all together, as a dynamic database API:
We can create a new engine server providing Prolog database operations:

new_edb(Engine):-new_engine(done,queue_server,Engine).

We can add new clauses to the database

edb_assertz(Engine,Clause):-

ask_engine(Engine,add_element(Clause),the(yes)).

edb_asserta(Engine,Clause):-

ask_engine(Engine,push_element(Clause),the(yes)).

and we can return fresh instances of asserted clauses

edb_clause(Engine,Head,Body):-

ask_engine(Engine,queue,the(Xs-[])),

member((Head:-Body),Xs).

or remove them from the the database

edb_retract1(Engine,Head):-Clause=(Head:-_Body),
ask_engine(Engine,

delete_element(Clause),the(yes(Clause))).

Finally, the database can be discarded by discarding the engine that hosts it:

edb_delete(Engine):-stop(Engine).

The following example shows how the database generates the equivalent of
clause/2, ready to be passed to a Prolog metainterpreter.

test_clause(Head,Body):-

new_edb(Db),

edb_assertz(Db,(a(2):-true)),
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edb_asserta(Db,(a(1):-true)),

edb_assertz(Db,(b(X):-a(X))),

edb_clause(Db,Head,Body).

As a side note, combining this emulation with the metainterpreter described
in section 4, provides an executable specification of Prolog’s dynamic database
operations in pure Prolog, worth investigating in depth, as future work.

Externally implemented dynamic databases can also be made visible as In-
teractors and reflection of the interpreter’s own handling of the Prolog database
becomes possible. As an additional benefit, multiple databases can be provided.
This simplifies adding module, object or agent layers at source level. By com-
bining database and communication Interactors, software abstractions like mo-
bile code and autonomous agents can be built as shown in [19]. Encapsulating
external stateful objects like file systems or external database or Web service in-
terfaces as Interactors can provide a uniform interfacing mechanism and reduce
programmer learning curves in practical applications of Prolog.

Moreover, Prolog operations traditionally captive to predefined list based
implementations (like DCGs) can be made generic and mapped to work directly
on Interactors encapsulating file, URL and socket Readers.

7 Refining control: a backtracking if-then-else

Modern Prolog implementations (SWI, SICStus, BinProlog, Jinni) also provide
a variant of if-then-else that either backtracks over multiple answers of its
then branch or switches to the else branch if no answers in the then branch
are found. With the same API, we can implement it at source level as follows:
if_any(Cond,Then,Else):-

new_engine(Cond,Cond,Engine),

get(Engine,Answer),

select_then_or_else(Answer,Engine,Cond,Then,Else).

select_then_or_else(no,_,_,_,Else):-Else.

select_then_or_else(the(BoundCond),Engine,Cond,Then,_):-

backtrack_over_then(BoundCond,Engine,Cond,Then).

backtrack_over_then(Cond,_,Cond,Then):-Then.

backtrack_over_then(_,Engine,Cond,Then):-

get(Engine,the(NewBoundCond)),

backtrack_over_then(NewBoundCond,Engine,Cond,Then).

8 Simplifying Algorithms: Interactors and Combinatorial
Generation

Various combinatorial generation algorithms have elegant backtracking imple-
mentations. However, it is notoriously difficult (or inelegant, through the use of
impure side effects) to compare answers generated by different OR-branches of
Prolog’s search tree.
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8.1 Comparing Alternative Answers

Such optimization problems can easily be expressed as follows:

– running the generator in a separate logic engine
– collecting and comparing the answers in a client controlling the engine

The second step can actually be automated, provided that the comparison cri-
terion is given as a predicate

compare_answers(First,Second,Best)

to be applied to the engine with an efold operation

best_of(Answer,Comparator,Generator):-

new_engine(Answer,Generator,E),

efoldl(E,

compare_answers(Comparator),no,

Best),

Answer=Best.

compare_answers(Comparator,A1,A2,Best):-

if((A1\==no,call(Comparator,A1,A2)),
Best=A1,
Best=A2

).

?-best_of(X,>,member(X,[2,1,4,3])).
X=4

8.2 Counting Answers without Accumulating

Problems as simple as counting the number of solutions of a combinatorial gener-
ation problem can become tricky in Prolog (unless one uses impure side effects)
as one might run out of space by having to generate all solutions as a list, just to
be able to count them. The following example shows how this can be achieved
using an efold operation on an integer partition generator:

integer_partition_of(N,Ps):-

positive_ints(N,Is),

split_to_sum(N,Is,Ps).

split_to_sum(0,_,[]).

split_to_sum(N,[K |Ks],R):-N>0,sum_choice(N,K,Ks,R).

sum_choice(N,K,Ks,[K |R]):-
NK is N-K,split_to_sum(NK,[K |Ks],R).

sum_choice(N,_,Ks,R):-split_to_sum(N,Ks,R).

positive_ints(1,[1]).

positive_ints(N,[N |Ns]):-N>1,N1 is N-1,
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positive_ints(N1,Ns).

% counts partitions by running

% the generator on an engine that returns

% 1 for each answer that is found

count_partitions(N,R):-

new_engine(1,

integer_partition_of(N,_),Engine),

efoldl(Engine,+,0,R).

8.3 Encapsulating Infinite Computations Streams

An infinite stream of natural numbers is implemented as:

loop(N):-return(N),N1 is N+1,loop(N1).

The following example shows a simple space efficient generator for the infinite
stream of prime numbers:

prime(P):-prime_engine(E),element_of(E,P).

prime_engine(E):-new_engine(_,new_prime(1),E).

new_prime(N):-N1 is N+1,
if(test_prime(N1),true,return(N1)),

new_prime(N1).

test_prime(N):-

M is integer(sqrt(N)),between(2,M,D),N mod D =:=0

Note that the program has been wrapped, using the element of predicate de-
fined in [12], to provide one answer at a time through backtracking. Alternatively,
a forward recursing client can use the get(Engine) operation to extract primes
one at a time from the stream.

9 Applications of Interactors and Practical Language
Extensions

Interactors and Multi-Threading As a key difference with typical multi-
threaded Prolog implementations like Ciao-Prolog and SWI-Prolog [20, 21], our
Interactor API is designed up front with a clear separation between engines and
threads as we prefer to see them as orthogonal language constructs.

While one can build a self-contained lightweight multi-threading API solely
by switching control among a number of cooperating engines, with the advent
of multi-core CPUs as the norm rather than the exception, the need for native
multi-threading constructs is justified on both performance and expressiveness
grounds. Assuming a dynamic implementation of a logic engine’s stacks, Inter-
actors provide lightweight independent computation states that can be easily
mapped to the underlying native threading API.
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A minimal native Interactor based multi-threading API, has been imple-
mented in the Jinni Prolog system [10] on top of a simple thread launching
built-in

run_bg(Engine,ThreadHandle)

This runs a new Thread starting from the engine’s run() predicate and returns
a handle to the Thread object. To ensure that access to the Engine’s state is
safe and synchronized, we hide the engine handle and provide a simple produc-
er/consumer data exchanger object, called a Hub. Some key components of the
multi-threading API, partly designed to match Java’s own threading API are:

– bg(Goal): launches a new Prolog thread on its own engine starting with
Goal.

– hub ms(Timeout,Hub): constructs a new Hub - a synchronization device on
which N consumer threads can wait with collect(Hub,Data) (similar to
a synchronized from engine operation) for data produced by M producers
providing data with put(Hub,Data) (similar to a synchronized from engine
operation.

Interactor Pools Thread Pools have been in use either at kernel level or
user level in various operating system and language implementations to avoid
costly allocation and deallocation of resources required by Threads. Likewise, for
Interactor implementations that cannot avoid high creation/initialization costs,
it makes sense to build Interactor Pools. An Interactor Pool is maintained by a
dedicated Logic Engine that keeps track of the state of various Interactors and
provides recently freed handles, when available, to new engine requests.

Associative Interactors The message passing style interaction shown in the
previous sections between engines and their clients, can be easily generalized to
associative communication through a unification based blackboard interface [22].
Exploring this concept in depth promises more flexible interaction patterns, as
out of order ask engine and engine yield operations would become possible,
matched by association patterns.

10 Interactors Beyond Logic Programming Languages

We will now compare Interactors with similar constructs in other programming
paradigms.

10.1 Interactors in Object Oriented Languages

Extending Interactors to mainstream Object Oriented languages is definitely of
practical importance, given the gain in expressiveness. An elegant open source
Prolog engine Yield Prolog has been recently implemented in terms of Python’s
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yield and C#’s yield return primitives [23]. Extending Yield Prolog to support our
Interactor API only requires adding the communication operations from engine
and to engine. In older languages like Java, C++ or Objective C one needs to
implement a more complex API, including a yield return emulation.

10.2 Interactors and similar constructs in Functional Languages

Interactors based on logic engines encapsulate future computations that can be
unrolled on demand. This is similar to lazy evaluation mechanisms in languages
like Haskell [24]. Interactors share with Monads [25, 26] the ability to sequen-
tialize functional computations and encapsulate state information. With higher
order functions, monadic computations can pass functions to inner blocks. On
the other hand, our ask engine / engine yield mechanism, like Ruby’s yield,
is arguably more flexible, as it provides arbitrary switching of control (coroutin-
ing) between an Interactor and its client. The ability to define Prolog’s findall
construct as well as fold operations in terms of Interactors, is similar to defini-
tion of comprehensions [26] in terms of Monads.

11 Conclusion

We have shown that Logic Engines encapsulated as Interactors can be used
to build on top of pure Prolog a practical Prolog system, including dynamic
database operations, entirely at source level. We have also provided a sketch of
an executable semantics for Logic Engine operations in pure Prolog. This shows
that, in principle, their exact specification can be expressed declaratively.

In a broader sense, Interactors can be seen as a starting point for rethinking
fundamental programming language constructs like Iterators and Coroutining
in terms of language constructs inspired by performatives in agent oriented pro-
gramming.

Beyond applications to logic-based language design, we hope that our lan-
guage constructs will be reusable in the design and implementation of new func-
tional and object oriented languages.
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Abstract. This paper identifies potential security loopholes in the im-
plementation of support for meta-predicates. Closing these loopholes de-
pends on three conditions: a clear distinction between closures and goals,
support for an extended meta-predicate directive that allows the specifi-
cation of closures, and the availability of the call/2-N family of built-in
meta-predicates. These conditions provide the basis for a set of simple
safety rules that allows meta-predicates to be securely supported. These
safety rules are currently implemented by Logtalk, an object-oriented
logic programming language, and may also be applied in the context of
Prolog predicate-based module systems. Experimental results illustrate
how these rules can prevent several security problems, including acciden-
tal or malicious changes to the original meta-predicate arguments and
bypassing of predicate scope rules and predicate scope directives.

Keywords: logic-programming, meta-predicates, security

1 Introduction

Prolog and Logtalk [1, 2] meta-predicates are predicates with one or more ar-
guments that are called as goals on the body of a predicate clause. A typical
example is the findall/3 predicate whose second argument is used for generating
solutions that are collected into a list. Meta-arguments may also be closures. In
the context of this paper, a closure is defined as a callable term used to construct
a goal by appending one or more arguments. The archetypal example is a list
mapping predicate that succeeds when a closure can be successfully applied to
each element in the list. Meta-predicates are particularly useful in the presence
of an encapsulation mechanism such as a module system or an object-oriented
extension. Defining an exported or public meta-predicate within a module or an
object allows client modules and objects to reuse predicates customized by calls
to local predicates.

Meta-predicates require special care in the context of Prolog module sys-
tems and object-oriented extensions as meta-calls must be executed in the meta-
predicate calling context and not in the meta-predicate definition context.

? This work is partially supported by the FCT research project MOGGY
(PTDC/EIA/70830/2006).
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A recent paper [3] showed that the implementation of meta-predicates found
in most Prolog predicate-based module systems allows a module to call non-
exported predicates of another module, thus breaking encapsulation. This prob-
lem is usually absent from atom-based module systems such as XSB [4] where
atoms, including predicate functors, are internally tagged with the definition
module. The lack of enforcement of module encapsulation can, however, be
thought as a consequence of the original design goals of module systems. Tra-
ditional Prolog module systems never aimed to fulfill any security role, being
designed instead as a simple solution for partitioning code in different names-
paces. Moreover, in most Prolog module systems, any module predicate can be
called by using explicit module qualification (Ciao [5, 6] and ECLiPSe [7] are
notable exceptions, only allowing calls to exported module predicates). Prolog
extensions such as Logtalk, however, are designed to enforce encapsulation and
predicate scope rules. In this case, meta-predicates must be properly supported
without the danger of providing the means of accidental or malicious bypassing
of predicate scope directives. The same paper also exposed flaws in the Logtalk
support of meta-predicates which allowed bypassing of predicate scope directives.
These flaws resulted from clever use of closures and from unsafe handling of goal
execution context in the presence of meta-calls. During our research to correct
these problems, we uncovered other meta-predicate implementation flaws that
are not necessarily related to bypassing of predicate scope directives. In fact,
potential loopholes exist that may allow accidental or carefully crafted meta-
predicate definitions to change the original meta-predicate call. These changes
may allow calling a different predicate in the calling context or calling the in-
tended predicate with corrupted arguments. Calling a predicate different from
the one specified in the original meta-predicate call is always a flaw, even when
the called predicate is public or exported. Corrupting the original meta-predicate
arguments can be done conditionally, resulting in hard to find problems as only
specific usage patterns will lead to compromised results.

Correcting these flaws can be accomplished by finding and implementing a
set of safety rules that ensures secure compilation and use of meta-predicates.
Although our research takes place in the context of the Logtalk programming
language, these safety rules are equally relevant in the context of predicate-
based Prolog module systems (the proposed safety rules are not tied to the
semantic differences between objects and modules). These safety rules are useful
even in the context of module systems that allow the :/2 control construct
to bypass predicate scope rules, promoting better coding standards for meta-
predicate definitions.

This paper is organized as follows. Section 2 describes an extended meta-
predicate declaration directive, which supports the specification of both goals
and closures as meta-arguments. Section 3 discusses how meta-calls can be con-
structed from closures. Section 4 enumerates potential loopholes in the imple-
mentation of meta-predicate support. Section 5 presents and discusses the safety
rules applied by Logtalk to compile and execute meta-predicates. Section 6 iden-
tifies limitations imposed by our safety rules on meta-predicate definitions. Sec-
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tion 7 presents experimental results in testing common Prolog module systems
for the loopholes discussed in this paper. Section 8 presents our conclusions on
safe compilation and use of meta-predicates, together with some remarks on
the importance of increasing the awareness of security issues among the Logic
Programming community.

2 Extended Meta-predicate Directive

User meta-predicates are declared using meta-predicate directives. These di-
rectives use a meta-predicate template to specify which arguments are meta-
arguments, i.e. which arguments will be used as goals or closures in the body
of the meta-predicate clauses. In plain Prolog, meta-predicate directives are op-
tional and primarily useful for cross-reference tools. When module or object
systems are present, meta-predicates directives are required for proper compila-
tion of meta-predicates. An example of a Logtalk meta-predicate directive where
the meta-arguments are goals is:

:- meta_predicate(findall(*, ::, *)).

In meta-predicate templates, the atom :: represents a meta-argument that will
be called as a goal. Normal arguments are represented by the atom *. This is
similar to the declaration of meta-predicates found in most Prolog compilers and
in the ISO Prolog standard for modules [8] (the atom :: is used instead of the
atom : for consistency with the Logtalk message sending operators). A positive
integer, N, specifies a closure that will be used to construct a call by appending
N arguments. For example:

| ?- map(double, [1, 2, 3], L).

L = [2, 4, 6]

yes

The corresponding meta predicate/1 directive would be:

:- meta_predicate(map(2, *, *)).

The first argument in the map/3 template specifies that the meta-argument is a
closure that will be used to construct a meta-call by appending two arguments.
In the example above, this requires the existence of a double/2 predicate in the
calling context of the meta-predicate.

The use of non-negative integers to specify closures was first introduced in
Quintus Prolog [9] for providing information to predicate cross-reference tools.
A description of this usage can also be found on a recent Prolog standardization
proposal [10]. Other Prolog compilers, such as SICStus Prolog [11] and YAP [12],
also accept this notation for compatibility with existing code. As discussed later
in this paper, the support for specifying closures in meta-predicate directives is
essential to ensure safe compilation and use of meta-predicates. The Ciao Prolog
system defines an alternative but equivalent syntax for specifying closures, using
a compound term pred(I) where I is the number of extra arguments.



36 Paulo Moura

3 From Closures to Meta-calls

Given a closure and its additional arguments, the corresponding meta-call is
constructed by appending the extra arguments to the existing ones. Although it
is always possible to use the standard predicate =../2 and a list append predicate
to construct the meta-call, the preferable and simpler solution is to use the call/N

family of built-in meta-predicates found in Logtalk and in most Prolog compilers.
The first argument of these predicates must be a closure, with the remaining
arguments being interpreted as the closure extra arguments. For example, the
query call(integer, 3) is equivalent to the query integer(3). These predicates
provide improved performance when compared with the explicit construction of
meta-calls (which requires building temporary lists).

As discussed later in the paper, the use of the call/N family of built-in meta-
predicates is mandatory when working with closures as they avoid the introduc-
tion of new variables to explicitly represent the constructed meta-calls.

4 Potential Meta-predicate Loopholes

When reasoning about meta-predicate semantics, it is helpful to define a set of
terms which helps us visualize how and where meta-calls take place:

Definition context This is the object or module containing the meta-predicate
definition.

Calling context This is the object or module from which a meta-predicate is
called. This can be the object or module where the meta-predicate is defined
in the case of a local call or another object or module assuming that the
meta-predicate is within scope.

Execution context This comprises both the calling context and the definition
context. It includes all the information needed for the language runtime to
execute a meta-predicate call.

Our research is focused on three potential loopholes when implementing meta-
predicate support. The first loophole can be exploited to corrupt the original
meta-arguments when a meta-predicate is executed:

Making malicious changes to meta-arguments Using unification with the
meta-arguments may allow a meta-predicate to test for specific goals and
closures and modify them before making the corresponding meta-calls. This
potential loophole can be exploited by testing only for some very specific
usage patterns, thus making its detection harder.

The two following loopholes can be exploited to bypass predicate scope directives
or to break predicate scope rules. In the case of Logtalk, predicate scope rules
are supported using predicate scope directives (object predicates are private by
default). In the case of Prolog module systems, it should not be possible to call
non-exported predicates from client modules.
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Hijacking of the predicate execution context Hijacking a predicate exe-
cution context may allow a meta-predicate to gain access to predicates within
the calling context other than the ones specified in the meta-predicate call.

Using closures for constructing unintended meta-calls A potential loop-
hole exists when appending additional arguments to a closure in order to
construct a meta-call. This loophole can be exploited by constructing a call
to a predicate with the same functor of the closure but with an arity different
to that intended by the caller of the meta-predicate.

5 Compiling Meta-predicates for Safety

This section describes four safety rules, illustrated with examples,1 intended
to close the loopholes discussed above in the context of predicate-based encap-
sulation module and object systems. The ideal rules would allow catching all
problems at compile time. Unfortunately, as we will illustrate in this section,
this is not always possible. Some deceiving meta-predicates definitions consti-
tute perfectly valid code; the potential for trouble resulting only from the use
of such definitions. For these cases, the compiler can still print a warning. At
runtime, our safety rules ensure that any inappropriate use of a meta-predicate
definition is caught by generating an appropriate exception.

The first two rules check for the context for meta-predicate calls. The last two
rules check for the consistency of meta-predicate directives and the consistency
between meta-predicate directives and meta-calls. The rules presentation is con-
ceptual: actual implementations may choose to combine the first and second
rules and combine the third and fourth rules. The first three rules are expected
to be implemented at the compiler level. The fourth rule may be implemented
instead in a programming code style or policy checker.

(a) The meta-arguments on a meta-predicate clause head must be variables.

This simple rule helps to prevent a meta-predicate from modifying the original
arguments of a meta-call. By testing and acting upon the actual meta-arguments,
a meta-predicate could try to make a meta-call different from the original one
to be executed in the calling context. Consider the following example (a):

:- object(library).

:- public(map/3).

:- meta_predicate(map(*, 2, *)).

map(In, scale(_), Out) :-

!, map_(In, scale(3), Out).

map(In, Closure, Out) :-

map_(In, Closure, Out).

1 These examples use Logtalk objects. Converting them to Prolog modules requires
replacing object directives with module directives, removing the explicit predicate
scope directives, and rewriting the meta-predicate directives.
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:- meta_predicate(map_(*, 2, *)).

map_([], _, []).

map_([X| Xs], Closure, [Y| Ys]) :-

call(Closure, X, Y),

map_(Xs, Closure, Ys).

:- end_object.

The map/3 meta-predicate in this library object behaves as expected except when
the closure argument unifies with the term scale( ). In this case, the original
predicate argument is simply ignored and replaced by a fixed value. Assume now
that we define the following client object:

:- object(client).

:- public(double/2).

double(Ints, Doubles) :-

library::map(Ints, scale(2), Doubles).

scale(Scale, X, Xscaled) :-

Xscaled is X*Scale.

:- end_object.

In the absence of this safety rule, the compromised behavior of the map/3 meta-
predicate could be illustrated by the following goal:

| ?- client::double([1,2,3], Doubles).

Doubles = [3,6,9]

yes

By implementing this safety rule, Logtalk generates a compile time error2 for
the first clause of the map/3 predicate in the library object:

type_error(variable, scale(_))

This rule is, however, easy to circumvent by simply moving the unification from
the meta-predicate clause head into the clause body. The meta-predicate map/3

in the example above can be easily rewritten as:

map(In, Closure, Out) :-

( Closure = scale(_) ->

map_(In, scale(3), Out)

; map_(In, Closure, Out)

).

Despite this weakness, there are three reasons to include this rule. First, it pro-
vides a necessary condition for the second safety rule, described next. Second,
rule violations result in compile time errors, which are always preferable to run-
time errors. Third, it is trivial to implement: the compiler can apply it before
any other rule by simply checking the meta-arguments in the clause heads.
2 Arguably, this error is more of a representation error than a type error; nevertheless,

we decided to follow the practice established by the current ISO Prolog standard.
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(b) Meta-calls whose arguments are not variables appearing in meta-argument
positions in the clause head must be compiled as calls to local predicates.

This rule applies to the compilation of both meta-predicates and normal predi-
cates. It prevents hijacking of the execution context, which could otherwise be
used to call predicates in the calling context not passed as meta-arguments. This
problem can occur with e.g. a naive implementation of execution context passing
from a clause head to the goals in the clause body.

This rule is trivial to implement when compiling clauses of normal predicates:
any meta-call in a clause body must be compiled as a local meta-call. This rule
is also easy to implement when compiling clauses of meta-predicates since the
corresponding meta-predicate directive is mandatory.

As a consequence of this rule, when a meta-predicate calls a second meta-
predicate, the meta-arguments executed in the calling context will be strictly the
ones coming from the call to the first meta-predicate. That is, the programmer
cannot use a second meta-predicate to construct a meta-call different from the
one intended by the original caller of the meta-predicate. Consider the following
example (b1):

:- object(library).

:- public(meta/2).

:- meta_predicate(meta(::, ::)).

meta(Goal1, Goal2) :-

call(Goal1), call(Goal2).

:- public(meta/1).

:- meta_predicate(meta(::)).

meta(Goal1) :-

meta(Goal1, local).

local :-

write(’local predicate in object library’), nl.

:- end_object.

The rule requires that client calls to the meta/1 predicate must result in the
interpretation of local/0 as a call to a local predicate, thus executed in the
context of the object library. We use the following client object to illustrate the
correct behavior:

:- object(client).

:- public(test/0).

test :-

library::meta(goal).

goal :-

write(’goal meta-argument in object client’), nl.
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local :-

write(’local predicate in object client’), nl.

:- end_object.

This safety rule will ensure the following result:

| ?- client::test.

goal meta-argument in object client

local predicate in object library

yes

Meta-calls can also appear in the body of normal predicates. This rule ensures
that an object cannot hijack the execution context of the original, non meta-
predicate call and use it through a local meta-predicate to construct arbitrary
calls to predicates in the calling context. Therefore, we cannot convert a normal
argument into a meta-argument by calling a local meta-predicate. Consider the
following simplified version of an example found in [3] (b2):

:- object(library).

:- meta_predicate(meta(::)).

meta(Goal) :-

call(Goal).

:- public(normal/1).

normal(Arg) :-

meta(Arg).

:- end_object.

In this case, the argument in the meta-predicate call, Arg, must be interpreted
as a local meta-call. Consider now the following client object:

:- object(client).

:- public(test/0).

test :-

library::normal(term).

term :-

write(’Some local, private predicate.’).

:- end_object.

This safety rule will ensure the following result:

| ?- catch(client::test, E, write(E)).

E = error(existence_error(procedure,term), context(object,library,_))

yes
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Therefore, the predicate term/0 in the object client (which is the calling context
for the normal/1 predicate) will not be called.

Although the two examples above make use of additional user-defined meta-
predicates whose meta-arguments are goals, the rule also applies when working
with closures and when calling built-in meta-predicates. For example, consider
the following tentative exploit (b3) using the call/1 built-in meta-predicate and a
meta-predicate definition that does not comply with the corresponding directive
(as two arguments are appended to the closure instead of one):

:- object(library).

:- public(m/2).

:- meta_predicate(m(1, *)).

m(Closure, Arg) :-

Closure =.. List,

list::append(List, [Arg, _], NewList),

Call =.. NewList,

call(Call).

:- end_object.

With this safety rule in place, the meta-call call(Call) above is compiled as a
local meta-call since the variable Call does not occur in the head of the meta-
predicate clause in a meta-argument position. The following definition of a simple
client object illustrates the consequences of the meta-predicate definition above:

:- object(client).

:- public(test/1).

test(X) :-

library::m(a, X).

a(1). a(2).

a(3, three). a(4, four).

:- end_object.

After compiling and loading these two objects, an example test query would be:

?- catch(client::test(X), E, true).

E = error(existence_error(procedure, a/2), context(object, library, _))

yes

As the exception term shows, the meta-call is compiled and executed as a local
call in the context of the library object. Without this safety rule in place, a
faulty implementation would wrongly call the predicate a/2 defined in the object
client:



42 Paulo Moura

?- catch(client::test(X), E, true).

X = 3 ;

X = 4

yes

The above example shows that meta-predicates with meta-arguments that are
closures cannot be defined using call/1 calls as explicitly constructing the meta-
call from the closure results in a new variable not occurring in the clause head. It
follows that the use of the call/2-N built-in predicates is mandatory for defining
meta-predicates that work with closures. This is subsumed by the third rule:

(c) Meta-predicate closures must be used within a call/2-N built-in predicate
call that complies with the corresponding meta-predicate directive.

The number of additional arguments appended to a closure in a call/2-N call
must comply with the meta-predicate declaration; simply ensuring that a closure
is a variable occurring in a meta-argument position is not a sufficient condition.
This rule ensures that a meta-predicate cannot construct a predicate call with
the same functor but with a different arity of the original meta-argument. For
example, a meta-predicate definition (c) such as:

:- meta_predicate(map(1, *)).

map(Closure, [Element| Rest]) :-

..., call(Closure, Element, Result), ...

would result in the following compile time error:

arity_mismatch(closure, call(map, Element, Result), map(1, *))

The call/3 meta-call in this example does not comply with the meta-predicate
specification, which requires a single additional argument. In fact, the actual
meta-call would not be the one that the programmer intended when calling the
meta-predicate. Moreover, the call could correspond either to a predicate in the
calling context that is not within scope of the meta-predicate definition context
or to a non-existing predicate (which would result in a runtime existence error).

(d) The meta-predicate arity should be equal to the sum of the extra arguments
specified by each closure plus the number of normal, non meta-arguments.

Assume that we correct the meta-predicate directive used to illustrate the pre-
vious rule in order to be consistent with the call/2-N call by writing (d):

:- meta_predicate(map(2, *)).

Trying to compile the updated code would result in the following error:

arity_mismatch(closure, map(Closure, [Element| Rest]), map(2, *))

This error results from the meta-predicate directive specifying a closure requir-
ing two extra arguments while only one normal argument is declared. This is
potentially misleading for a client that may expect the library meta-predicate
to call a unary predicate based on the meta-predicate arity.
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6 Known Limitations

6.1 Closures with a Variable Number of Arguments

The proposed safety rules and the extended meta-predicate directive do not
support the specification of meta-predicates that allow a variable number of
arguments to be appended to a closure. This restriction makes some common
meta-predicates such as apply/2 useless as a public or exported predicate. The
usual definition of this predicate is:

apply(Closure, Args) :-

Closure =.. List,

append(List, Args, NewList),

Call =.. NewList,

call(Goal).

As the variable Goal is not a meta-argument in the clause head, the meta-call
call(Goal) is compiled as a call to a local predicate (as per the second safety
rule) and not as a call to a predicate in the calling context of the meta-predicate.
This restriction is not considered, however, a serious limitation as the number
of extra closure arguments is usually known a priori, therefore allowing the use
of the call/2-N built-in meta-predicates.

6.2 Meta-predicates Implemented in Foreign Code

Prolog compilers often include libraries with predicates implemented using a
foreign language interface. It is also possible to implement meta-predicates this
way. A common example is the implementation of callbacks to Prolog code in
the context of GUI extensions (see e.g. the SWI-Prolog XPCE package [13]). In
this case, the verification of the safety rules described in the previous section
would require manual verification of the source code in the foreign language. It
should be noted, however, that the use of foreign language resources rises its
own set of security issues that goes well beyond meta-predicates issues.

7 Prolog Module Systems

In this section, we test five Prolog compilers for the potential meta-predicates
loopholes described earlier: Ciao 1.10#8, ECLiPSe 5.10#141, SICStus Prolog
4.0.2, SWI-Prolog 5.6.59, and YAP 5.1.3. Although there are other Prolog com-
pilers supporting predicate-based module systems, we believe this is a represen-
tative set of module implementation solutions.

Our experiments are complicated by two problems. First, the details of the
module versions of the examples in Section 4 differ for each compiler due to the
lack of a de-facto standard for Prolog module systems.3 In particular, the five
3 The full source code used in the examples for both Logtalk and the tested Prolog

compilers is available at http://logtalk.org/papers/simp/mptests.tar.gz.
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tested systems provide three different materializations of a meta-predicate decla-
ration directive. Second, the documentation of the Prolog module systems often
forces us to resort to experimentation in order to find out the exact operational
semantics of modules, meta-predicate directives, and meta-calls.

The experimental results are presented in Table 1. In this table, a value of
N/A means that the meta predicate/1 directive or its equivalent does not support
the specification of meta-predicate templates. The results for the example (d)

indicate if a Prolog compiler checks for the consistency between meta-predicate
directives and the number of extra arguments required by the declared closures.
This consistency check should result, at least, in a compilation warning but it is
not performed by any of the tested Prolog compilers.

Table 1. Experimental results for the safety rule examples.

Examples Ciao ECLiPSe SICStus SWI (mp) SWI (mt) YAP

(a1) ok wrong ok wrong wrong ok

(a2) ok ok wrong ok ok wrong

(b1) ok wrong ok wrong wrong ok

(b1) ok wrong ok wrong wrong ok

(b2) ok ok ok wrong ok ok

(b3) ok wrong wrong wrong wrong wrong

(c) ok N/A wrong wrong N/A wrong

(d) wrong wrong wrong wrong wrong wrong

The conversion of the Logtalk example (a) into Prolog module code rises an
interesting issue with the module systems of SICStus Prolog and YAP. These sys-
tems expand meta-arguments in goals appearing in the body of meta-predicate
clauses but not in the head of meta-predicate clauses. As a consequence, the first
clause of the map/3 is never used, making the test result for these Prolog compilers
misleading. One workaround is to rewrite this clause using explicit module qual-
ification, which allows all the clauses to be used. Although this rewrite defeats
the purpose of the meta-predicate directive, it is also a possible exploit vector.
Therefore, we chose to split the example (a) in two tests. Test (a1) uses the same
exact clauses as in example (a). Test (a2) uses explicit module qualification for
the scale/1 arguments in the first clause of the meta-predicate map/3.

The results for test (a2) are interesting and a bit surprising. While the results
for SICStus Prolog and YAP are expected, the changes in test (a2) allow both
ECLiPSe and SWI-Prolog to return correct results, reversing the bad score in
test (a1) (it is worth noting that the module systems of ECLiPSe and SWI-
Prolog are distinct). The Ciao compiler is not fooled by these tricks.

Another interesting result concerns the (b2) and (b3) examples of our second
security rule, (b). All compilers behaved correctly in example (b2). However,
with the exception of Ciao, all compilers provided a wrong answer for example
(b3), allowing access to a private predicate, a/2, in the client module, instead of
restricting the access to the predicate a/1 used as argument in the meta-predicate
call. In this case, these Prolog compilers acted properly when meta-arguments
are goals but not when the meta-arguments are closures.
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Some brief, Prolog compiler-specific comments about the results follow:

Ciao. This is the only tested Prolog compiler that disallows writing meta-
predicate directives inconsistent with the meta-predicate definitions. It is also
the Prolog compiler that scored the best test results (as expected, giving the
emphasis by Ciao developers in static code analysis). The test results for the
third example of our second security rule (b3) are particularly interesting. The
Ciao compiler correctly catches our attempts to specify a closure with a single
extra argument while, at the same time, defining the meta-predicate to call the
closure with two extra arguments.4 Correcting the meta-predicate directive to
specify a closure with two extra arguments, however, results in the definition
of a meta-predicate that only allows a single extra argument to be passed. The
Ciao compiler fails to warn the user of this potential problem when compiling
the example (d).

ECLiPSE. This compiler does not provide a meta predicate/1 directive, re-
lying instead on a proprietary tool/2 directive whose arguments are predicate
indicators. Thus, this directive does not allow the programmer to define meta-
predicate templates. The test examples are modified to use the tool/2 directive
and the built-in predicate @/2 as suggested in the ECLiPSe documentation.

SICStus Prolog. This compiler allows the specification of closures in the direc-
tive meta predicate/1 but only for compatibility with existing code. Correcting
the directive in the test example (b3) to make it consistent with the meta-
predicate definition does not lead to a correct answer.

SWI-Prolog. We present two sets of results for SWI-Prolog. The first set, mp,
uses an emulation of the meta predicate/1 directive provided in the compatibility
libraries distributed with SWI-Prolog. The second set, mt, uses the SWI-Prolog
native directive module transparent/1 whose argument is a predicate indicator.
Therefore, it does not allow the programmer to define meta-predicate templates.
We are discussing with the main SWI-Prolog developer the possible implemen-
tation of our safety rules as a component of a general style or policy checker,
integrated with the current cross-referencer tool. This would allow existing code
to be checked for possible violations without the danger of breaking it.

YAP. Similarly to SICStus Prolog, YAP accepts the specification of closures
in the meta predicate/1 directive but only for compatibility with existing code.
Correcting the directive in the example (b3) to match the meta-predicate defini-
tion does not result in a correct answer. The safety rules described in this paper
are expected to be implemented in a forthcoming version of YAP. Their use is
expected to be optional, enabled by a Prolog compiler flag.
4 There is a typo in the Ciao documentation of the meta-predicate specification for clo-

sures. The notation pred(N) indicates the number of extra arguments, with the
closure being used within a call/N+1 predicate, not within a call/N predicate
as described in the documentation.
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8 Discussion and Conclusions

The safety rules described in this paper fix all known flaws on the Logtalk
support for meta-predicates.5 These rules may also be adapted and applied in
the context of predicate-based Prolog module systems in order to correct the
flaws uncovered by our experiments. However, given the syntactic and semantic
differences among the implementations of Prolog modules systems, the existence
of other loopholes is to be expected. Nevertheless, the lack of a formal guarantee
that the proposed rules close all loopholes in current implementations should
not excuse not fixing the known loopholes.

The safety rules are easy to implement and computationally inexpensive, as
exemplified in the current Logtalk compiler implementation. These rules enjoy
the nice property of all the required computations being performed at compile
time. In the worst case, some of the rules imply that the use of a flawed meta-
predicate definition results in a runtime exception due to the meta-calls being
compiled as calls to local predicates and not as calls in the meta-predicate call-
ing context. This is an unfortunate consequence of the fact that some safety
violations only occur when using meta-predicate definitions that, per se, con-
stitute perfectly valid code. It follows that the worst case cannot be improved
by finding stronger compiler checking rules. At best, the compiler could issue a
warning when compiling a public meta-predicate whose meta-calls are compiled
as a local calls for safety reasons.

The extended meta predicate/1 directive described in this paper provides
essential information for preventing misuse of closures. We show that specifying
closures using positive integers is not just an optional feature, useful for cross-
reference and documenting tools or for compatibility reasons, but a necessary
feature for safe compilation and use of meta-predicates.

Calls constructed from closures must be made by using the call/2-N built-in
predicates. This allows the consistency between the meta-predicate directives
and definitions to be checked at compile time, preventing loopholes when ap-
pending arguments to a closure in order to construct a meta-call. The call/2-N

family of built-in predicates is already provided by most Prolog compilers and
is included in the current draft of the ISO Prolog Core revision standardization
proposal.6

There is currently no formal proof that the described safety rules are sufficient
to prevent highjacking of predicate execution context and the misuse of closures
in the context of Logtalk. In the case of Prolog module systems each module
system needs a proof, as there is no de-facto standard. These proofs would need
to be based on formal descriptions of the module systems, to be provided by
their authors; these descriptions are beyond the scope of this paper.

5 All the safety rules are implemented by the Logtalk compiler since version 2.30.6.
6 In the case of Logtalk, although its current version uses a Prolog system as a back-end

compiler, its implementation of the call/2-N built-in predicate does not depend
on the availability of the call/2-N Prolog built-in predicates.
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The problems described in this paper are representative of what can go wrong
when using meta-predicates in field applications where security is a basic require-
ment. It is worth noting that the flaws described in this paper are not always
evident from a quick inspection of compromised source code (which, by itself,
assumes its availability). Despite existing research on improving module systems
(see e.g. [3, 6]), security concerns are often overlooked by Prolog implementors
and programmers. Secure implementation of meta-predicates is just one of the
topics where compilers and language runtimes must perform securely. In a sce-
nario of increasing industrial use of Prolog-based solutions, either in embedded
form or as stand-alone applications, preemptive thinking about security issues
is necessary. In this regard, the Prolog community is still far from the security
mindset found in other programing communities.
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Abstract. The performance of tabled evaluation largely depends on the
implementation of the table space. Arguably, the most successful data
structure for tabling is tries. However, while tries are efficient for variant
based tabled evaluation, they are limited in their ability to recognize
and represent repeated answers for different calls. In this paper, we pro-
pose a new design for the table space where terms in a tabled subgoal
call or/and answer are stored in a common global trie instead of being
spread over several different tries. Our preliminary experiments using
the YapTab tabling system show very promising reductions on memory
usage.
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1 Introduction

Tabling [1–3] is an implementation technique where intermediate answers for
subgoals are stored and then reused whenever a repeated call appears. The per-
formance of tabled evaluation largely depends on the implementation of the table
space – being called very often, fast lookup and insertion capabilities are manda-
tory. Applications can make millions of different calls, hence compactness is also
required. Arguably, the most successful data structure for tabling is tries [4].
Tries meet the previously enumerated criteria of efficiency and compactness.

Used in applications that pose many queries, possibly with a large number
of answers, tabling can build arbitrarily many and/or very large tables, quickly
filling up memory. A possible solution for this problem is to dynamically abolish
some of the tables. This can be done using explicit tabling primitives or using
a memory management strategy that automatically recovers space among the
least recently used tables when memory runs out [5]. An alternative approach is
to store tables externally in a relational database management system and then
reload them back only when necessary [6].

A complementary approach to the previous problem is to study how less
redundant, more compact and more efficient data structures can be used to bet-
ter represent the table space. While tries are efficient for variant based tabled
evaluation, they are limited in their ability to recognize and represent repeated
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answers for different calls. In [7], Rao et al. proposed a table organization us-
ing Dynamic Threaded Sequential Automata (DTSA) which recognizes reusable
subcomputations for subsumption based tabling. In [8], Johnson et al. proposed
an alternative to DTSA, called Time-Stamped Trie (TST), which not only main-
tains the time efficiency of the DTSA but has better space efficiency.

In this paper, we propose a different approach. We propose a new design for
the table space where all terms in a tabled subgoal call or/and answer are stored
in a common global trie instead of being spread over several different trie data
structures. Our approach resembles the hash-consing technique [9], as it tries to
share data that is structurally equal. An obvious goal is to save memory usage
by reducing redundancy in term representation to a minimum. We will focus our
discussion on a concrete implementation, the YapTab system [10, 11], but our
proposals can be easy generalized and applied to other tabling systems.

The remainder of the paper is organized as follows. First, we briefly introduce
some background concepts about tries and the table space. Next, we describe
YapTab’s new design for the table space organization using the common global
trie and then, we describe how we have extended YapTab to provide engine
support for our approach. At last, we present some preliminary experimental
results and we end by outlining some conclusions.

2 Table Space

The basic idea behind tabling is straightforward: programs are evaluated by
storing answers for tabled subgoals in an appropriate data space, called the
table space. Whenever a repeated tabled call is found, the subgoal’s answers are
recalled from the table space instead of being re-evaluated against the program
clauses. The table space may be accessed in a number of ways: (i) to find out if a
subgoal is in the table and, if not, insert it; (ii) to verify whether a newly found
answer is already in the table and, if not, insert it; and (iii) to load answers to
variant subgoals. With these requirements, YapTab implements its table space
using tries [12] which is regarded a very efficient way to implement tables [4].

A trie is a tree structure where each different path through the trie data
units, the trie nodes, corresponds to a term. Each root-to-leaf path represents
a term described by the tokens labelling the nodes traversed. Two terms with
common prefixes will branch off from each other at the first distinguishing token.
For example, the tokenized form of the term p(X, q(Y, X), Z) is the stream of
6 tokens: p/3, V AR0, q/2, V AR1, V AR0, V AR2. Variables are represented using
the formalism proposed by Bachmair et al. [13], where each variable in a term
is represented as a distinct constant. Formally, this corresponds to a function,
numbervar(), from the set of variables in a term t to the sequence of constants
V AR0, ..., V ARN , such that numbervar(X) < numbervar(Y ) if X is encoun-
tered before Y in the left-to-right traversal of t.

Internally, the trie nodes are 4-field data structures. The first field stores the
node’s token, the second field stores a pointer to the node’s first child, the third
field stores a pointer to the node’s parent and the fourth field stores a pointer
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to the node’s next sibling. Each node’s outgoing transitions may be determined
by following the child pointer to the first child node and, from there, continuing
through the list of sibling pointers. To increase performance, YapTab enforces
the substitution factoring [4] mechanism and implements tables using two levels
of tries - one for subgoal calls, the other for computed answers. More specifically,
the table space of YapTab is organized in the following way:

– each tabled predicate has a table entry data structure assigned to it, acting
as the entry point for the predicate’s subgoal trie.

– each different subgoal call is represented as a unique path in the subgoal trie,
starting at the predicate’s table entry and ending in a subgoal frame data
structure, with the argument terms being stored within the path’s nodes.

– the subgoal frame data structure acts as an entry point to the answer trie.
– each different subgoal answer is represented as a unique path in the answer

trie. Oppositely to subgoal tries, answer trie paths hold just the substitu-
tion terms for the free variables which exist in the argument terms of the
corresponding subgoal call.

– the leaf’s child pointer of answers is used to point to the next available an-
swer, a feature that enables answer recovery in insertion order. The subgoal
frame has internal pointers that point respectively to the first and last answer
on the trie. Whenever a variant subgoal starts consuming answers, it sets a
pointer to the first leaf node. To consume the remaining answers, it must
follow the leaf’s linked list, setting the pointer as it consumes answers along
the way. Answers are loaded by traversing the answer trie nodes bottom-up.

An example for a tabled predicate t/2 is shown in Figure 1. Initially, the
subgoal trie is empty. Then, the subgoal t(a(1),X) is called and three trie
nodes are inserted: one for the functor a/1, a second for the constant 1 and
one last for variable X. The subgoal frame is inserted as a leaf, waiting for the
answers. Next, the subgoal t(a(2),X) is also called. It shares one common node
with t(a(1),X) but, having a/1 a different argument, two new trie nodes and
a new subgoal frame are inserted. At the end, the answers for each subgoal are
stored in the corresponding answer trie as their values are computed. Note that,
for this particular example, the completed answer trie for both subgoal calls is
exactly the same.

3 Common Global Trie

We next describe YapTab’s new design for the table space organization. In this
new design, all terms in a tabled subgoal call or/and answer are now stored in a
common global trie (GT) instead of being spread over several different trie data
structures. The GT data structure still is a tree structure where each different
path through the trie nodes corresponds to a term. However, here a term can
end at any internal trie node and not necessarily at a leaf trie node.

The previous subgoal trie and answer trie data structures are now represented
by a unique level of trie nodes that point to the corresponding terms in the GT
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subgoal frame for
t(a(1),VAR0)

1

a/1

2

subgoal
trie

:- table t/2.

t(a(X),a(Y)) :- a(X), a(Y).
a(1).
a(2).

VAR0VAR0

table entry for t/2

answer
trie

a/1

12

subgoal frame for
t(a(2),VAR0)

answer
trie

a/1

12

Fig. 1. YapTab’s original table design

(see Figure 2 for details). For the subgoal tries, each node now represents a
different subgoal call where the node’s token is the pointer to the unique path in
the GT that represents the argument terms for the subgoal call. The organization
used in the subgoal tries to maintain the list of sibling nodes and to access the
corresponding subgoal frames remains unaltered. For the answer tries, each node
now represents a different subgoal answer where the node’s token is the pointer
to the unique path in the GT that represents the substitution terms for the
free variables which exist in the argument terms. The organization used in the
answer tries to maintain the list of sibling nodes and to enable answer recovery
in insertion order remains unaltered. With this organization, answers are now
loaded by following the pointer in the node’s token and then by traversing the
corresponding GT’s nodes bottom-up.

On completion of a subgoal, a strategy exists that avoids answer recovery
using bottom-up unification and performs instead what is called a completed
table optimization [4]. This optimization implements answer recovery by top-
down traversing the completed answer trie and by executing specific WAM-like
code from the answer trie nodes. With our new design, the nodes in the GT can
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answer trie
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answer trie

answer1answer2

global
trie

Fig. 2. YapTab’s new table design

belong to several different subgoal/answer tries, and thus this optimization is no
longer possible.

Figure 2 uses again the example from Figure 1 to illustrate how the GT’s
design works. Initially, the subgoal trie and the GT are empty. Then, the first
subgoal t(a(1),X) is called and three nodes are inserted on the GT: one to
represent the functor a/1, another for the constant 1 and a last one for variable
X. Next, a node representing the path inserted on the GT is stored in the subgoal
trie (node labeled call1). The token field for the call1 node is made to point
to the leaf node of the GT’s inserted path and the child field is made to point to
a new subgoal frame. For the second subgoal call, t(a(2),X), we start again by
inserting the call in the GT and then we store a node in the subgoal trie (node
labeled call2) to represent the path inserted on the GT.

As we saw in the previous example, for each subgoal call we have two answers:
the terms a(1) and a(2). However, as these terms are already represented on
the GT, we need to store only two nodes, in each answer trie, to represent them
(nodes labeled answer1 and answer2). The token field for these answer trie
nodes are made to point to the corresponding term representation on the GT.
With this example we can see that terms in the GT can end at any internal trie
node (and not necessarily at a leaf trie node) and that a common path on the
GT can simultaneously represent different subgoal and answer terms.
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4 Implementation Details

We then describe in more detail the data structures and algorithms for YapTab’s
new table design based on the GT. We start with Figure 3 showing in more detail
the table organization previously presented in Figure 2.

subgoal trie

answer trieanswer trie

root
node

a/1

global trie

VAR0 VAR0

2 1

root
node

root
node

root
node

call2 call1

answer2 answer1 answer1answer2

table entry for t/2

subgoal_trie_root_node

subgoal frame for t(a(2),VAR0)

answer_trie_root_node

subgoal frame for t(a(1),VAR0)

answer_trie_root_node

GT_ROOT_NODE

Fig. 3. Implementation details for YapTab’s new table design

Internally, tries are represented by a top root node, acting as the entry
point for the corresponding subgoal, answer or global trie data structure. For
the subgoal tries, the root node is stored in the corresponding table entry’s
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subgoal trie root node data field. For the answer tries, the root node is stored
in the corresponding subgoal frame’s answer trie root node data field. For the
global trie, the root node is stored in the GT ROOT NODE global variable.

Regarding the trie nodes, remember that they are internally implemented as
4-field data structures. The first field (token) stores the token for the node and
the second (child), third (parent) and fourth (sibling) fields store pointers,
respectively, to the first child node, to the parent node, and to the sibling node.

Traversing a trie to check/insert for new calls or for new answers is imple-
mented by repeatedly invoking a trie node check insert() procedure for each
token that represents the call/answer being checked. Given a trie node parent
and a token t, the trie node check insert() procedure returns the child node
of parent that represents the given token t. Figure 4 shows the pseudo-code for
this procedure.

trie_node_check_insert(TRIE_NODE parent, TOKEN t) {
child = parent->child
if (child == NULL) { // the list of sibling nodes is empty
child = new_trie_node(t, NULL, parent, NULL)
parent->child = child

} if (is_not_a_hash_table(child)) { // sibling nodes without hashing
sibling_nodes = 0 // to count the number of sibling nodes
do { // check if token t is already in the list of siblings
if (child->token == t)
return child

sibling_nodes++
child = child->sibling

} while (child)
child = new_trie_node(t, NULL, parent, parent->child)
if (sibling_nodes > MAX_SIBLING_NODES_PER_LEVEL) { // alloc new hash
hash = new_hash_table(child)
parent->child = hash

} else
parent->child = child

} else { // sibling nodes with hashing
hash = child
bucket = hash_function(hash, t) // get the hash bucket for token t
child = bucket
sibling_nodes = 0
while (child) { // check if token t is already in the hash bucket
if (child->token == t)
return child

sibling_nodes++
child = child->sibling

}
child = new_trie_node(t, NULL, parent, bucket)
if (sibling_nodes > MAX_SIBLING_NODES_PER_BUCKET) // expand hash
expand_hash_table(hash)

}
return child

}

Fig. 4. Pseudo-code for the trie node check insert() procedure
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Initially, the procedure checks if the list of sibling nodes is empty. If this is
the case, a new trie node representing the given token t is initialized and inserted
as the first child of the given parent node. To initialize new trie nodes, we use a
new trie node() procedure with four arguments, each one corresponding to the
initial values to be stored respectively in the token, child, parent and sibling
fields of the new trie node.

Otherwise, if the list of sibling nodes is not empty, the procedure checks
if they are being indexed through a hash table. Searching through a list of
sibling nodes is initially done sequentially. This could be too expensive if we
have hundreds of siblings. A threshold value (MAX SIBLING NODES PER LEVEL)
controls whether to dynamically index the nodes through a hash table, hence
providing direct node access and optimizing search. Further hash collisions are
reduced by dynamically expanding the hash tables when a second threshold value
(MAX SIBLING NODES PER BUCKET) is reached for a particular hash bucket.

If not using hashing, the procedure then traverses sequentially the list of
sibling nodes and checks for one representing the given token t. If such a node
is found then execution is stopped and the node returned. Otherwise, a new
trie node is initialized and inserted in the beginning of the list. If reaching the
threshold value MAX SIBLING NODES PER LEVEL, a new hash table is initialized
and inserted as the first child of the given parent node.

If using hashing, the procedure first calculates the hash bucket for the given
token t and then, it traverses sequentially the list of sibling nodes in the bucket
checking for one representing t. Again, if such a node is found then execu-
tion is stopped and the node returned. Otherwise, a new trie node is initialized
and inserted in the beginning of the bucket list. If reaching the threshold value
MAX SIBLING NODES PER BUCKET, the current hash table is expanded.

To manipulate tries we use two interface procedures. For traversing a trie to
check/insert for new calls or for new answers we use the

trie_check_insert(TRIE_NODE root, TERM term)

procedure, where root is the root node of the trie to be used and term is the
call/answer term to be inserted. The trie check insert() procedure invokes
repeatedly the previous trie node check insert() procedure for each token
that represents the given term and returns the reference to the leaf node repre-
senting its path. Note that inserting a term requires in the worst case allocating
as many nodes as necessary to represent its complete path. On the other hand,
inserting repeated terms requires traversing the trie structure until reaching the
corresponding leaf node, without allocating any new node.

To load a term from a trie back to the Prolog engine we use the

trie_load(TRIE_NODE leaf)

procedure, where leaf is the reference to the leaf node of the term to be returned.
When loading a term, the trie nodes are traversed in bottom-up order.

When inserting terms in the table space we need to distinguish two situ-
ations: (i) inserting tabled calls in a subgoal trie structure; and (ii) inserting
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answers in a particular answer trie structure. The former situation is handled
by the subgoal check insert() procedure as shown in Figure 5 and the lat-
ter situation is handled by the answer check insert() procedure as shown in
Figure 6.

subgoal_check_insert(TABLE_ENTRY te, SUBGOAL_CALL call) {
st_root_node = te->subgoal_trie_root_node
if (GT_ROOT_NODE) { // new table design
leaf_gt_node = trie_check_insert(GT_ROOT_NODE, call)
leaf_st_node = trie_node_check_insert(st_root_node, leaf_gt_node)

} else { // original table design
leaf_st_node = trie_check_insert(st_root_node, call)

}
return leaf_st_node

}

Fig. 5. Pseudo-code for the subgoal check insert() procedure

In the original table design, the subgoal check insert() procedure simply
uses the trie check insert() procedure to check/insert the given call in the
subgoal trie corresponding to the given table entry te. In the new design based
on the GT, the subgoal check insert() procedure now first checks/inserts
the given call in the GT. Then, it uses the reference to the GT’s leaf node
representing call (leaf gt node in Figure 5) as the token to be checked/inserted
in the subgoal trie corresponding to the given table entry te. Note that this
is done by calling the trie node check insert() procedure, thus if the list
of sibling nodes in the subgoal trie exceeds the MAX SIBLING NODES PER LEVEL
threshold value, then a new hash table is initialized as described before.

answer_check_insert(SUBGOAL_FRAME sf, ANSWER answer) {
at_root_node = sf->answer_trie_root_node
if (GT_ROOT_NODE) { // new table design
leaf_gt_node = trie_check_insert(GT_ROOT_NODE, answer)
leaf_at_node = trie_node_check_insert(at_root_node, leaf_gt_node)

} else { // original table design
leaf_at_node = trie_check_insert(at_root_node, answer)

}
return leaf_at_node

}

Fig. 6. Pseudo-code for the answer check insert() procedure

The answer check insert() procedure works similarly. In the original ta-
ble design, it checks/inserts the given answer in the answer trie corresponding
to the given subgoal frame sf. In the new design based on the GT, it first
checks/inserts the given answer in the GT and, then, it uses the reference to
the GT’s leaf node representing answer (leaf at node in Figure 6) as the to-
ken to be checked/inserted in the answer trie corresponding to the given sub-
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goal frame sf. Again, if the list of sibling nodes in the answer trie exceeds the
MAX SIBLING NODES PER LEVEL threshold value, a new hash table is initialized.

Finally, the answer load() procedure is used to consume answers. Figure 7
shows the pseudo-code for it. In the original table design, it simply uses the
trie load() procedure to load from the answer trie the answer given by the
trie node leaf at node. In the new design based on the GT, the answer load()
procedure first accesses the GT’s leaf node represented in the token field of
the given trie node leaf at node (leaf gt node in Figure 7). Then, it uses
the trie load() procedure to load from the GT back to the Prolog engine the
answer represented by the obtained GT’s leaf node.

answer_load(ANSWER_TRIE_NODE leaf_at_node) {
if (GT_ROOT_NODE) { // new table design
leaf_gt_node = leaf_at_node->token
answer = trie_load(leaf_gt_node)

} else { // original table design
answer = trie_load(leaf_at_node)

}
return answer

}

Fig. 7. Pseudo-code for the answer load() procedure

5 Preliminary Experimental Results

We next present some preliminary experimental results comparing YapTab with
and without support for the common global trie data structure. The environment
for our experiments was an AMD Athlon XP 2800+ with 1 GByte of main
memory and running the Linux kernel 2.6.24-19.

To evaluate the impact of our proposal, we have defined a tabled predicate
t/5 that simply stores in the table space terms defined by term/1 facts, and then
we used a top query goal test/0 to recursively call t/5 with all combinations
of one and two free variables in the arguments. An example of such code for
functor terms of arity 1 (500 terms in total) is shown next.

:- table t/5.
t(A,B,C,D,E) :- term(A), term(B), term(C), term(D), term(E).

test :- t(A,f(1),f(1),f(1),f(1)), fail. term(f(1)).
... term(f(2)).
test :- t(f(1),f(1),f(1),f(1),A), fail. ...
test :- t(A,B,f(1),f(1),f(1)), fail. term(f(499)).
... term(f(500)).
test :- t(f(1),f(1),f(1),A,B), fail.
test.

We experimented the test/0 predicate with 7 different kinds of 500 term/1
facts: integers, atoms and functor terms of arity 1 to 5. Table 1 shows the memory
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usage, in KBytes, and the running times, in milliseconds, to store to the tables
(first execution) and to load from the tables (second execution) the complete
set of subgoals/answers for YapTab with (column YapTab+GT ) and without
(column YapTab) support for the common global trie data structure.

Terms
YapTab (a) YapTab+GT (b) Ratio (b)/(a)

Mem Store Load Mem Store Load Mem Store Load

500 int 49074 490 155 52803 738 164 1.08 1.51 1.06
500 atom 49074 508 158 52803 770 167 1.08 1.52 1.06
500 f/1 49172 693 242 52811 1029 243 1.07 1.48 1.00
500 f/2 98147 842 314 56725 1298 310 0.58 1.54 0.99
500 f/3 147122 1098 377 60640 1562 378 0.41 1.42 1.00
500 f/4 196097 1258 512 64554 1794 435 0.33 1.43 0.85
500 f/5 245072 1418 691 68469 2051 619 0.28 1.45 0.90

Table 1. Memory usage (in KBytes) and store/load times (in milliseconds) for YapTab
with and without support for the common global trie data structure

The results show that GT support can reduce memory usage proportionally
to the depth and redundancy of the terms stored in the GT. In particular, for
functor terms of arity 2 to 5, the results show an increasing and very significant
reduction on memory usage. The results for integer and atoms terms are also
very interesting as they show that the cost of representing only atomic terms
in the GT (between 7% and 8% in these experiments) can be manageable when
we increase redundancy. Note that integers and atoms terms are represented by
a single node in the original YapTab design, and by an extra node (therefore
requiring two nodes) if using the GT approach.

On the other hand, these results seem to indicate that memory reduction
comes at a price in execution time. With GT support, we need to navigate in
two tries when checking/inserting a term. Moreover, in some situations, the cost
of inserting a new term in an empty/small trie can be less than the cost of
navigating in the GT, even when the term is already stored in the GT. However,
our results seem to suggest that this cost decreases also proportionally to the
depth and redundancy of the terms stored in the GT.

The results obtained for loading terms do not suggest significant differences.
However and surprisingly, the GT approach showed to outperform the original
YapTab design in some experiments.

6 Conclusions and Further Work

We have presented a new design for the table space organization that uses a
common global trie to store terms in tabled subgoal calls and answers. Our
goal is to reduce redundancy in term representation, thus saving memory by
sharing data that is structurally equal. Our preliminary experiments showed
very significant reductions on memory usage.
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Further work will include exploring the impact of applying our proposal to
real-world applications that pose many subgoal queries, possibly with a large
number of redundant answers, such as ILP applications, seeking real-world ex-
perimental results allowing us to improve and expand our current implementa-
tion. In particular, we intend to study how alternative designs for the table space
organization can further reduce redundancy in term representation.
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Abstract. The execution model in which most tabling engines are based
allocates a choice point whenever a new tabled subgoal is called. This
happens even when the call is deterministic. However, some of the infor-
mation from the choice point is never used when evaluating deterministic
tabled calls with batched scheduling. Thus, if tabling is applied to a long
deterministic computation, the system may end up consuming a huge
amount of memory inadvertently. In this paper, we propose a solution
that reduces this memory overhead to a minimum. Our results show that,
for deterministic tabled calls with batched scheduling, it is possible not
only to reduce the memory usage overhead, but also the running time of
the evaluation.
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1 Introduction

Tabling [1, 2] is an implementation technique that overcomes some limitations of
traditional Prolog systems in dealing with redundant sub-computations and re-
cursion. Implementations of tabling are now widely available in systems like XSB
Prolog [3], Yap Prolog [4], B-Prolog [5], ALS-Prolog [6], Mercury [7] and more re-
cently Ciao Prolog [8]. Actual implementations differ in the execution rule, in the
data structures used to implement tabling, and in the changes to the underlying
Prolog engine. Arguably, the SLG-WAM [9] is the most popular execution rule,
but even here several issues require careful research, such as engine integration,
execution data structures, termination detection, and scheduling support.

The increasing interest in tabling technology led to further developments
and proposals that improve some practical deficiencies of current tabling exe-
cution models in key aspects of tabled evaluation like re-computation [10, 11],
scheduling [12] and memory recovery [13]. The discussion we address in this
work also results from practical deficiencies that we have found in the execution
data structures used to evaluate deterministic tabled calls if applying batched
scheduling [14].

The execution model in which most tabling engines are based allocates a
choice point whenever a new tabled subgoal is called. This happens even when the
call is deterministic, i.e., defined by a single matching clause. This is necessary
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since the information from the choice point is crucial to correctly implement
some tabling operations. However, some of this information is never used when
evaluating deterministic tabled calls with batched scheduling. Thus, if tabling is
applied to a long deterministic computation, the system may end up consuming
a huge amount of memory inadvertently. In this paper, we propose a solution
that reduces this memory overhead to a minimum. We will focus our discussion
on a concrete implementation, the YapTab system [4], an efficient suspension-
based tabling engine that extends the state-of-the-art Yap Prolog system [15]
to support tabled evaluation for definite programs, but our proposal can be
generalized and applied to other tabling engines.

The remainder of the paper is organized as follows. First, we briefly intro-
duce the main background concepts about tabled evaluation. Next, we discuss in
more detail how YapTab compiles and dynamically indexes deterministic tabled
calls. We then describe how we have extended YapTab to provide engine sup-
port to efficiently deal with deterministic tabled calls. At last, we present some
preliminary experimental results and we end by outlining some conclusions.

2 Basic Tabling Concepts

Tabling consists of storing intermediate answers for subgoals so that they can
be reused when a repeated subgoal appears1. Whenever a tabled subgoal is first
called, a new entry is allocated in an appropriated data space, the table space. Ta-
ble entries are used to collect the answers found for their corresponding subgoals.
Moreover, they are also used to verify whether calls to subgoals are repeated. Re-
peated calls to tabled subgoals are not re-evaluated against the program clauses,
instead they are resolved by consuming the answers already stored in their table
entries. During this process, as further new answers are found, they are stored
in their tables and later returned to all repeated calls. Within this model, the
nodes in the search space are classified as either: generator nodes, corresponding
to first calls to tabled subgoals; consumer nodes, corresponding to repeated calls
to tabled subgoals; or interior nodes, corresponding to non-tabled subgoals.

The YapTab design follows the seminal SLG-WAM design [9]: it extends
WAM’s execution model [16] with a new data area, the table space; a new set
of registers, the freeze registers; an extension of the standard trail, the forward
trail ; and four new operations for definite programs:

Tabled Subgoal Call: this operation is a call to a tabled subgoal. It checks if
the subgoal is in the table space. If so, it allocates a consumer node and starts
consuming the available answers. If not, it adds a new entry to the table
space, and allocates a new generator node. When the call is deterministic,
the tabled subgoal call operation is implemented by the table try single
WAM-like instruction.

1 We say that a subgoal repeats a previous subgoal if they are the same up to variable
renaming.
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New Answer: this operation verifies whether a newly found answer is already
in the table, and if not, inserts the answer. Otherwise, the operation fails.

Answer Resolution: this operation verifies whether extra answers are avail-
able for a particular consumer node and, if so, consumes the next one. If no
answers are available, it suspends the current computation and schedules a
possible resolution to continue the execution.

Completion: this operation determines whether a tabled subgoal is completely
evaluated. A subgoal is said to be complete when no more answers can be
generated, that is, when its set of stored answers represent all the conclusions
that can be inferred from the set of facts and rules in the program. If the
subgoal has been completely evaluated, the operation closes the subgoal’s
table entry and reclaims stack space. Otherwise, control moves to a consumer
with unconsumed answers.

During tabled evaluation, at several points, we can choose between continuing
forward execution, backtracking to interior nodes, returning answers to consumer
nodes, or performing completion. The decision on which operation to perform is
determined by the scheduling strategy. Different strategies may have a significant
impact on performance, and may lead to a different ordering of solutions to the
query goal. Arguably, the two most successful tabling scheduling strategies are
batched scheduling and local scheduling [14]. YabTab supports both batched
scheduling, local scheduling and the dynamic intermixing of batched and local
scheduling at the subgoal level [12]. Local scheduling does not have any relevance
for this work, so we will not consider it.

Batched scheduling schedules the program clauses in a depth-first manner as
does the WAM. It favors forward execution first, backtracking next, and consum-
ing answers or completion last. It thus tries to delay the need to move around
the search tree by batching the return of answers. When new answers are found
for a particular tabled subgoal, they are added to the table space and the evalua-
tion continues. For some situations, this results in creating dependencies to older
subgoals, therefore enlarging the current SCC (Strongly Connected Component)
and delaying the completion point to an older generator node. By default in
YapTab, tabled predicates are evaluated using batched scheduling [12].

3 Deterministic Tabled Calls in YapTab

In this section we discuss how tabled predicates are compiled in YapTab and,
in particular, we show how YapTab uses the Yap compiler to generate compiled
and indexed code for deterministic tabled calls.

3.1 Compilation of Tabled Predicates

Tabled predicates defined by several clauses are compiled using the table try me,
table retry me and table trust me WAM-like instructions in a similar manner
to the generic try me/retry me/trust me WAM sequence. The table try me
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instruction extends the WAM’s try me instruction to support the tabled subgoal
call operation. The table retry me and table trust me differ from the generic
WAM instructions in that they restore a generator choice point rather than a
standard WAM choice point. Tabled predicates defined by a single clause are
compiled using the table try single WAM-like instruction. This instruction
optimizes the table try me instruction for the case when the tabled predicate
is defined by a single clause. Figure 1 shows the YapTab’s compiled code for a
tabled predicate t/1 defined by a single clause and for a tabled predicate t/3
defined by several clauses.

% predicate definitions
:- table t/1.
t(X) :- ...

:- table t/3.
t(a1,b1,c1) :- ...
t(a2,b2,c2) :- ...
t(a2,b1,c3) :- ...
t(a2,b3,c1) :- ...
t(a3,b1,c2) :- ...

% compiled code generated by YapTab for predicate t/1
t1_1: table_try_single t1_1a
t1_1a: ‘WAM code for clause t(X) :- ...’

% compiled code generated by YapTab for predicate t/3
t3_1: table_try_me t3_2
t3_1a: ‘WAM code for clause t(a1,b1,c1) :- ...’
t3_2: table_retry_me t3_3
t3_2a: ‘WAM code for clause t(a2,b2,c2) :- ...’
t3_3: table_retry_me t3_4
t3_3a: ‘WAM code for clause t(a2,b1,c3) :- ...’
t3_4: table_retry_me t3_5
t3_4a: ‘WAM code for clause t(a2,b3,c1) :- ...’
t3_5: table_trust_me
t3_5a: ‘WAM code for clause t(a3,b1,c2) :- ...’

Fig. 1. Compilation of tabled predicates in YapTab

As t/1 is a deterministic tabled predicate, the table try single instruc-
tion will be executed for every call to this predicate. On the other hand, t/3 is
a non-deterministic tabled predicate, but some calls to this predicate can be de-
terministic, i.e., defined by a single matching clause. Consider, for example, the
previous definition of t/3 and the calls t(a3,X,Y) and t(X,Y,c3). These two
calls are deterministic as they only match with a single t/3 clause, respectively,
the 5th and 3rd clause. We next show how YapTab uses the demand-driven
indexing mechanism of Yap to dynamically generate table try single instruc-
tions for this kind of deterministic calls.
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3.2 Demand-Driven Indexing

Yap implements demand-driven indexing (or just-in-time indexing) [17] since
version 5. The idea behind it is to generate flexible multi-argument indexing of
Prolog clauses during program execution based on actual demand. This feature
is implemented for static code, dynamic code and the internal database. All
indexing code is generated on demand for all and only for the indices required.
This is done by building an indexing tree using similar building blocks to the
WAM but it generates indices based on the instantiation on the current goal,
and expands indices given different instantiations for the same goal.

This powerful optimization provides that YapTab can execute calls to non-
deterministic tabled predicates like deterministic tabled predicates. This happens
when Yap’s indexing scheme finds that for a particular call to a non-deterministic
tabled predicate, there is only a single clause that matches the call. Figure 2
shows an example illustrating the indexed code generated for a non-deterministic
call and two deterministic calls to the previous t/3 tabled predicate.

% indexed code generated by YapTab for call t(a2,X,Y)
table_try t3_2a
table_retry t3_3a
table_trust t3_4a

% indexed code generated by YapTab for call t(a3,X,Y)
table_try_single t3_5a

% indexed code generated by YapTab for call t(X,Y,c3)
table_try_single t3_3a

Fig. 2. Demand-driven indexing of tabled predicates in YapTab

The call t(a2,X,Y) is non-deterministic as it matches the 2nd, 3rd and 4th
clauses of t/3, so a table try/table retry/table trust sequence is gener-
ated. The other two calls, t(a3,X,Y) and t(X,Y,c3), are both deterministic as
they only match a single t/3 clause, so a table try single instruction can be
generated. Note however, that there are situations where a call can be deter-
ministic, but Yap’s indexing scheme cannot detect it as deterministic in order
to generate the appropriate table try single instruction. In such cases, we
cannot benefit directly from our approach, but we can take advantage of the
similarities between the table try single instruction and the last matching
clause of a non-deterministic tabled call to apply our approach later.

3.3 Last Matching Clause

When evaluating a tabled predicate, the last matching clause of a call to the
predicate is implemented either by the table trust me instruction or by the
table trust instruction. The former situation occurs when we have a generic
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call to the predicate (all the arguments of the call are unbound variables) and the
latter situation occurs when we have a more specific call (some of the arguments
are at least partially instantiated) optimized by indexing code.

In a WAM-based implementation [16], the last matching clause of a call is
implemented by first restoring all the necessary information from the current
choice point (usually pointed to by the WAM’s B register) and then, by dis-
carding the current choice point by updating B to its predecessor. In a tabled
implementation, the table trust me and table trust instructions also restore
all the necessary information from the current choice point B, but instead of
updating B to its predecessor, they update the next clause field of B to the
completion instruction. By doing that, they force completion detection when
the computation backtracks again to B, i.e., whether the clauses for the subgoal
call at hand are all exploited.

Hence, the computation state that we have when executing a table trust me
or table trust instruction is similar to that one of a table try single instruc-
tion, that is, in both cases the current clause can be seen as deterministic as it
is the last (or single) matching clause for the subgoal call at hand. Thus, we
can view the table trust me and table trust instructions as a special case of
the table try single instruction. This means that the approach used for the
table try single instruction to efficiently deal with deterministic tabled calls
can be applied to the table trust me and table trust instructions. We discuss
the implementation details for these instructions in the next section.

4 Implementation Details

In this section, we describe in detail how we have extended YapTab to provide
engine support to efficiently deal with deterministic tabled calls.

4.1 Generator Nodes

In YapTab, a generator node is implemented as a WAM choice point extended
with some extra fields. The format of a generic generator choice point of YapTab
is depicted in Figure 3. Fields that are not found in standard WAM choice points
are coloured gray. A generator choice point is divided in three sections. The top
section contains the usual WAM fields needed to restore the computation on
backtracking plus two extra fields [12]: cp dep fr is a pointer to the correspond-
ing dependency frame, used by local scheduling for fixpoint check, and cp sg fr
is a pointer to the associated subgoal frame where answers should be stored. The
middle section contains the argument registers of the subgoal and the bottom
section contains the substitution factor, i.e., the set of free variables which exist
in the terms in the argument registers. The substitution factor is an optimiza-
tion that allows the new answer operation to store in the table space only the
substitutions for the free variables in the subgoal call [18].

If we now turn our attention to how generator choice points are handled dur-
ing evaluation, we find that some of this information is never used when eval-
uating deterministic tabled calls with batched scheduling. This happens mainly
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.
.
.
.

cp_b Failure continuation CP

Fig. 3. Format of a generic generator choice point in YapTab

because, with batched scheduling, the computation is never resumed in a deter-
ministic generator choice point. This allow us to remove the argument registers
and the standard cp cp, cp h and cp env fields. The cp dep fr field can also be
removed because it is only necessary with local scheduling [12], which is never
the case. Figure 4 shows the new format of YapTab’s deterministic generator
choice point with the strictly necessary fields.

The cp b field is needed for failure continuation; the cp ap and cp tr are
required when backtracking to the choice point; the cp sg fr is required by
the new answer and completion operations; and the substitution factor fields
are required by the new answer operation. In order to avoid extra overheads
when manipulating the different kinds of choice points that can coexist in an
evaluation, we have rearranged all kinds of choice points in such a way that the
top three fields are now the same as the ones for a deterministic generator choice
point: the cp b, cp ap and cp tr fields.

The memory reduction obtained with the new representation for determinis-
tic generator choice points increases when the number of argument registers (the
arity of the predicate being called) and the number of substitution variables are,
respectively, bigger and smaller. Considering that A is the number of arguments
registers and that S is the number of substitution variables, the percentage of
memory saved with the new representation can be expressed as follows:



Efficient Evaluation of Deterministic Tabled Calls 67

cp_ap

cp_tr

Next unexploit alternative

Top of trail

Subgoal frame

Number of Substitution Vars

Substitution Variable m

Substitution Variable 1

.
.
.
.

m

Vm

V1

.
.
.
.

cp_sg_fr

cp_b Failure continuation CP

Fig. 4. Format of a deterministic generator choice point in YapTab

1− 4 + 1 + S

8 + A + 1 + S

4.2 Tabling Operations

In order to deal with the new representation for deterministic generator choice
points, this required small changes to the tabled subgoal call, new answer and
completion operations. Figures 5, 6, 7 and 8 show in more detail the changes
(blocks of code marked with comment ‘// new’) made to the table try single,
table trust me2, new answer and completion instructions. Figure 9 shows the
pseudo-code for the auxiliary procedure is deterministic generator cp().
We assume that memory addresses grow downwards and that the choice point
stack grows upwards.

table_try_single(TABLED_CALL tc) {
sg_fr = subgoal_check_insert(tc) // sg_fr is the subgoal frame for tc
if (new_tabled_subgoal_call(sg_fr)) {
if (evaluation_mode(tc) == batched_scheduling) // new
store_deterministic_generator_node(sg_fr)

else // local scheduling
store_generic_generator_node(sg_fr)

...
goto next_instruction()

}
...

}

Fig. 5. Pseudo-code for the table try single instruction

2 The changes made to the table trust instruction are identical to the ones made to
the table trust me instruction.
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The table try single instruction now tests whenever the subgoal being
called is to be evaluated using batched or local scheduling. If batched, it allocates
a deterministic generator choice point. If local, it proceeds as before and allocates
a generic generator choice point.

table_trust_me(TABLED_CALL tc) {
// the B register points to the current choice point
restore_generic_generator_node(B, COMPLETION)
if (evaluation_mode(tc) == batched_scheduling &&

not_in_a_frozen_segment(B) { // new
subs_factor = B + sizeof(generic_generator_cp) + arity(tc)
gen_cp = subs_factor - sizeof(deterministic_generator_cp)
gen_cp->cp_sg_fr = B->cp_sg_fr
gen_cp->cp_tr = B->cp_tr
gen_cp->cp_ap = B->cp_ap
gen_cp->cp_b = B->cp_b
B = gen_cp

}
...

}

Fig. 6. Pseudo-code for the table trust me instruction

The table trust me instruction now tests if the current tabled call is being
evaluated using batched scheduling and if the current choice point is not in
a frozen segment3. If these two conditions hold, we can recover some memory
space by transforming the current generator choice point into a deterministic
generator choice point. To do that, we need to copy the cp sg fr, cp tr, cp ap
and cp b fields in the current choice point to their new position, just above the
substitution factor variables.

new_answer(TABLED_CALL tc, ANSWER ans) {
if (is_deterministic_generator_cp(B)) { // new
gen_cp = deterministic_generator_cp(B)
sg_fr = gen_cp->cp_sg_fr
subs_factor = gen_cp + sizeof(deterministic_generator_cp)

} else { // generic generator choice point
gen_cp = generic_generator_cp(B)
sg_fr = gen_cp->cp_sg_fr
subs_factor = gen_cp + sizeof(generic_generator_cp) + arity(tc)

}
...

}

Fig. 7. Pseudo-code for the new answer instruction

3 The YapTab system uses frozen segments to protect the stacks of suspended com-
putations [4]. Thus, if the current choice point is trapped in a frozen segment it is
worthless to try to recover memory from it using our approach.
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completion() {
... // fixpoint check loop
// subgoal completely evaluated
if (is_deterministic_generator_cp(B)) { // new
gen_cp = deterministic_generator_cp(B)
sg_fr = gen_cp->cp_sg_fr

} else {
gen_cp = generic_generator_cp(B)
sg_fr = gen_cp->cp_sg_fr

}
complete_subgoal(sg_fr)
...

}

Fig. 8. Pseudo-code for the completion instruction

For the new answer and completion operations, since both generator types
have different sizes, we need a way to correctly identify which is the type of
the generator in order to correctly access the required fields on each structure.
To do that, we use the is deterministic generator cp() auxiliary procedure
to test if a generator choice point is deterministic or not. Figure 9 shows the
pseudo-code for it.

The is deterministic generator cp() procedure assumes that, by default,
we have a generic generator choice point and we check if the cp h field (which
is aligned with the field representing the number of substitution variables in
a deterministic generator choice point) is less than the maximum number of
allowed substitution variables (MAX SUBSTITUTION VARS). If this is case, then we
know that we have a deterministic generator choice point.

is_deterministic_generator_cp(CHOICE_POINT cp) {
gen_cp = generic_generator_cp(cp)
if (gen_cp->cp_h <= MAX_SUBSTITUTION_VARS)
return TRUE

else
return FALSE

}

Fig. 9. Pseudo-code for the is deterministic generator cp() procedure

5 Preliminary Experimental Results

We next present some preliminary experimental results comparing YapTab with
and without support for deterministic tabled calls. The environment for our
experiments was a AMD Athlon(tm) 64 Processor 3200+ processor with 2 GByte
of main memory and running the Linux kernel 2.6.24-19 with YapTab 5.1.3.

To evaluate the impact of our proposal, first we have defined three determin-
istic tabled predicates, respectively with arities 5, 11 and 17, that simply call
themselves recursively:



70 Miguel Areias, Ricardo Rocha

:- table t/5, t/11, t/17.

t(N,A2,A3,A4,A5) :-
N > 0, N1 is N - 1,
t(N1,A2,A3,A4,A5).

t(N,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11) :-
N > 0, N1 is N - 1,
t(N1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11).

t(N,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17) :-
N > 0, N1 is N - 1,
t(N1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17).

The first argument N controls the number of times the predicate is executed.
It thus defines the number of generator choice points to be allocated (we used a
value of 100,000 in our experiments). In order to have specific combinations of
argument registers and substitution variables, we have ran each predicate with
three different sets of free variables in the arguments:

:- t(100000,A2,A3,A4,A5).
:- t(100000,A2,A3,0,0).
:- t(100000,0,0,0,0).

:- t(100000,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11).
:- t(100000,A2,A3,A4,A5,A6,0,0,0,0,0).
:- t(100000,0,0,0,0,0,0,0,0,0,0).

:- t(100000,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17).
:- t(100000,A2,A3,A4,A5,A6,A7,A8,A9,0,0,0,0,0,0,0,0).
:- t(100000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0).

These experiments are a kind of best-case scenario as they only allocate gen-
erator choice points and they do not store permanent variables for environment
frames [16]. Table 1 shows the memory usage, in KBytes, for the local stack4 and
the running time, in milliseconds, for YapTab without (column YapTab) and
with (column YapTab+Det) the new support for deterministic tabled calls. A
third column Ratio (1–b/a) shows the memory and running time ratio between
both approaches. For the memory ratio, we show in parentheses the percentage
of memory saved if using the formula presented at the end of section 4.1.

The results in Table 1 indicate that YapTab with support for deterministic
tabled calls can decrease, on average, memory usage by 48% and running time
by 23%. These results also confirm that memory reduction increases when the
number of argument registers is bigger and the number of substitution variables
is smaller. This is coherent with the formula presented in section 4.1. The small
difference between our experiments and the values obtained when using the
formula came from the fact that, in the formula, we are considering a local stack
without environment frames.

4 In YapTab, the local stack contains both choice points and environment frames.
Other systems, like XSB Prolog, have separate choice point and environment stacks.
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Args Subs
YapTab (a) YapTab+Det (b) Ratio (1–b/a)

Memory Time Memory Time Memory Time

5 4 9,376 82 5,860 70 0.37 (0.50) 0.15
5 2 8,594 78 5,079 66 0.41 (0.57) 0.15
5 0 7,813 80 4,297 65 0.45 (0.64) 0.19
11 10 14,063 137 8,204 96 0.42 (0.50) 0.30
11 5 12,110 136 6,251 89 0.48 (0.60) 0.35
11 0 10,157 124 4,297 108 0.58 (0.75) 0.13
17 16 18,751 173 10,547 129 0.44 (0.50) 0.25
17 8 15,626 164 7,422 109 0.53 (0.62) 0.34
17 0 12,501 153 4,297 114 0.66 (0.81) 0.25

Average 0.48 (0.61) 0.23

Table 1. Memory usage (in KBytes) and running times (in milliseconds) for YapTab
without and with the new support for deterministic tabled calls

Next, we tested our approach with the sequence comparisons problem [19].
In this problem, we have two sequences A and B, and we want to determine the
minimal number of operations needed to turn A into B. We used the original
tabled program from [19] and a transformed tabled program that forces all calls
to use the table try single instruction. We experimented these two versions
with sequences of length 500, 1000, 1500 and 2000. Table 2 shows the memory
usage, in KBytes, for the local stack and the running time, in milliseconds, for
YapTab without (column YapTab) and with (column YapTab+Det) the new
support for deterministic tabled calls. A third column Ratio (1–b/a) shows
the memory and running time ratio between both approaches.

Version Length
YapTab (a) YapTab+Det (b) Ratio (1–b/a)

Memory Time Memory Time Memory Time

Original

500 51,774 1,548 44,938 1,264 0.13 0.18
1000 207,063 13,548 179,719 11,212 0.13 0.17
1500 465,868 60,475 404,344 50,631 0.13 0.16
2000 828,188 189,647 718,813 157,213 0.13 0.17

Transformed

500 45,915 1,172 39,051 848 0.15 0.28
1000 183,625 10,024 156,227 8,460 0.15 0.16
1500 413,133 45,874 351,528 36,106 0.15 0.21
2000 734,438 140,068 624,953 113,011 0.15 0.19

Average 0.14 0.19

Table 2. Memory usage (in KBytes) and running times (in milliseconds) for YapTab
without and with the new support for deterministic tabled calls

In general, for memory usage, the results in Table 2 are slightly different
from the previous results obtained in Table 1. For both version of the sequence
comparisons program, YapTab with support for deterministic tabled calls can
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decrease, on average, memory usage by 14%. This reduction on memory saving,
compared with the results on Table 1, happens mainly because of the existence
of permanent variables in the body of the clauses in the sequence comparisons
program. On the other hand, for the running times, the results in Table 2 confirm
the previous results obtained in Table 1.

The results in Table 2 also show very similar memory and running time ratios
for both versions of the sequence comparisons program. This suggests that we can
take advantage of our approach by using the last matching clause optimization
and not only when a program contains deterministic tabled predicates.

Finally, we tested our approach with a path program that computes the
transitive closure of a NxN grid using a right recursive algorithm:

:- table path/2.

path(X,Z) :- edge(X,Z).
path(X,Z) :- edge(X,Y), path(Y,Z).

Regarding the edge/2 facts, we used four grid configuration with 30x30,
40x40, 50x50 and 60x60 nodes. Table 3 shows the memory usage, in KBytes,
for the local stack and the running time, in milliseconds, for YapTab without
(column YapTab) and with (column YapTab+Det) the new support for deter-
ministic tabled calls. Again, a third column Ratio (1–b/a) shows the memory
and running time ratio between both approaches.

Grid
YapTab (a) YapTab+Det (b) Ratio (1–b/a)

Memory Time Memory Time Memory Time

30x30 119 1,304 98 1,464 0.18 -0.12
40x40 211 4,400 175 4,024 0.17 0.09
50x50 330 11,208 273 10,996 0.17 0.02
60x60 476 28,509 393 28,213 0.17 0.01

Average 0.17 0.00

Table 3. Memory usage (in KBytes) and running times (in milliseconds) for YapTab
without and with the new support for deterministic tabled calls

The path program confirms tendency to memory reduction, this case in 17%,
on average. Running time gets sightly worse, thought comparison between both
approaches remains in positive territory in three cases. Note however, that our
approach was mainly designed to achieve a reduction on memory usage by paying
a small cost on running time due to the extra code needed to deal with the new
data structures and algorithms. Despite of this fact, on average, our approach
showed a very good performance in all experiments.
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6 Conclusions and Further Work

We have presented a proposal for the efficient evaluation of deterministic tabled
calls with batched scheduling. A well-known aspect of tabling is the overhead
in terms of memory usage compared with standard Prolog. This raised us the
question of whether it was possible to minimize this overhead when evaluating
deterministic tabled computations. Our preliminary results are quite promising,
they suggest that, for deterministic tabled calls with batched scheduling, it is
possible not only to reduce the memory usage overhead, but also the running
time of the evaluation for certain class of applications.

Further work will include exploring the impact of applying our proposal to
more complex problems, seeking real-world experimental results allowing us to
improve and expand our current implementation.
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Abstract. The advantages of tabled evaluation regarding program ter-
mination and reduction of complexity are well known —as are the sig-
nificant implementation, portability, and maintenance efforts that some
proposals (especially those based on suspension) require. This implemen-
tation effort is reduced by program transformation-based continuation
call techniques, at some efficiency cost. However, the traditional formu-
lation of this proposal by Ramesh and Cheng limits the interleaving of
tabled and non-tabled predicates and thus cannot be used as-is for ar-
bitrary programs. In this paper we present a complete translation for
the continuation call technique which, using the runtime support needed
for the traditional proposal, solves these problems and makes it possible
to execute arbitrary tabled programs. We present performance results
which show that CCall offers a useful tradeoff that can be competitive
with state-of-the-art implementations.
Keywords: Tabled logic programming, Continuation-call tabling, Im-
plementation, Performance, Program transformation.

1 Introduction

Tabling [18, 19, 4] is a strategy for executing logic programs which uses memoiza-
tion of already processed calls and their answers to improve several of the limi-
tations of SLD resolution. It brings termination for bounded term-size programs
and improves efficiency in programs which perform repeated computations and
has been successfully applied to deductive databases [14], program analysis [20,
5], reasoning in the semantic Web [23], model checking [13], etc.

However, tabling also has certain drawbacks, including that predicates to be
tabled have to be selected carefully3 in order not to incur in undesired slow-
downs and, specially relevant to our discussion, that its efficient implementation
is generally complex. In suspension-based tabling the computation state of sus-
pended tabled subgoals has to be preserved to avoid backtracking over them.
This is done either by freezing the stacks, as in XSB [17], by copying to another

3 XSB includes an auto table declaration which triggers a conservative analysis to
detect which predicates are to be tabled in order to ensure termination. However,
more predicates than needed can be selected.
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area, as in CAT [8], or by using an intermediate solution as in CHAT [9]. Linear
tabling maintains instead a single execution tree without requiring suspension
and resumption of sub-computations. The computation of the (local) fixpoint is
performed by making subgoals “loop” in their alternatives until no more solu-
tions are found. This may make some computations to be repeated. Examples of
this method are the linear tabling of B-Prolog [22, 21] and the DRA scheme [10].
Suspension-based mechanisms achieve very good performance but, in general,
require deeper changes to the underlying implementation. Linear mechanisms,
on the other hand, can usually be implemented on top of existing sequential
engines without major modifications.

The Continuation Call (CCall) approach to tabling [15, 16] tries to combine
the best of both worlds: it is a reasonably efficient suspension-based mechanism
which requires relatively simple additions to the Prolog implementation / com-
piler,4 thus making maintenance and porting much easier. In [6] we proposed a
number of optimizations to the CCall approach and showed that with such op-
timizations performance could be competitive with traditional implementations.
However, this was only partially satisfactory since the CCall tabling approach
is restricted to programs with a certain interleaving of tabled and non-tabled
predicate calls (see Figure 3 and Section 3.1), and thus cannot execute general
tabled programs.

In this paper we present an extension of the CCall translation which, using
the same runtime support of the traditional proposal, overcomes the problems
pointed out above. In Section 5 we present a complexity comparison of the
proposed approach with CHAT. Finally, we present performance results from our
implementation. These results show that our approach offers a useful tradeoff
which can be competitive with state of the art implementations, while keeping
implementation efforts relatively low.

2 The Continuation Call Technique

We sketch now how tabled evaluation [4, 17] works from a user point of view and
we briefly describe the Continuation Call technique, on which we base our work.

2.1 Tabling Basics

We will use as example the program in Figure 1, whose purpose is to determine
the reachability of nodes in a graph. If the graph contains cycles, there will
be queries which will make the program loop forever under the standard SLD
resolution strategy, regardless of the order of the clauses. Tabling changes the
operational semantics for predicates marked with the :- table declaration,
which forces the compiler and runtime system to distinguish the first occurrence
of a tabled goal (the generator) and subsequent calls which are identical up to
variable renaming (the consumers). The generator applies resolution using the

4 As an example, no modification to the underlying engine is needed.
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program clauses to derive answers for the goal. Consumers suspend the current
execution path (using implementation-dependent means) and start execution
on a different branch corresponding to another clause of the predicate within
which the execution was suspended. When such an alternative branch finally
succeeds, the answer generated for the initial query (the generator) is inserted
in a table associated with that generator. This makes it possible to reactivate
consumers and to continue execution at the point where they were stopped.
Thus, consumers do not use SLD resolution, but obtain instead the answers
from the table where they were previously inserted by the generator. Predicates
not marked as tabled are executed according to SLD resolution, hopefully with
minimal overhead due to the availability of tabling. This can be graphically seen
as the ability to suspend execution in a part of the tree which cannot progress
(because it enters a loop) and continue it somewhere else, where a solution for
the looping goal can be produced.

2.2 CCall by Example

CCall implements tabling by a combination of program transformation and side
effects in the form of insertions into and retrievals from a table which relates
calls, answers, and the continuation code to be executed after consumers read
answers from the table. We will now sketch how the mechanism works using the
path/2 example (Figure 1). The original code is transformed into the program
in Figure 2 which is the one actually executed.

Roughly speaking, the transformation for tabling is as follows: an auxiliary
predicate (slg path/2) for path/2 is introduced so that calls to path/2 made
from regular (SLD) Prolog execution do not need to be aware of the fact that
path/2 is being tabled. The primitive slg/1 will make sure that its argument is
executed to completion and will return, on backtracking, all the solutions found
for the tabled predicate. To this end, slg/1 checks if the call has already been
executed. If so, all its answers are returned by backtracking. Otherwise, control
is passed to a new predicate (slg path/2 in this case).5 slg path/2 receives in
its first argument the original call to path/2 and in the second argument the
identifier of its generator, which is used to relate operations on the table with
this initial call. Each clause of slg path/2 is derived from a clause of the original
path/2 predicate by:

– Adding an answer/2 primitive at the end of each clause of the original
tabled predicate. answer/2 is responsible for inserting answers in the table
after checking for redundancy.

– Instrumenting calls to tabled predicates using the slgcall/1 primitive. If
this tabled call is a consumer, path cont/3, along with its arguments, is
recorded as (one of) the continuation(s) of its generator. If the tabled call
is a generator, it is associated with a new call identifier and execution fol-
lows using the slg path/2 program clauses to derive new answers (as done

5 The unique name has been created for simplicity by prepending slg to the predicate
name –any safe means of constructing a unique predicate symbol can be used.



78 P. Chico de Guzmán, M. Carro, M. Hermenegildo

:- table path/2.

path(X, Z):-
edge(X, Y),
path(Y, Z).

path(X, Z):-
edge(X, Z).

Fig. 1. A sample program.

path(X, Y):- slg (path(X, Y)).
slg path (path(X, Y), Id):-

edge(X, Y),
slgcall (path cont(Id , [X], path(Y, Z))).

slg path (path(X, Y), Id):-
edge(X, Y),
answer(Id , path(X, Y)).

path cont(Id , [X], path(Y, Z)):-
answer(Id , path(X, Z)).

Fig. 2. The program in Figure 1 after being trans-
formed for tabled execution.

by slg/1). Besides, path cont/3 will be recorded as a continuation of the
generator identified by Id if the tabled call cannot be completed (there were
dependencies on previous generators). The path cont/3 continuation will be
called consuming found answers or erased upon completion of its generator.

– Encoding the remaining of the clause body of path/2 after the recursive call
by using path cont/3. It is constructed similarly to slg path/2, i.e., apply-
ing the same transformation as for the initial clauses and calling slgcall/1.

The second argument of path cont/3 is a list of bindings needed to recover
the environment of the continuation call. Note that, in the program in Figure 1,
an answer to a query such as ?- path(X, Y) may need to bind variable X. This
variable does not appear in the recursive call to path/2, and hence it does not
appear in the path/2 term passed on to slgcall/1 either. In order for the body
of path cont/3 to insert in the table the answer corresponding to the initial
query, variable X (and, in general, any other necessary variable) has to be passed
down to answer/2. This is done with the list [X], which is inserted in the table
as well and completes the environment needed for the continuation path cont/3
to resume the previously suspended call.

A safe approximation of the variables which should appear in this list is the
set of variables which appear in the clause before the tabled goal and which are
used in the continuation, including the answer/2 primitive. Variables appearing
in the tabled call itself do not need to be included, as they will be passed along
anyway. This list of bindings corresponds to the frame of the parent call if the
answer/2 primitive is added to the end of the body being translated. More
details about CCall approach and their primitives can be found at [15].

Key Contribution of CCall: a new predicate name is created for all points
where suspension can happen. Suspension is performed by saving this predicate
name, a list of bindings, and a generator identifier. Resumption is performed by
constructing a Prolog goal with the information saved on suspension plus the
answer which raised the resumption. It is clear that this is significantly simpler
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:- table t/1.

t(A):-
p(B),
A is B + 1.

t (0).

p(B):- t(B), B < 1.

Fig. 3. A program for which the origi-
nal CCall transformation fails.

t(A):- slg (t(A)).
slg t (t(A), Id):-

p(B), A is B + 1,
answer(Id , t(A)).

slg t (t (0), Id):-
answer(Id , t (0)).

p(B):- t(B), B < 1.

Fig. 4. The program in Figure 3 after being
transformed for tabled execution.

to implement than other approaches as XSB or CHAT, where changes in the ab-
stract machine have to be introduced. Consequently, porting and maintainability
are simpler too, since CCall is independent of the compiler and how to create a
Prolog term on the heap is the only one low level operation to implement.

3 Mixing Tabled and Non-Tabled Predicates

A continuation is the way CCall tabling preserves both the environment and the
code of a consumer to be resumed. The list of bindings contains the same vari-
ables as the frame of the predicate where the slgcall/1 primitive is executed,
taking into account the answer/2 primitive added at the end of the clause. How-
ever, the CCall approach to tabling, as originally proposed, has a problem when
Prolog predicates appear between generators and consumers: the environments
created by the non-tabled predicates are not taken into account, and they may
be needed to correctly suspend and resume tabled predicates, as the example in
the following section shows.

3.1 An Ill-Behaved Transformation

Figure 3 shows an example of a tabled program, where tabled and non-tabled
execution (t/1 and p/1) are mixed. The translation of the program is shown in
Figure 4, taking into account the rules in Section 2.2.

The execution of the program with the query t(A) is shown in Figure 5. The
execution is correct until slg/1 is called again by p/1. At that point execution
should suspend (and later resume), but slg/1 does not have any associated
continuation, and it does not have any pointer to the code to be executed on
resumption (partially in p/1 and partially in slg t/2): B < 1, A is B + 1,
answer(Id,t(A)) is lost on backtracking and it is not reachable when resuming.
Consequently, the second answer to the query, t(1), is lost.

The call to t(B) made by p(B) could have been translated as if it were in
the body of a tabled clause, but in that case the piece of code A is B + 1 in
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3. p(B), A is B + 1, answer(id, t (A)).

1. slg(t (A)).

? t (A).

4. t(B), B < 1, A is B + 1, answer(id, t (A)).

5. slg(t(B)), B < 1, A is B + 1, answer(id,t(A). 

6. Suspension.

2. slg_t(t (A), id).

7. answer(id, t(0)).

10. .A = 0.

9. Complete.

8.− fail.

Fig. 5. Tabling execution of example of Figure 1.

the first clause of t/1 would be lost anyway. This is an example of why all the
frames between a consumer and its nearest generator have to be saved when
suspending, and it is not enough to save just the last one, as in the original
CCall proposal [15], which does work, however, when all the calls to the tabled
predicates appear in the body of the clause of a tabled predicate. In that case, it
is enough to save the last frame with the associated continuation code. Note that
all the suspension-based tabling approaches preserve the frames / environments
from the consumer until the corresponding generator.

To solve this problem, we have extended the translation to take into account
a new kind of predicates, named bridges. A bridge predicate is a non-tabled
Prolog predicate whose clauses generate frames which have to be saved in the
continuation of a consumer. In the example of Figure 3, p/1 is a bridge predicate.

3.2 Marking Predicates as Bridges

Bridge predicates are all the non-tabled predicates which can appear in the
execution tree of a query between a generator and each of its consumers, i.e., the
predicates whose environments are in the local stack between the environment
of the generator and the environment of each of its consumers. Note that tabled
predicates do not need to be included as bridge predicates as their environment
will be already saved by the translation. Additionally, only recursive calls which
can lead to infinite loops under SLD resolution have to actually be taken into
account, because these are the only ones which can suspend and later be resumed.
Programs for which tabling merely speeds up already terminating computations
are not subject to the problem outlined above, and therefore do not benefit from
the improved translation shown herein.

Thus, in order to determine a minimal set of bridge predicates, Bmin, we need
to determine before the minimum set of tabled predicates, Tmin, which ensures
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Make a graph G with an edge (p1/n1, p2/n2) ⇔ p2/n2 is called from p1/n1
Bridges = ∅
FOR each predicate T in TABLED PREDICATES
Forward = All predicates reached from T in G
Backward = All predicates from which T is reached in G
Bridges = Bridges ∪ (Forward ∩ Backward)

Bridges = Bridges − TABLED PREDICATES

Fig. 6. Safe approximation to look for bridge predicates.

termination. When Tmin is found, Bmin is the set of non-tabled predicates which
are “in the middle” of two calls to predicates belonging to Tmin. Since looking
for Tmin is undecidable (because it implies detecting infinite failures), looking for
Bmin is also undecidable and a safe approximation, which may mark as bridge
some predicates which do not need to be, is needed.

As we will see in Section 4.2, the only disadvantage of such an over-approximation
is that some code will be duplicated (to accept a new argument for the case where
a bridge predicate is called from a tabled execution), and that bridge predicates,
having an extra argument, can be called when this is not needed. The algorithm
we have implemented (Figure 6) only looks for tabled predicates which can re-
cursively call themselves. For the examples used for performance evaluation in
Section 6, using the safe approximation algorithm produces an average slowdown
of only 3% with respect to a perfect characterization of bridge predicates.

4 A General Translation for Tabled Programs

In this section we present program transformation rules which take into account
bridge predicates. This transformation assumes that the safe approximation al-
gorithm for bridge predicates has already been run, and all the bridge predicates
have been marked by adding a :- bridge P/N declaration in the program.

As seen in Section 2.2, a continuation is the way to save an environment,
because the predicate name is the same as the PC counter of the environment
and the list of bindings is the same as the variables that a environment saves.
Consequently, the goal of the new translation is to associate a continuation
with each of the bridge predicates to save their associated environment. These
continuations receive a new argument (the continuation to be executed) which
is used to push a pointer (i.e., the name of a predicate) to the code to continue
with, in a way similar to environments in local stacks.

4.1 Translation Rules

The rules for the original translation have three different goals: to maintain the
interface with the rest of the code, to manage tabled calls which appear in the
body of the clauses of a tabled predicate, and to insert answers at the end of



82 P. Chico de Guzmán, M. Carro, M. Hermenegildo

trans(C, C) :− \+ table(C), \+ bridge(C).
trans (( :− table P/N ), ( P(X1..Xn) :− slg(P(X1..Xn)) )).
trans (( Head :− Body ), LC) :−

table (Head),
Head tr =.. [ ’ slg ’ ◦ Head, Head, Id],
End = answer(Id, Head),
transBody(Head tr, Body, Id, [], End, LC).

trans (( Head :− Body ), ( Head :− Body ) ◦ LC) :−
bridge(Head),
Head tr =.. [Head ◦ ’ bridge’, Head, Id , Cont],
End = call(Cont),
transBody(Head tr, Body, Id, Cont, End, LC).

transBody ([], [], , , [], []).
transBody(Head, Body, Id, ContPrev, End, ( Head :− Body tr ) ◦ RestBody tr) :−

following (Body, Pref, Pred, Suff ),
getLBinds(Pref, Suff , LBinds),
updateBody(Pred, End, Id, Pref , LBinds, ContPrev, Cont, Body tr),
transBody(Cont, Suff , Id , ContPrev, End, RestBody tr).

following (Body, Pref, Pred, Suff) :−
member(Body, Pred),
( table (Pred); bridge(Pred)), !,
Body = Pref ◦ Pred ◦ Suff.

updateBody([], End, Id , Pref , LBinds, ContPrev, [], Pref ◦ End).
updateBody(Pred, End, Id, Pref , LBinds, ContPrev, Cont, Pref ◦ slgcall (Cont)) :−

table (Pred),
getNameCont(NameCont),
Cont = NameCont(Id, LBinds, Pred, ContPrev).

updateBody(Pred, End, Id, Pref , LBinds, ContPrev, Cont, Pref ◦ Bridge call) :−
bridge(Pred),
getNameCont(NameCont),
Cont = NameCont(Id, LBinds, Pred, ContPrev),
Bridge call =.. [Pred ◦ ’ bridge’ , Pred, Id , Cont] .

Fig. 7. The Prolog code of the translation rules.

the evaluation of each clause. The same points have to be addressed for bridge
clauses, taking into account that a tabled or bridge call has to be translated if
it appears in the body of a tabled predicate or a bridge predicate.

The rules for the new translation, which uses the same primitives as the orig-
inal CCall proposal, are shown in Figure 7, where for conciseness we have used
a sugared Prolog-like language. For example, a functional syntax is implicitly
assumed where needed, and infix ’◦’ is a general append function which joins
either (linear) structures or, when applied to atoms, concatenates them. It may
appear in an output head position with the expected semantics.
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The trans/2 predicate receives a clause to be translated and returns the list
of clauses resulting from the translation. Its first clause ensures that predicates
which are non-tabled and non-bridge are not transformed.6 The second one is to
generate the interface of table predicates with the rest of the code: if there is a
tabled declaration, the interface is generated. The third clause translates clauses
of tabled predicates, and the fourth one translates clauses of bridge predicates,
where the original one is maintained in case it is called outside a tabled call (this
is in order to preserve the interface with non-tabled code). They generate the
new head of the clause, Head tr, and the code which has to be appended at the
end of the body, End, before calling transBody/6 with these arguments. End can
be the answers/2 primitive for tabled clauses or call(Cont), which invokes the
following pushed continuation, stored in the fourth argument.

transBody/6 generates, in its last argument, the translation of the body of
a clause by taking care, in each iteration, of the code until the next tabled or
bridge call, or until the end the clause, and appending the translation of the rest
of the clause to this partial translation. In other words, it calls updateBody/8 to
translate tabled or bridge calls and continues translating the rest of the body.

The following/4 splits a clause body in three parts: a prefix, until the first
time a tabled or bridge call appears, the tabled or bridge call itself, and a suffix
from this call until the end of the clause. getLBinds/3 obtains the list of variables
which have to be saved to recover the environment of the consumer, based on
the ideas of Section 2.2.

The updateBody/8 predicate completes the body prefix until the next tabled
or bridge call. Its first six arguments are inputs, the seventh one is the head of
the continuation for the suffix of the body, and the last argument is the new
translation for the prefix. The first clause takes care of the base case, when there
are no calls to bridge or tabled predicates left, the second clause generates code
for a call to a tabled predicate, and the last one does the same with a bridge
predicate. That getNameCont/1 generates a unique name for the continuation.

We will now use the example in Figure 3, adding a :- bridge p/1 declara-
tion, to exemplify how a translation would take place.

4.2 The Previous Example with the Correct Transformation

The translation of the first clause of t/1 is done by the third clause of trans/2,
which makes the head of the translated clause to be slg t(t(A), Id) and states
that the final call of that clause has to be answer(Id, t(A)) —i.e., when the
clause successfully finishes, it adds the answer to the table.

transBody/6 takes care then of the rest of the body, which identifies which
environment variables (A, in this case) have to be saved and matches Pref,
Pred, and Suff with the goals before the call to the bridge predicate (none —

6 The predicates table/1 and bridge/1 are dynamically generated by the compiler
from the corresponding declaration. They check if their argument is a clause of a
tabled or bridge predicate, or if their argument is a functor corresponding to a tabled
or bridge predicate, respectively.
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t(A) :− slg(t(A)).
slg t (t(A), Id) :−

p bridge (p(B), Id , slg t0 (Id , [A], p(B), [])).

slg t (t (0), Id) :− answer(Id, t (0)).

slg t0 (Id , [A], p(B), []) :−
A is B + 1,
answer(Id , t(A)).

p(B) :− t(B), B < 1.

p bridge (p(B), Id , Cont) :−
slgcall (p bridge0(Id , [], t(B), Cont)).

p bridge0(Id , [], t(B), Cont) :−
B < 1,
call (Cont).

Fig. 8. The program in Figure 3 after being transformed for tabled execution.

and empty conjunction), the call to the bridge predicate (p(B)), and the goals
after this call (A is B + 1). The third clause of updateBody/8 generates the
body of Head tr, to give the first clause of slg t/2. A continuation is generated
for the rest of the body; the code of the continuation is a predicate whose head
is slg t0/3 and its body is generated by the first clause of updateBody/8.

The translation of the second clause of t/1 is simpler, as it only has to add
answer(Id, t(0)) at the end of the body of the new predicate.

The clause for p/1 is kept to maintain its interface when it is not called from
inside a another tabled execution. The translation for the clause of p/1 is made
by the fourth clause of trans/2 where Head tr is unified with p bridge(p(B),
Id, Cont). End is unified with call(Cont) — a call to the continuation code to
be resumed by the following pushed continuation. transBody/6 finds an empty
list of environment variables and unifies Pref, Pred and Suff with [], t(B)
and B < 1, respectively. The second clause of updateBody/8 generates the body
for the new predicate p bridge/3. A continuation is generated to execute the
rest of the body, whose head is p bridge0/3 and whose body is generated by
the first clause of updateBody/8. As we can see, bridge predicates are pushing
continuations which are sequentially called when consumers are resumed.

4.3 Execution of the Transformed Program

The execution tree of the transformed program is shown in Figure 9. It is similar
to that in Figure 5, but a continuation slg t0(id, [A], p(B), []) is passed
to the transformed clause of p/1. This continuation contains the code to be
executed after the execution of p(B) and the list [A] needed to recover its
environment. Consequently, there are two continuations associated with the sus-
pension: one continuation to execute the rest of the code of p(B) and another
one to execute the rest of the code of t(A).

After the first answer is found, this double continuation is resumed. It is
executed as a normal Prolog and the second answer, t(1), is found.
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? t (A).

1. slg(t (A)).

5. Suspension

10. 0 < 1, call(slg_t0(id, [A], p(0), [])).

12. A is 0 + 1, answer(id, t(A)).

11. call(slg_t0(id, [A], p(0), []).

13. answer(id, t(1)).

15. p_bridge0(id [A], t(1), slg_t0(id, [A], p(1), [])).9. p_bridge0(id, [], t(0), slg_t0(id, [A], p(0), [])).

16. 1 < 1, call(slg_t0(id, [A], p(1), [])).

17. fail

3. p_bridge(p(B), id, slg_t0(id, [A], p(B), [])).

2. slg_t(t (A), id).

18. Complete

19. A = 0.

20. A = 1.

14.− fail.

7. answer(id, t(0)).

8.− fail.4. slgcall(p_bridge0(id, [], t(B), slg_t0(id, [A], p(B), []))).

Fig. 9. New CCall tabling execution.

5 Θ(CHAT) is not comparable with Θ(CCall)

In this section we present a comparative analysis of the complexity of CCall
and CHAT, which is an efficient implementation of tabling with a compara-
tively simple machinery. Since it is known that Θ(CHAT) is Θ(SLG-WAM) [7], the
comparative analysis applies to the SLG-WAM as well.

The complexity analysis focuses on the operations of suspension and resump-
tion. The environment of a consumer has to be protected when suspending to
reinstall it when resuming. CCall achieves that by copying the continuation
associated with the consumer in a special memory area to be protected on back-
tracking. In the original implementation [15] this continuation is copied from
the heap to a separate table (when suspending) and back (when resuming). As
proposed in [6], continuations can be saved in a special memory area with the
same data format as the heap. This makes it possible to use WAM instructions
and additional machinery on them and, when resuming, they can be used as
normal Prolog data and code, without being recopied each time a consumer is
resumed.

On the other hand, CHAT freezes the heap and the frame stack when re-
suming. The heap and frame stack are frozen by traversing the choice point
stack. For all the choice points between the consumer choice point and its gen-
erator, the pointer to the end of the heap and frame stack are changed to the
values of the consumer choice point values. By doing that, heap and frame stack
are protected on backtracking. However, the consumer choice point has to be
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copied to a special memory area as well as the segment trail (with its associated
values) between the consumer and the generator, to reinstall the values of the
bound variables at the time of suspension which backtracking will unbind. In
consequence, when resuming the trail values have to be reinstalled as well as the
consumer choice point.

Each consumer is suspended only once, and it can be resumed several times.
The rest of the operations, i.e., checking if a tabled call is a generator or a con-
sumer, are not analyzed, because they are common to both systems. In addition,
we will ignore the cost of working at the Prolog level, since this is an orthogonal
issue: CCall primitives could be compiled to WAM instructions and working at
Prolog level does not increase the system complexity.

Θ(CCall): when suspending, CCall has to copy all the environments until the
last generator and the structures in the heap which hang from them. If we name
E the size of all the environments and H the size of the structures in the heap,
the time consumption when suspending is: Θ(E + H).

When resuming, CCall just has to perform pattern matching of the continu-
ation against its clause. The time taken by the pattern matching depends on the
size of the list of bindings, which is known to be Θ(E). Since each consumer can
be resumed N times, the time consumption of resuming consumers is Θ(N×E).

Θ(CHAT): when suspending, CHAT has to traverse the frame and choicepoint
stacks, but with the improvements presented in [7], the time this takes can be
neglected because a choice point is only traversed once for all the consumers.
The trail and the last choice point have to be copied. If we call T the size of the
trail and C the size of the choice point, which is bound by a constant for a given
program, the time consumption when suspending is: Θ(T).

When resuming, CHAT has to reinstall the values of the frame and the choice
point. Since each consumer can be resumed N times, the time consumption of
resuming is Θ(N×T).

Analyzing the worst cases of both systems: we can conclude E + H ≥ T,
because each variable can only be once in the trail, and then CCall is worse than
CHAT when suspending. On the other hand, in case that E < T, CCall is better
than CHAT when resuming. Consequently, for a plausible general case, the more
resumptions there are, the better CCall behaves in comparison with CHAT, and
conversely. In any case, the worst and best cases for each implementation are
different, which makes them difficult to compare. For example, if there is a very
large structure pointed to from the environments, and none of its elements are
pointed to from the trail, CCall is slower than CHAT, since it has to copy all the
structure in a different memory area when suspending and CHAT does nothing
both when suspending and when resuming.

On the other hand, if all the elements of the structure are pointed to from the
trail, CCall has to copy all the structure on suspension in a different memory area
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to protect it on backtracking, but it is ready to be resumed without any other
operation (just a unification with the pointer to the structure). CHAT has to
copy all the structure on suspension too, because all the structure is in the trail.
In addition, each time the consumer is resumed, all the elements of the structure
have to be reinstalled using the trail, and CHAT has to perform more operations
than CCall, and then, the more resumptions there are, the worse CHAT would
be in comparison with CCall. Anyway, as the trail is usually much smaller than
the heap, in general cases, CHAT will have an advantage over CCall.

6 Performance Evaluation

We have implemented the proposed technique as an extension of the Ciao sys-
tem [1]. Tabled evaluation is provided to the user as a loadable package that
implements the new directives and user-level predicates, performs the program
transformations, and links in the low-level support for tabling. We have imple-
mented CCall tabling with the efficiency improvements presented in [6] and the
new translation for general programs explained in this paper.

Table 1 aims at determining how the proposed implementation of tabling
compares with state-of-the-art systems —namely, the latest available versions
of XSB, YapTab, and B-Prolog, at the time of writing, using the typical bench-
marks which appear in other performance evaluations of tabling approaches.7

In this table we provide, for several benchmarks, the raw time (in milliseconds)
taken to execute them using tabling. Measurements have been made with Ciao-
1.13, using the standard, unoptimized bytecode-based compilation, and with the
CCall extensions loaded, as well as in XSB 3.0.1, YapTab 5.1.1, and B-Prolog
7.0. Note that we did not compare with CHAT, which was available as a configu-
ration option in the XSB system and which was removed in recent XSB versions.
CHAT can be expected to be at least as fast (if not slightly faster) than XSB.

All the executions were performed using local scheduling and disabling garbage
collection; in the end this did not impact execution times very much. We used
gcc 4.1.1 to compile all the systems, and we executed them on a machine with
Fedora Core Linux, kernel 2.6.9, and an Intel Xeon DESCHUTES processor.

The first benchmark is path, the same as Figure 1, which has been executed
with a chain-shaped graph. Since this is a tabling-intensive program with no con-
sumers in its execution, the difference with other systems is mainly due to having
large parts of the execution done at Prolog level. The following five benchmarks,
until atr2, are also tabling intensive. As their associated environments are very
small, CCall is far from its worst case (see Section 5), and the difference with
other systems is similar to that in path and for a similar reason. The worst case
in this set is tcn because there are two calls to slgcall/1 per generator, and
the overhead of working at the Prolog level is duplicated.

B-Prolog, which uses a linear tabling approach, suffers if costly predicates
have to be recomputed: this is what happens in benchmarks from pg until peep,
7 This is in contrast to [6] where, due to the limitations of the CCall approach the

benchmarks presented did not need the use of bridge predicates.
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Program CCall XSB YapTab BProlog # Bridges

path 517.92 231.4 151.12 206.26 0

tcl 96.93 59.91 39.16 51.60 0

tcr 315.44 106.91 90.13 96.21 0

tcn 485.77 123.21 85.87 117.70 0

sgm 3151.8 1733.1 1110.1 1474.0 0

atr2 689.86 602.03 262.44 320.07 0

pg 15.240 13.435 8.5482 36.448 6

kalah 23.152 19.187 13.156 28.333 20

gabriel 23.500 19.633 12.384 40.753 12

disj 18.095 15.762 9.2131 29.095 15

cs o 34.176 27.644 18.169 85.719 14

cs r 66.699 55.087 34.873 170.25 15

peep 68.757 58.161 37.124 150.14 10

Table 1. Comparing Ciao+CCall with XSB, YapTab, and B-Prolog.

where tabled and non-tabled execution is mixed. This is a well-known disad-
vantage of linear tabling techniques which does not affect suspension-based ap-
proaches. It has to be noted, however, that latest versions of B-Prolog implement
an optimized variant of its original linear tabling mechanism [21] which tries to
avoid reevaluation of looping subgoals.

In order to compare our implementation with XSB and YapTab, we must
take into account that the speeds of XSB, and YapTab8 are different, at least in
those cases where the program execution is large enough to be really significant
(between 1.8 and 2 times slower in the case of XSB and 1.5 times faster in the
case of YapTab).

In non-trivial benchmarks, from pg until peep, which at least in principle
should reflect more accurately what one might expect in larger applications
using tabling, execution times are in the end very competitive when comparing
with XSB or YapTab. This is probably due to the fact that the raw speed of the
basic engine in Ciao is higher than in XSB and closer to YapTab, rather than to
factors related to tabling execution, but it also implies that the overhead of the
approach to tabling used is reasonable after the proposed optimizations in [6].
In this context it should be noted that in these experiments we have used the
baseline, bytecode-based compilation and abstract machine. Turning on global
analysis and using optimizing compilers and abstract machines [11, 3, 12] can
further improve the speed of the SLD part of the computation.

8 Note that we are comparing the tabled-enabled version of Yap, which is somewhat
slower than the regular Yap.
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7 Conclusions

We have presented an extension of the continuation call technique which does not
have the limitations of the original continuation call approach regarding the in-
terleaving of tabled and non-tabled predicates. This approach has the advantage
of being easier to implement and maintain than other techniques which require
non-trivial modifications to low-level machinery. Although there is an overhead
imposed by executing at Prolog level, we expect the speed of the source (Prolog)
language to gradually improve by using global analysis, optimizing compilers,
and better abstract machines. Accordingly, we expect the performance of CCall
to improve in the future and thus gradually gain ground in the comparisons.

Although a non optimal tabled execution is obviously a disadvantage, it is
worth noting that, since our implementation introduces only minimal changes in
the WAM and none in the associated Prolog compiler, the speed at which regular
Prolog is executed remains unchanged. In addition to this, the modular design of
our approach gives better chances of making it easier to port to other systems. In
our case, executables which do not need tabling have very little tabling-related
code, as the data structures (for tries, etc.) are handled by dynamic libraries
loaded on demand, and only stubs are needed in the regular engine. The program
transformation is taken care of by a plugin for the Ciao compiler [2] (a “package,”
in Ciao’s terms) which is loaded and active only at compile time, and which does
not remain in the final executable.
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Abstract. Tabled Logic Programming (TLP) has proven a useful
paradigm for application areas such as natural language grammars,
program analysis, model checking, ontology management, collaborative
agents, and the semantic web. The benefits of TLP arise from the fact
that tabling factors out redundant subcomputations when evaluating a
goal, leading to powerful termination and complexity properties. While
the design and implementation of sequential TLP systems has been heav-
ily studied, multi-threaded TLP systems are much newer. Tabling can be
integrated with multi-threading in a variety of ways. Different threads
may use private tables to support their own computations, while shared
tables can be used as a basis of communication among threads to amor-
tize repeated queries and to exploit a measure of parallelism from a
computation. This paper discusses multi-threaded TLP in the context
of XSB, a leading open-source Prolog whose tabling engine has recently
been extended for multi-threading, including tabled negation, tabled con-
straints, and subsumptive tabling.

Tabled Logic Programming (TLP) has proven to be an important area of
Logic Programming (LP) over the last decade, with research and commercial use
in such areas as natural language grammars, program analysis, model checking,
ontology management, collaborative agents, and the semantic web. Following
the initial implementation of tabling in XSB, various forms of tabling have been
added to other open-source Prologs including B-Prolog, YAP, Mercury, ALS
and Ciao. There are a number of reasons for the adoption of tabling. TLP is
more declarative than LP: it ensures termination and polynomial complexity for
logic programs with negation that have the bounded term size property – i.e.
those for which the size of terms constructed during an evaluation is bounded.
Tabling can also evaluate negation according to the Well-Founded Semantics,
which among other advantages allows an integration of Prolog-style systems
with ASP systems that solve combinatorial problems. Finally, tabling can be
closely integrated with Prolog systems so that constraints, cuts, and exceptions
are supported, and implemented through extensions of Prolog’s virtual machine.

Multi-threaded Prolog has been developed as a research activity for many
years (cf. e.g [1]) and a draft ISO standard is available [2]. Many Prologs, in-
cluding Ciao, SWI, YAP, Qu-Prolog and XSB, support multi-threaded program-
ming, allowing programmers to benefit from parallelism by manually decompos-
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ing queries. They provide a sophisticated environment for a number of applica-
tions, but most of them do not support multi-threaded TLP (MT-TLP).

This paper presents the approach to MT-TLP taken by XSB Prolog, which
supports a wide variety of TLP features, including tabled negation, tabled con-
straints, call subsumption, answer subsumption, incremental recomputation of
tables, tabled dynamic code and garbage collection of abolished tables. When
multi-threading is added, tables may be private to a thread, or shared among
threads, leading to several design goals:

– Any tabling function should be available to any active thread using tables
that are private to a thread.

– Any tabling function should be available to any active thread using tables
that are shared among threads.

– Private tables should be highly scalable up to the number of cores available.
– For problems that support large amounts of parallelism, shared tables should

be able to provide speedup proportional to the number of cores available.

Although these goals are ambitious, many are already supported in Version
3.2 of XSB 3. We first review aspects of TLP in Section 1. We then describe
MT-TLP in XSB Version 3.2, including a high-level description of algorithms for
multi-threaded computations that share tables. In order to illustrate how MT-
TLP functions can be used in practice, Section 3 presents extended examples
of its application to various types of Petri-Net formalisms. Finally, Section 4
discusses performance of these and other examples.

1 Tabling

We review aspects of tabling relevant to our presentation. Due to space limita-
tions, the presentation is informal: references for formalisms of tabling and for
proofs of its complexity and termination properties can be found in e.g. [3].

Example 1. Figure 1 shows a program P1 along with the tabled evaluation of the
goal ?- p(c) represented as a forest of trees. In Figure 1, the number beside each
node indicates the order of its creation. Accordingly, the evaluation begins with
a tree for p(c) with root node labeled with the clause p(c):- |p(c). The head
of each node label represents the bindings, if any, to the subgoal made during
the course of evaluation. The body of a node label has two parts: the literals
on the right of the | symbol represent unresolved goals, which in this paper are
selected in a fixed left-to-right order; the literals on the left represent delayed
literals. program clause resolution is used to produce the children of the
root of a tree: this operation produces node 1, with selected literal not p(a).
The atom p(a) is new to the evaluation, so a new subgoal operation creates
a tree rooted at node 3 for p(a). program clause resolution creates node
4, and because the selected literal of node 4 t(a,Y,Z) is not tabled, program

3 Version 3.2 has not yet been released, but all features mentioned in this paper are
available in the CVS version of XSB available at xsb.sourceforge.net.
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clause resolution creates node 5 also. Since the selected literal of node 5,
p(c) has a tree in the forest, but has no answers, the evaluation backtracks to
node 4 and produces node 6. Once again, there are no answers to return so the
evaluation backtracks to the tree for p(c) and produces node 7. At this stage
none of the selected literals for nodes 1-7 have answers, nor unresolved program
clauses. However, SLG provides a delaying operation which allows a selected
negative literal to be moved to the left of the | symbol. This operation creates
node 8, which is considered to be an answer, since it has no unresolved goals; at
the same time, since node 8 has a delayed literal it is a conditional answer. This
conditional answer can be used to resolve against the selected literals of nodes
5 and 6, producing nodes 9 and 10. Note that using a conditional answer for
resolution causes the resolved goal to be delayed. The atom p(b) of the selected
literal of node 10 is new to the evaluation, so a new tree is created for p(b)
which produces an unconditional answer causing the derivation path from node
10 to be failed as indicated by the failure node 13. At this point, node 9 has not
p(a) as its selected goal. Another delaying operation is performed to produce
node 14, which again has not p(b) as its selected literal and produces a failure
node. At this point, all operations have been performed on the selected literals
of all nodes. The trees are completely evaluated and can be marked as complete.
Once they are completed and it is determined that p(a) has no (conditional
or unconditional) answers, a simplification operation removes not p(a) from
the delay list of node 8 to produce the unconditional answer in node 16.

p(X):− t(X,Y,Z),p(c),not p(Y),not p(Z).p(c):− not p(a).

:− table p/1.

p(b).

t(a,b,a). t(a,a,b).

13. fail

15. fail

10. p(a):− p(c)|not p(b), not p(a)

6. p(a):− | p(c),not p(b), not p(a)

3. p(a) :− | p(a)

2. p(c):− | not p(a) 7. p(c):− |t(c,Y,Z),p(c),not p(Y),not p(Z)
4. p(a):− | t(a,Y,Z),p(c),not p(Y), not p(Z)

p(c),not p(a),not p(b)5. p(a):− |

1. p(c) :− | p(c)

8. p(c) :− not p(a) |

9. p(a):− 

11. p(b) :− | p(b)

12. p(b) :− |

p(c)|not p(a),not p(b)

14. p(a):− p(c),not p(a)|not p(b)

16. p(c) :− |

Fig. 1. The program P1 and tabled evaluation of goal ?- p(c) to P1



94 Rui Marques, Terrance Swift, José Cunha

Example 1 illustrates a number of operational aspects of tabling. First, a
tabled evaluation needs to be able to suspend and later resume a computation
path, as when the path to node 5 is suspended and later resumed to produce
node 9. Next, since non-completed subgoals require execution stack space while
completed subgoals require only table space to store their answers, a practical
tabled evaluation must be able to incrementally complete tabled subgoals to
ensure space efficiency. For instance, the tree for p(b) can be completed imme-
diately after node 12 is produced.

However, there are aspects of tabled evaluation that Example 1 does not ex-
plicitly demonstrate. Example 1 implicitly uses call variance – a new subgoal
operation is performed on a tabled subgoal S if no variant of S has previously
been encountered. In some evaluations, it can be useful to restrict new subgoal
operations to occur only if no subsuming call for S had been encountered. Call
subsumption can be efficient for applications that can exploit it – for instance
computing a bottom-up fixed point for program analysis or for RDF inference.
However call subsumption introduces overheads when it is not used (about 20%
in XSB). Furthermore, there may be situations in which it is important to main-
tain the call patterns of an evaluation, as in tabling a meta-interpreter: such
patterns are preserved by call variance, but not by call subsumption. In addi-
tion, Example 1 does not make use of a tabling feature called answer subsump-
tion. Rather than returning every answer for a (perhaps completed) table, it
may be best to return answers that are optimal according to some partial order.
Similarly, answer subsumption may return an answer that is a function of other
answers. For instance, an answer may be resolved against a consuming subgoal
only if it is the join of other answers [4], or if the answer is the summation
of independently derived probabilities [5]. As shown by the Petri Net example
in Section 3 that uses ω-sequences, answer subsumption also can be useful for
ensuring termination by abstracting answers.

Example 1 also does not use dynamic code, which interacts with tabling
in two ways. First, dynamic predicates can be tabled in XSB, a handy feature
for applications that generate tabled code. Second, when a tabled evaluation
relies on a dynamic predicate Dp information in the table may become out of
date as clauses of Dp are asserted or retracted. By using suitable declarations,
incremental recomputation can automatically maintain the consistency of tables
with dynamic code. While in Version 3.2 of XSB incremental recomputation is
restricted to definite programs, it has proven useful in applications [6].

The ability to maintain constrained variables in the subgoals and answers of
tables is useful for the analysis of temporal systems (see for instance [7]). A final
critical, but often overlooked feature of tabling systems is the ability to abolish
tables and reclaim their space. Version 3.2 of XSB allows reclamation of table
space for abolished completed tables at the predicate and subgoal level. It may
not be safe to immediately reclaim the space of an abolished table, as choice
points may point into the table’s code. Thus, in a manner similar to reclaiming
retracted dynamic clauses, a pointer to the predicate or subgoal is put on a list
of elements to later garbage collect when it is safe to do so.
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Scheduling Strategies Two popular strategies for performing tabling oper-
ations are Local evaluation (the underlying strategy of Example 1) and Batched
evaluation. Local evaluation is based on a Subgoal Dependency Graph (SDG)
constructed from a forest of trees, F (cf. Figure 1). This graph has as its ver-
tices each non-completed tabled subgoal in the forest, and has a link (S1, S2) if
a node in the tree for subgoal S1 has subgoal S2 in its selected literal or in a
delayed literal. Since SDG(F) is a directed graph, a Strongly Connected Com-
ponent (SCC) can be defined; As terminology a maximal SCC is an SCC that
is contained in no other SCC, while an independent SCC S is an SCC such that
there is no edge from a vertex in S to a vertex not contained in S. In Local
evaluation, tabling operations are performed only in trees whose subgoals are
in an independent maximal SCC. Because of this restriction, Local evaluations
have a behavior similar to a depth-first search. As a result, a given state of a
Local evaluation generally has few uncompleted subgoals, and so is space effi-
cient. In addition, Local evaluation prevents the return of an answer to a node
in a tree that is not in an independent SCC. Along with other scheduling con-
straints, including ensuring that all simplification operations are performed
as early as possible, Local evaluation can guarantee that if a conditional answer
with head A is returned to a node N outside of an independent SCC, then no
unconditional answer with head A will ever be available to be returned to N .
In Example 1 this would mean that if p(a) were part of a larger evaluation, its
conditional answer (node 8) would never be returned outside of its SCC: only
the unconditional answer (node 16) would be thus returned. Local evaluation is
also advantageous for answer subsumption since it returns only the best answers
(according to a given ordering) outside of an SCC.

However Local evaluation, is not useful for applications that require a single
answer, or for applications where a table produces an answer that can be concur-
rently consumed by some other thread. For these purposes, Batched Evaluation
is superior. Batched evaluation treats bindings made by answer resolution in the
same way substitutions are treated in Prolog: the binding is propagated to all
ancestor environments, thus “returning” an answer to its calling environment
immediately. Answers are also returned to consuming nodes upon backtracking.
Upon backtracking to the oldest subgoal in an SCC S, S is either completed or a
backtracking chain is created to return unresolved answers to consuming nodes
for subgoals in S. In this manner, answers are scheduled for return a batch at a
time. For left recursion, Batched evaluation is about 10-20% faster than Local
evaluation. The decision of whether to use Batched or Local evaluation is thus
application dependent. XSB must be configured with one or the other strategy,
but YAP allows dynamic mixing of the strategies [8].

2 Multi-Threaded Tabling

A multi-threaded tabling engine [9] was first made available in Version 3.0 of
XSB, and has been substantially refined and extended since then. The simplest
execution model is based on private tables, where each thread keeps its own copy
of tabled information. This model has several advantages:
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– Private tables use sequential tabling algorithms. The main implementation
problems are to make the tabling engine reentrant with a low overhead, to
allow each thread to reclaim its own table space and to ensure that allocation
of table space does not affect scalability. Private tables in XSB support all
tabling features that were present at the time of implementation, including
tabled negation, tabled constraints, and call and answer subsumption.

– Private tables generally require no synchronization among threads above the
level of memory allocation.

– Private tables are suitable to ensure query completeness or to support a
particular semantics. Tables are automatically reclaimed when the thread
that computed them exits. This reclamation includes not only subgoal and
answer tries, but the delay lists and supporting structures used to compute
the Well-Founded Semantics.

Shared tables tables are also important:

– If different threads require the same tables, memory usage for shared tables
will be significantly lower than for private tables.

– Shared tables amortize execution time for (sub-)queries that are repeated by
more than one thread.

– Shared tables allow the decomposition of a program, so that a set of threads
computes a set of tables, partially supporting Table-Parallelism [10].

Execution Models for Shared Tables In [9] two models for shared tables,
Concurrent Local Evaluation and Concurrent Batched Evaluation were proposed
and implemented. In these models, the SLG forest is dynamically partitioned
among threads, each thread evaluating a set of subgoals. In Concurrent Local
Evaluation, which relies on Local Scheduling, when a thread T encounters a
tabled subgoal S that has not been encountered by any thread, T evaluates S.
Other threads are only allowed to use the table for S after T has completed
S. Concurrency control for tables mainly arises when more than one thread
evaluates different tabled subgoals in the same SCC at the same time. In this
case, a deadlock will occur, which the engine detects and resolves, so that a single
thread assumes computation of all tabled subgoals in the SCC. In Figure 1 such
as situation would occur if a thread T1 called p(a) and another called p(c)
before it was called by T1. Tabled subgoals that are computed by a new thread
must have their answers recomputed. It is shown in [9] that recomputation does
not add to the abstract complexity of the Well-Founded Semantics. Just as Local
evaluation is the default scheduling strategy for sequential XSB and for thread-
private tables, Concurrent Local Evaluation is the default scheduling strategy
for thread-shared tables.

Because it is a type of Local Evaluation, Concurrent Local Evaluation does
not allow a consuming node to use answers produced by a subgoal outside of
its SCC until the table for the answers is completed – a restriction that pre-
vents producer-consumer models of parallelism. This limitation is overcome by
Concurrent Batched Evaluation which allows several threads to compute (inter-
)dependent tabled subgoals in parallel. As with Concurrent Local Evaluation,
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each subgoal can be computed by only one thread. However, a given thread
may consume answers as they are produced by another thread. Within XSB,
the implementation of Concurrent Batched Evaluation extends the implementa-
tion of sequential Batched Evaluation. In sequential Batched Evaluation, when
the engine backtracks to the oldest subgoal in an SCC, it schedules the re-
turn of unconsumed answers for each consuming node in the SCC by creating a
chain of choice points, and then backtracks into the newly created chain. This
is extended to a multi-threaded context as follows. If different threads compute
different SCCs, they can work independently, and can consume answers from
other threads as they become available. However, let S be an SCC computed by
multiple threads. All threads concurrently consume answers and perform other
operations while they have work to do. Suppose a thread T1 computing subgoals
in S backtracks to the oldest subgoal that it “owns” in S. If any other thread
computing S is active, T1 will suspend and will be re-awakened when a thread
performs batch scheduling for S; otherwise if T1 is the last unsuspended thread
computing subgoals in S, T1 itself will perform a fixed point check and batched
scheduling and awaken the other threads computing S — either to return fur-
ther answers or to complete their tables. As implemented in XSB, Concurrent
Batched Evaluation thus allows parallel computation of subgoals, but has a se-
quential fixpoint check that synchronizes multiple threads when they compute
the same SCC.

Implementation Status The status of MT-TLP in XSB Version 3.2 is
shown in Table 1. Private tables support all features except for incremental re-
computation (cf. Section 1, which was introduced after the multi-threaded engine
was introduced into XSB. Concurrent Local Evaluation supports most features,
but does not yet support call subsumption. In addition, it only partially supports
space reclamation since shared tables can be abolished, but their space will not
be reclaimed until there is only a single active thread in the engine. Both private
tables and shared tables under Concurrent Local Evaluation have been heav-
ily tested. XSB can also be configured to use Concurrent Batched Evaluation,
however this model has been less thoroughly tested than Concurrent Local Eval-
uation and should be considered experimental. Nonetheless, Concurrent Batched
Completion supports a number of tabling features, but is currently restricted to
left-to-right dynamically stratified programs.

Related Work The approach to MT-TLP in XSB can be contrasted to
that of OptYap [11]. OptYap extends an Or-parallel Prolog system with tabling,
while XSB extends a Tabled Prolog system to allow multi-threading. The differ-
ent starting points lead to different strengths in the current implementation of
each system. In OptYap, different workers can collaborate to solve the same goal
– leading to impressive speedups even in programs using left recursion. As will
be shown in Section 4, shared tables in XSB can be used to speed up evaluations,
but only for problems that are easily decomposable. Thus for definite programs,
to which OptYap is currently restricted, OptYap can exploit much more paral-
lelism than can XSB. On the other hand, XSB’s implementation supports more
tabling features within multi-threading, and integrates multi-threaded tabling
more thoroughly with other system features, such as dynamic code and space
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Feature Private Tables Shared Tables (Local) Shared Tables (Batched-β)

Tabled constraints Supported Supported Supported

Answer subsumption Supported Supported Supported

Tabled Dynamic Code Supported Supported Supported

Tabled negation Supported Supported Partially Supported

Space reclamation Supported Partially Supported Partially Supported

Call subsumption Supported Not supported Not Supported

Incremental recomputation Not supported Not supported Not Supported

Table 1. Multi-threaded functionality in XSB v. 3.2

reclamation. As a result, XSB can multi-thread computations that OptYap can-
not (currently) evaluate, including several examples from Section 3.

3 Analysis of Petri Nets and Workflow Nets

The analysis of process logics in the style of Petri Nets illustrates a use of various
tabled evaluations can exploit multi-threading. Reachability is a central problem
for Petri Net analysis, to which problems such as liveness, deadlock-freedom, and
the existence of homes states can be reduced. While we have taken care that
the programs shown are correct and motivated by use cases, we stress that the
methods described in this section are intended primarily to illustrate MT-TLP
and to support the performance studies of Section 4, but do not represent fully
developed analysis systems for Petri or Workflow Nets 4.

p1

t4
t2

c2

 b2

p2

t3t1

b1

c1

Fig. 2. A Simple Producer-Consumer Net

Using Tabling for Elementary Petri Nets Elementary Petri Nets
(EPNs) or 1-safe Petri Nets (cf. [12]) are particularly simple to analyze. Consider
the EPN shown in Figure 2, which depicts a simple producer consumer system.
An EPN allows a place to contain at most 1 token; thus a finite EPN will have

4 All programs can be obtained via http://xsb.cvs.sourceforge.net/xsb/mttests/benches.
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only a finite number of configurations so that determining reachability of an EPN
configuration is decidable. Our encoding represents the configuration of an EPN
by a list of its marked places: thus the configuration in Figure 2 is represented
as the list [b1,c1,p1]. Next, a transition T is represented by a list of places
with input arcs to T (•T ) and output arcs from T (T•). Predicate trans/3 in
Figure 3 shows each transition of Figure 2 represented as a Prolog fact, and that
the transitions use XSB’s trie indexing to obtain full indexing on list elements.
Figure 3 shows a program for determining reachability in an EPN; so that solu-
tions to the goal reachable([b1,c1,p1],X) are configurations reachable from
the EPN in Figure 2. For efficiency the reachability program assumes that the
lists in all transitions and configurations are sorted. For a transition T to have
concession in a configuration C of an EPN, every place in •T must be marked,
and no place in T• can be marked. These conditions are checked by the predicate
hasTransition/2 in Figure 3 which recurses through the places in the current
configuration (Conf) to find sets of transitions that might have concession. This
recursion (in get trans for conf 1/3) allows indexed calls to transitions to
be made based on each place in the input configuration. Each set of possible
transitions is then filtered to include only those transitions that actually have
concession in Conf, using operations on ordered sets (via check concession/2).
hasTransition/2 succeeds when the first of these transitions is applied; further
transitions are applied upon backtracking.

Based on hasTransition/2, a tabled reachability predicate can be written
as a simple left-recursion. Tabling reachable/2 is useful in two ways: it prevents
looping when a given configuration is reachable from itself; and it also filters out
redundant paths to a reachable configuration. By using the left recursive form
of reachable/2, a typical call such as reachable([b1,c1,p1],X) with first
argument bound and second free, would require a single tabled subgoal, and
would have as answers all configurations reachable from [b1,c1,p1]. XSB’s use
of tries to represent tabled subgoals and their answers, allows efficient checking
of answers and efficient use of memory, since the trie data structure factors
out common list prefixes. If reachable/2 is made thread-shared, then various
threads can access the table to determine useful transitions, isolated places,
and other information. Reachability analysis can exploit multi-threading if there
is more than one initial configuration of interest or if a Petri Net is coarsely
decomposable.

Using Petri Nets to Model Workflows The analysis and verification
workflows is a promising direction for MT-TLP. Petri net-based formalisms,
called Workflow Nets, are suitable to represent control and data flows, such
as loops, I/O preconditions, if/then clauses and other synchronization depen-
dencies between workflow units. To model reachability in a Workflow Net, the
EPN is first extended to allow multiple tokens in a given place, and to change
the representation of marked place from a constant such as p1 to a Prolog
term that is marked with a given instance and perhaps other information, e.g.
p1(instance(7)). Transitions are then extended with functionality to dynami-
cally evaluate guard conditions, to create sub-instances, to check for the absence
of tokens in given places (which allows merging of dynamically created paths
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% Prolog representation of the Producer-Consumer Net

:- index(trans/2,trie).

trans([p1],[p2],t1). trans([b2,p2],[p1,b1],t2).

trans([b1,c1],[b2,c2],t3). trans([c2],[c1],t4).

% Program to determine reachability of an elementary net

:- table reachable/2.

reachable(InConf,NewConf):-

reachable(InConf,Conf),

hasTransition(Conf,NewConf).

reachable(InConf,NewConf):-

hasTransition(InConf,NewConf).

hasTransition(Conf,NewConf):-

get_trans_for_conf(Conf,AllTrans),

member(Trans,AllTrans),

apply_trans_to_conf(Trans,Conf,NewConf).

get_trans_for_conf(Conf,Flattrans):-

get_trans_for_conf_1(Conf,Conf,Trans),

flatten(Trans,Flattrans).

get_trans_for_conf_1([],_Conf,[]).

get_trans_for_conf_1([H|T],Conf,[Trans1|RT]):-

findall(trans([H|In],Out,Tran),trans([H|In],Out,Tran),Trans),

check_concession(Trans,Conf,Trans1),

get_trans_for_conf_1(T,Conf,RT).

check_concession([],_,[]).

check_concession([trans(In,Out,Name)|T],Input,[trans(In,Out,Name)|T1]):-

ord_subset(In,Input),

ord_disjoint(Out,Input),!,

check_concession(T,Input,T1).

check_concession([_Trans|T],Input,T1):-

check_concession(T,Input,T1).

apply_trans_to_conf(trans(In,Out_Name),Conf,NewConf):-

ord_subtract(Conf,In,Diff),

flatten([Out|Diff],Temp),

sort(Temp,NewConf).

Fig. 3. TLP Program for analyzing Elementary Petri Nets
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through the net), and to delete tokens from places if a transition is taken (which
allows cancellation). Transitions for Workflow Net have the abstract form

trans(InConf,OutConf,dyn(Conditions,Effects))

where the last argument contains dynamic conditions that must be satisfied
before the transition can be taken, and dynamic effects to be applied upon
taking the transition (e.g. cancellation). The Workflow Net evaluator based on
this syntax is approximately twice the size of that of Figure 3, and can emulate
nearly all common workflow control patterns [13]. In fact, the emulator has been
used with MT-TLP to analyze health workflows based on clinical care guidelines.

Using Answer Subsumption for ω Sequences Workflow nets are an ex-
tension of Place/Transition Petri Nets, which do not distinguish between tokens,
but do allow a place to hold more than one token. Reachability is decidable in
Place/Transition Nets, and can be determined using a method called ω-sequences
(see e.g. [14]). The main idea in determining ω sequences is to define a partial
order ≥ω as follows. If configurations C1 and C2 are both reachable, C1 and
C2 have tokens in the same set Pl of places, and there exists a non-empty
PLsub ⊆ PL, such that for each pl ∈ Plsub C1 has strictly more tokens than C2,
then C1 >ω C2. When evaluating reachability, if C2 is reached first, and then
C1 was subsequently reached, C1 is abstracted by marking each place in PLsub

with the special token ω which is taken to be greater than any integer. If C1 was
reached first and then C2, C2 is treated as having already been seen.

From the viewpoint of TLP, ω-abstractions form an example of answer sub-
sumption. To compute reachability with ω abstractions, when each solution S to
reachable/2 is obtained, the solution S is compared to answers in the table. If
some answer in the table is greater than or equal to S in ≥ω then S is not added
to the table; however if S is greater than some set SA of answers, the answers
SA are removed from the table and the ω abstraction of S with respect to SA is
added. The main top-level change to Figure 3 needed for implementation is the
use of the XSB library predicate filterPOA/5 as the top-level call and in the
first clause of reachable/2.

reachable(InConf,NewConf):-

filterPOA(reachable(InConf),Conf,gte omega,omega abstr,call abstr),

hasTransition(Conf,NewConf).

filterPOA/5 takes the call and argument to which answer subsumption is to be
applied as its first two arguments, while the third argument, gte omega is the
name of the partial order itself. The forth argument is the name of the predicate
to use to perform ω-abstraction of answers. Finally, the fifth argument, is the
name of the predicate to compare a candidate solution Sol to answers in the
table. The predicate, call abstr/2 abstracts Sol to form a call to the table so
that only a small set of answers will be compared with Sol to determine if Sol
should be added to the table and possibly ω-abstracted 5. In other words, upon
derivation of Sol, a term CallSol is created using call abs/2 and all answers in

5 filterPOA/5 is itself tabled and uses thread-private tables; for shared tables
shared filterPOA/5 is used.
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the current table that unify with CallSol are collected. Each of these is compared
to Sol using gte omega/2. If one of the answers >ω than Sol, the predicate fails;
otherwise the set A of answers that Sol is >ω than is collected, and if non-
empty, the abstraction of Sol with respect to A, Solabs is taken; the answers in
A deleted from the table, and Solabs added.

Extending nets with Constraint-based Reasoning A variety of for-
malisms extend Place/Transition Nets to add conditions that must be evaluated
for a transition to fire and effects that must occur upon its firing. In the Workflow
nets described above conditions and effects were Prolog predicates, but there is
no reason why a condition could not be the entailment of a formula in a given
constraint domain, and the effect the propagation of new constraints to variables
associated with given places in the net. Using such an approach, constraint-based
reasoning can be incorporated into workflow or other process specifications. The
top-level change required to implement constraint nets occurs when actually
applying a transition to a configuration, in apply trans to conf/3:

apply trans to conf(trans(In,Entailment,Out),Conf,NewConf):-

unify for entailment(In,Conf,MidConf),

entailed(Entailment),

call new constraints(Out,OutPlaces),

flatsort([OutPlaces|MidConf],NewConf).

First, variables in the transition are unified with those of the configuration to
produce a new constraint store. If the formula Entailment is entailed by the
constraint store, new constraints from the transition are placed on the output
variables via calling the constraints in the list Out. Note that this extension is
not specific to a given constraint domain, but its use for reachability does depend
on tabled constraints.

Using Tabled Negation for Preferences on Nets Preferences can be
combined with Workflow nets so that if more than one transition is possible for
a given configuration C of a workflow instance, only preferred transitions from
C are taken. This has two practical uses. First, the preferences may check run-
time information from a database or other store to determine what transitions
to avoid: in fact, since the preference relation is simply a (tabled) Prolog pred-
icate the preference relation may perform sophisticated run-time look-aheads.
Second, since preferences can be dynamic, they may be used to fine-tune a
general workflow to local policies – for instance adjusting a clinical workflow
system to policies of a given hospital, medical department, or ward. Adapting
the methodology of [15], the top-level change to the code of Figure 3 is to the
hasTransition/2 predicate

hasTransition(Conf,NewConf):-

get trans for conf(Conf,AllTrans),

member(Trans,AllTrans),

sk not(unpreferred(Trans,AllTrans,Conf)),

apply trans to conf(Trans,Conf,NewConf).

sk not/1 is an XSB predicate that soundly evaluates non-ground tabled negation
by skolemizing variables, ensuring here that only preferred transitions are taken.
Since the basis for preferences is the well-founded semantics, if a transition is
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preferred to itself at a given configuration, hasTransition/2 will produce an
answer that is neither true nor false.

Summary: Tabling for Petri Nets Tabling provides a concise means for
coding reachablility (and other analysis problems) for a variety of Petri-net for-
malisms. At the same time, tabling may not be the best approach for all such
problems. Reachability in EPNs is in PSPACE [16], while in the worst case,
tabling requires 2N states for an EPN with N places. At the same time, algo-
rithms for reachability that stay in PSPACE (e.g. by using loop-checking) will in
the worst case require time proportional to the number of traces (paths) rather
than to the number of states, as required by tabling.

4 Performance Results

Table 2 shows the performance results for benchmarks on a machine with a 4 core
AMD 64 processor running Debian Linux. All times were taken as the best of
three runs and are presented in seconds. The programs Elementary, Workflow,
Omega, Constraint, and Preferences were all discussed in the previous sec-
tion. Dynamic Elementary is the same as Elementary except that it uses tabled
dynamic code for reachable/2. The nets tested vary with each type of bench-
mark. For (Dynamic) Elementary, the underlying nets are designed to capture
the effects of repeatedly locking and unlocking mutexes, while in Workflow the
net is designed to use a number of standard workflow control patterns from [13].
The net for Omega was synthesized to have a relatively small number of places
in which ω-abstractions were necessary, although the check for whether an ω-
abstraction was needed was necessary in all places. For Constraints, the net-
work was designed so that places compete for a shared resource represented by a
term with variables constrained using CLP(R). Once a place obtains a resource,
various transitions fire to constrain the variables of a resource until they entail
the guard of a transition that moves the term to another place along a path, and
eventually back to the initial configuration. The net for Preferences extends a
workflow net to prefer those transitions from a given configuration that cannot
lead to proscribed configurations: the preferences thus model look-ahead within
a workflow state. Due to differingzd limitations on the sizes of shared and of
multiple copies of private tables, the sizes of the nets differ between private and
shared versions of each benchmark, resulting in different performance numbers.

The benchmark Call Subsumption does not use a Petri Net formalism, but
rather evaluates the goal ?- ranc(A,B) to the tabled predicate

ranc(X,Y):- edge(X,Y). ranc(X,Y):- edge(X,Z),ranc(Z,Y).

where ranc/2 uses call subsumption and edge/2 is a chain of 2048 vertices.
Table 2 presents the results of the benchmarks; however two other features

of the benchmarks must be be explained before evaluating the results. First, the
sizes of the underlying nets vary greatly from test to test, as do the number of
reachable states – thus the absolute times should not be used to compare the
benchmark of one kind of net to another. Second, shared table benchmarks test
the time for N threads to each traverse 4/N identical nets. Thus, the shared
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Programs Using Private Tables (Local Evaluation)

N. threads 1 2 Overhead 4 Overhead

Private Elementary 5.94 6.23 4.8% 6.25 5.2%

Private Dynamic Elementary 6.03 6.03 0% 6.03 0%

Private Workflow 19.21 19.68 2.4% 19.95 3.8%

Private Omega 7.18 8.33 16.0% 10.3 46.0%

Private Omega Specialized 6.37 6.37 0% 6.37 0.0%

Private Constraint 2.75 2.84 3.2% 2.85 3.6%

Private Preferences 3.74 3.77 0.8% 3.82 2.1%

Call Subsumption .86 1.04 20.0% 1 43%

Programs Using Shared Tables (Local Evaluation)

N. threads 1 2 Speedup 4 Speedup

Shared Elementary 25.12 13.00 1.93 6.55 3.83

Shared Dynamic Elemtary 24.8 13.02 1.90 6.59 3.76

Shared Workflow 41.25 20.78 1.98 10.58 3.89

Shared Omega 19.58 10.38 1.88 5.57 3.51

Shared Constraint 11.13 5.56 2.00 2.83 3.93

Shared Preferences 3.73 1.86 1.99 0.95 3.92

Table 2. Scalability Results for Private and Shared Tables (Local Evaluation)

benchmarks test a “best case” situation for exploiting parallelism by shared ta-
bles. In Table 2 the scalability for both private and shared tables is usually linear
to 4 cores, and the times for Dynamic Elementary are nearly the same as for
Elementary. The first exception is the Omega benchmark using private tables.
The slowdown in Omega was determined to arise from the use of call/[2,3] in
the library predicate filterPOA/5 (See Section 3). This use caused contention
for the mutex protecting XSB’s predicate table. When filterPOA/5 was spe-
cialized to avoid call/[2,3] in Omega Specialized, the contention disappears,
and the benchmark becomes scalable. The second exception to scalability is
Call Subsumption. Executing Call Subsumption requires a large amount of
space to be allocated for 2049 tabled calls and over 2k ∗ 1k answers. While other
benchmarks, such as Elementary also have a large number of answers, Call
Subsumption spends nearly all of its time doing tabling operations — and mem-
ory management. Although XSB manages memory for private tables within a
thread and so reduces contention for process-level memory managers, it can-
not eliminate this contention. As a result, the high proportion of time spent on
memory management in Call Subsumption reduces its scalability on ranc/2.

5 Discussion

We have described the approach to MT-TLP in XSB and shown how it can
be used to evaluate sophisticated process and workflow formalisms in a simple
and direct manner. The goals stated in Section 1 are ambitious: still, they are
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largely met. Except for incremental recomputation, all the features in Table 1
are supported by private tables, while and nearly all except incremental recom-
putation and call subsumption are at least partially supported by shared tables.
When supported, the tabled features can be almost always be made to scale
linearly to the number of cores available for our benchmarking. Several existing
XSB applications will benefit from the MT-TLP model as described in this pa-
per. These include the ontology management system CDF [17], the object-logic
system Flora-2 [18] and the model-checking system XMC [19]. The first two of
these applications rely on tabled negation, while applications of XMC to real-
time systems and security protocols rely on tabled constraints. For these and
other applications, the MT-TLP model can increase availability and speed.
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16. Esparza, J., Nielsen, M.: Decidability issues for Petri nets. J. Inform Process.
Cybernet 30(3) (1994) 143–160

17. Swift, T., Warren, D.S.: The meaning of cold dead fish. Available via
http://www.cs.sunysb.edu/~tswift (2003)

18. Yang, G., Kifer, M.: Flora: Implementing an efficient dood system using a tabling
logic engine. In: DOOD. (2000)

19. Ramakrishnan, C., Ramakrishnan, I., Smolka, S., Dong, Y., Du, X., Roychoudhury,
A., Venkatakrishnan, V.: XMC: A logic-programming-based verification toolset.
In: CAV. (2000) 576–590



Declarative Combinatorics in Prolog:
Shapeshifting Data Objects with Isomorphisms

and Hylomorphisms

Paul Tarau

Department of Computer Science and Engineering
University of North Texas
E-mail: tarau@cs.unt.edu

Abstract. This paper is an exploration in a logic programming frame-
work of isomorphisms between elementary data types (natural numbers,
sets, finite functions, graphs, hypergraphs) and their extension to hered-
itarily finite universes through hylomorphisms derived from ranking/un-
ranking and pairing/unpairing operations.
An embedded higher order combinator language provides any-to-any en-
codings automatically.
A few examples of “free algorithms” obtained by transferring operations
between data types are shown. Other applications range from stream
iterators on combinatorial objects to succinct data representations and
generation of random instances.
The self-contained source code of the paper, as generated from a liter-
ate Prolog program, is available at http://logic.csci.unt.edu/tarau/
research/2008/pISO.zip

Keywords: Prolog data representations, computational mathematics, rank-
ing/unranking, Ackermann encoding, hereditarily finite sets and func-
tions, pairing/unpairing

1 Introduction

Data structures in imperative languages have traditionally been designed with
mutability in mind and therefore with space saving strategies based on in-place
updates. On the contrary, the dominance of immutable data structures in declar-
ative languages suggests sharing “equivalent” immutable components as an ef-
fective space saving alternative.

Moreover, in the presence of higher order constructs, function sharing among
heterogeneous data objects, is also appealing, as a way to borrow or lend “free
algorithms”.

The closest analogy to this, drawn from everyday thinking, is . . . analogy.
Analogical/metaphoric thinking routinely shifts entities and operations from a
field to another hoping to uncover similarities in representation or use.

However, this rises the question: what guaranties do we have that doing this
between data types is useful and safe?

Also sharing heterogeneous data objects faces two problems:
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– some form of equivalence needs to be proven between two objects A and
B before A can replace B in a data structure, a possibly tedious and error
prone task

– the fast growing diversity of data types makes harder and harder to recognize
sharing opportunities.

The techniques introduced in this paper provide a generic solution to these
problems, through isomorphic mappings between heterogeneous data types, such
that unified internal representations make equivalence checking and sharing pos-
sible. The added benefit of these “shapeshifting” data types is that the functors
transporting their data content will also transport their operations, resulting in
shortcuts that provide, for free, implementations of interesting algorithms. The
simplest instance is the case of isomorphisms – reversible mappings that also
transport operations. In their simplest form such isomorphisms show up as en-
codings – to some simpler and easier to manipulate representation – for instance
natural numbers.

Such encodings can be traced back to Gödel numberings [1, 2] associated to
formulae, but a wide diversity of common computer operations, ranging from
wireless data transmissions to cryptographic codes qualify.

Encodings between data types provide a variety of services ranging from free
iterators and random objects to data compression and succinct representations.
Tasks like serialization and persistence are facilitated by simplification of reading
or writing operations without the need of special purpose parsers. Sensitivity
to internal data representation format or size limitations can be circumvented
without extra programming effort.

2 An Embedded Data Transformation Language

It is important to organize such encodings as a flexible embedded language to
accommodate any-to-any conversions without the need to write one-to-one con-
verters. Toward this end we will organize our encodings as a group of isomor-
phisms within a (mildly) category theory-inspired design.

We will start by designing an embedded transformation language as a set
of operations on this group of isomorphisms. We will then extend it with a set
of higher order combinators mediating the composition of encodings and the
transfer of operations between data types.

2.1 The Group of Isomorphisms

We implement an isomorphism between two objects X and Y as a Prolog data
type (a term with functor iso/2) iso(F,G), encapsulating a bijection F and its
inverse G.

X Y
................................................................................................................................................................................................................................................................................... ............

f = g−1

...............................................................................................................................................................................................................................................................................................

g = f−1
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As a well-known mechanism to embed higher order functions in Prolog [3],
we will use iso/2 as a closure (higher order predicate) to be applied to an
input argument and an output argument. We assume the presence of Prolog’s
call/N predicate that applies a closure to N-1 extra arguments and maplist/N
that applies a closure to N-1 extra list arguments. We can organize the group of
isomorphisms as follows.

First we define the group structure as a set of isomorphism transformers:

compose(iso(F,G),iso(F1,G1),iso(fcompose(F1,F),fcompose(G,G1))).

itself(iso(id,id)).

invert(iso(F,G),iso(G,F)).

Then, we provide evaluators for isomorphisms, that apply their left or right
functions to actual arguments. Note that like iso/2, compose/3 is a closure to
be applied to 2 extra arguments with call/2 or maplist/2.

fcompose(G,F,X,Y):-call(F,X,Z),call(G,Z,Y).

id(X,X).

from(iso(F,_),X,Y):-call(F,X,Y).

to(iso(_,G),X,Y):-call(G,X,Y).

The from function extracts the first component (a section in category theory par-
lance) and the to function extracts the second component (a retraction) defining
the isomorphism. We can now formulate laws about isomorphisms that can be
used to test correctness of implementations.

Proposition 1 The data type iso/2 specifies a group structure, i.e. the compose
operation is associative, itself acts as an identity element and invert computes
the inverse of an isomorphism.

It is convenient to give a name to each isomorphism as a unary predicate

<name>(iso(From,To)).

We can transport operations from an object to another with borrow and lend
combinators defined as follows:

borrow(IsoName,H,X,Y):-call(IsoName,iso(F,G)),

fcompose(F,fcompose(H,G),X,Y).

lend(IsoName,H,X,Y):-call(IsoName,Iso),

invert(Iso,iso(F,G)),

fcompose(F,fcompose(H,G),X,Y).

The combinators fit and retrofit just transport an object x through an
isomorphism and apply to it an operation op available on the other side:

fit(Op,IsoName,X,Y):-

call(IsoName,Iso),fit_iso(Op,Iso,X,Y).

fit_iso(Op,Iso,X,Y):-

from(Iso,X,Z),call(Op,Z,Y).
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retrofit(Op,IsoName,X,Y):-call(IsoName,Iso),

retrofit_iso(Op,Iso,X,Y).

retrofit_iso(Op,Iso,X,Y):-

to(Iso,X,Z),call(Op,Z,Y).

We can see the combinators from, to, compose, itself, invert, borrow,
lend, fit etc. as part of an embedded data transformation language. Various
examples for their use will be given as soon as we populate our universe with
interesting isomorphisms.

2.2 Choosing a Root

To avoid defining n(n− 1)/2 isomorphisms between n objects, we choose a Root
object to/from which we will actually implement isomorphisms. We will extend
our embedded combinator language using the group structure of the isomor-
phisms to connect any two objects through isomorphisms to/from the Root.

Choosing a Root object is somewhat arbitrary, but it makes sense to pick
a representation that is relatively easy convertible to various others, efficiently
implementable and, last but not least, scalable to accommodate large objects up
to the runtime system’s actual memory limits.

We will choose as our Root object Finite Sequences of Natural Numbers. They
can be seen as as finite functions from an initial segment of Nat, say [0..n], to
Nat. We will represent them as lists i.e. their Prolog type is [Nat]. Alternatively,
an array representation can be chosen. Note that in the case of a Prolog not
supporting arbitrary precision integers or rationals, such lists could be used,
in principle, to emulate them at source level, through the use of isomorphisms
mapping them to natural numbers, signed integers and then rational numbers,
following the techniques described in [4, 5].

We can now define an Encoder as an isomorphism connecting an object to
Root together with the combinators with and as providing an embedded trans-
formation language for routing isomorphisms through two Encoders.

with(Iso1,Iso2,Iso):-invert(Iso2,Inv2),

compose(Iso1,Inv2,Iso).

as(That,This,X,Y):-

call(That,ThatF),call(This,ThisF),

with(ThatF,ThisF,Iso),

to(Iso,X,Y).

The combinator with turns two Encoders into an arbitrary isomorphism, i.e.
acts as a connection hub between their domains. The combinator as adds a more
convenient syntax such that converters between “a” and “b” can be designed as:

’a2b’(X,Y) :- as(’a’,’b’,X,Y).

’b2a’(X,Y) :- as(’b’,’a’,X,Y).
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Root

A B
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.............
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b

............
............

............
............

............
............

............
............

............
............

............
............

..........................

a−1

......................................................................................................................................................................
..
............

b−1

.............................................................................................................................................................. .........
...

a

................................................................................................................................................................................................................................................................................... ............a2b

...............................................................................................................................................................................................................................................................................................
b2a

We will provide extensive use cases for these combinators as we populate our
group of isomorphisms. Given that [Nat] has been chosen as the root, we will
define our finite function data type fun simply as the identity isomorphism on
sequences in [Nat].

fun(Iso) :-itself(Iso).

3 Extending the Group of Isomorphisms

We will now populate our group of isomorphisms with combinators based on a
few primitive converters.

3.1 An Isomorphism to Finite Sets of Natural Numbers

The isomorphism is specified with two bijections set2fun and fun2set.

set(iso(set2fun,fun2set)).

While finite sets and sequences share a common representation [Nat], sets are
subject to the implicit constraint that all their elements are distinct1. This
suggest that a set like {7, 1, 4, 3} could be represented by first ordering it as
{1, 3, 4, 7} and then compute the differences between consecutive elements. This
gives [1, 2, 1, 3], with the first element 1 followed by the increments [2, 1, 3]. To
turn it into a bijection, including 0 as a possible member of a sequence, another
adjustment is needed: elements in the sequence of increments should be replaced
by their predecessors. This gives [1, 1, 0, 2] as implemented by set2fun:

set2fun([],[]).

set2fun([X |Xs],[X |Fs]):-
sort([X |Xs],[_ |Ys]),
set2fun(Ys,X,Fs).

set2fun([],_,[]).

set2fun([X |Xs],Y,[A |As]):-A is (X-Y)-1,set2fun(Xs,X,As).

It can now be verified easily that incremental sums of the successors of numbers
in such a sequence, return the original set in sorted form, as implemented by
fun2set:
1 Such constraints can be regarded as laws/assertions that we assume holding for

a given data type, when needed, restricting it to the appropriate domain of the
underlying mathematical concept.
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fun2set([],[]).

fun2set([A |As],Xs):-findall(X,prefix_sum(A,As,X),Xs).

prefix_sum(A,As,R):-append(Ps,_,As),length(Ps,L),

sumlist(Ps,S),R is A+S+L.

The resulting Encoder (set) is now ready to interoperate with another Encoder:

?- as(set,fun,[0, 1, 0, 0, 4],S).

S = [0, 2, 3, 4, 9].

?- as(fun,set,[0, 2, 3, 4, 9],F).

F = [0, 1, 0, 0, 4].

As the example shows, this encoding maps arbitrary lists of natural numbers
representing finite functions to strictly increasing sequences of natural numbers
representing sets.

3.2 Folding Sets into Natural Numbers

We can fold a set, represented as a list of distinct natural numbers into a sin-
gle natural number, reversibly, by observing that it can be seen as the list of
exponents of 2 in the number’s base 2 representation.

nat_set(iso(nat2set,set2nat)).

nat2set(N,Xs):-nat2elements(N,Xs,0).

nat2elements(0,[],_K).

nat2elements(N,NewEs,K1):-N>0,
B is /\(N,1),N1 is N>>1,K2 is K1+1,
add_el(B,K1,Es,NewEs),

nat2elements(N1,Es,K2).

add_el(0,_,Es,Es).

add_el(1,K,Es,[K |Es]).

set2nat(Xs,N):-set2nat(Xs,0,N).

set2nat([],R,R).

set2nat([X |Xs],R1,Rn):-R2 is R1+(1<<X),set2nat(Xs,R2,Rn).

We will standardize this pair of operations as an Encoder for a natural number
using our Root as a mediator:

nat(Iso):-nat_set(NatSet),set(Set),compose(NatSet,Set,Iso).

The resulting Encoder (nat) is now ready to interoperate with any other En-
coder:

?- as(fun,nat,42,F).

F = [1, 1, 1]
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?- as(set,nat,42,F).

F = [1, 3, 5]

?- as(fun,nat,2008,F).

F = [3, 0, 1, 0, 0, 0, 0]

?- as(set,nat,2008,S).

S = [3, 4, 6, 7, 8, 9, 10]

?- lend(nat,reverse,2008,R).

R = 1135 % different, sequence depends on order

?- lend(nat_set,reverse,2008,R).

R = 2008 % same, set is order independent

?- as(set,nat,42,S).

S = [1, 3, 5]

?- fit(length,nat,42,L).

L = 3

?- retrofit(succ,nat_set,[1,3,5],N).

N = 43

The reader might notice at this point that we have already made full circle
- as finite sets can be seen as instances of finite sequences. Injective functions
that are not surjections with wider and wider gaps can be generated using the
fact that one of the representations is information theoretically “denser” than
the other, for a given range:

?- as(set,fun,[0,1,2,3],S1).

S1 = [0, 2, 5, 9].

?- as(set,fun,[0,2,5,9],S2).

S2 = [0, 3, 9, 19].

?- as(set,fun,[0,3,9,19],S3).

S3 = [0, 4, 14, 34].

4 Generic Unranking and Ranking Hylomorphisms

The ranking problem for a family of combinatorial objects is finding a unique
natural number associated to it, called its rank. The inverse unranking problem
consists of generating a unique combinatorial object associated to each natural
number.
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4.1 Pure Hereditarily Finite Data Types

The unranking operation is seen here as an instance of a generic anamorphism
mechanism (an unfold operation), while the ranking operation is seen as an
instance of the corresponding catamorphism (a fold operation) [6, 7]. Together
they form a mixed transformation called hylomorphism.

We will use such hylomorphisms to lift isomorphisms between lists and nat-
ural numbers to isomorphisms between a derived “self-similar” tree data type
and natural numbers. In particular we will derive Ackermann’s encoding from
Hereditarily Finite Sets to Natural Numbers.

The data type T representing hereditarily finite structures will be a generic
multiway tree with a single leaf type [].

The two sides of our hylomorphism are parameterized by two transformations
f and g forming an isomorphism Iso f g:

unrank(F,N,R):-call(F,N,Y),unranks(F,Y,R).

unranks(F,Ns,Rs):-maplist(unrank(F),Ns,Rs).

rank(G,Ts,Rs):-ranks(G,Ts,Xs),call(G,Xs,Rs).

ranks(G,Ts,Rs):-maplist(rank(G),Ts,Rs).

Both combinators can be seen as a form of “structured recursion” that prop-
agate a simpler operation guided by the structure of the data type. For instance,
the size of a tree of type T is obtained as:

tsize1(Xs,N):-sumlist(Xs,S),N is S+1.

tsize(T,N) :- rank(tsize1,T,N).

Note also that unrank and rank work on trees in cooperation with unranks and
ranks working on lists of trees.

We can now combine an anamorphism+catamorphism pair into an isomor-
phism hylo defined with rank and unrank on the corresponding hereditarily
finite data types:

hylo(IsoName,iso(rank(G),unrank(F))):-call(IsoName,iso(F,G)).

hylos(IsoName,iso(ranks(G),unranks(F))):-call(IsoName,iso(F,G)).

Hereditarily Finite Sets Hereditarily Finite Sets will be represented as an
Encoder for the tree type T:

hfs(Iso):-hylo(nat_set,Hylo),nat(Nat),

compose(Hylo,Nat,Iso).

The hfs Encoder can now borrow operations from sets or natural numbers as
follows:

hfs_succ(H,R):-borrow(nat_hfs,succ,H,R).

nat_hfs(Iso):-nat(Nat),hfs(HFS),with(Nat,HFS,Iso).
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?- hfs_succ([],R).

R = [[]] ;

Otherwise, hylomorphism induced isomorphisms work as usual with our em-
bedded transformation language:

?- as(hfs,nat,42,H).

H = [[[]], [[], [[]]], [[], [[[]]]]]

One can notice that we have just derived as a “free algorithm” Ackermann’s
encoding [8, 9], from Hereditarily Finite Sets to Natural Numbers:

f(x) = if x = {} then 0 else
∑

a∈x 2f(a)

together with its inverse:

ackermann(N,H):-as(nat,hfs,N,H).

inverse_ackermann(H,N):-as(hfs,nat,H,N).

Hereditarily Finite Functions The same tree data type can host a hylomor-
phism derived from finite functions instead of finite sets:

hff(Iso) :-

hylo(nat,Hylo),nat(Nat),

compose(Hylo,Nat,Iso).

The hff Encoder can be seen as another “free algorithm”, providing data com-
pression/succinct representation for Hereditarily Finite Sets. Note, for instance,
the significantly smaller tree size in:

?- as(hff,nat,42,H).

H = [[[]], [[]], [[]]]

As the cognoscenti might observe this is explained by the fact that hff provides
higher information density than hfs, by incorporating order information that
matters in the case of sequence and is ignored in the case of a set.

5 Pairing/Unpairing

A pairing function is an isomorphism f : Nat×Nat→ Nat. Its inverse is called
unpairing.

We will introduce here an unusually simple pairing function (also mentioned
in [10], p.142).

The function bitpair works by splitting a number’s big endian bitstring
representation into odd and even bits.

bitpair(p(I,J),P):-

evens(I,Es),odds(J,Os),

append(Es,Os,Ps),set2nat(Ps,P).

evens(X,Es):-nat2set(X,Ns),maplist(double,Ns,Es).
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odds(X,Os):-evens(X,Es),maplist(succ,Es,Os).

double(N,D):-D is 2∗N.

The inverse function bitunpair blends the odd and even bits back together.

bitunpair(N,p(E,O)):-nat2set(N,Ns),

split_evens_odds(Ns,Es,Os),

set2nat(Es,E),set2nat(Os,O).

split_evens_odds([],[],[]).

split_evens_odds([X |Xs],[E |Es],Os):-
X mod 2 =:= 0,E is X // 2,

split_evens_odds(Xs,Es,Os).

split_evens_odds([X |Xs],Es,[O |Os]):-
X mod 2 =:= 1,O is X // 2,

split_evens_odds(Xs,Es,Os).

The transformation of the bitlists is shown in the following example with
bitstrings aligned:

?-bitunpair(2008,R)

R = p(60,26)

% 2008:[0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1]

% 60:[ 0, 1, 1, 1, 1]

% 26:[ 0, 1, 0, 1, 1 ]

We can derive the following Encoder:

nat2(Iso):-nat(Nat),

compose(iso(bitpair,bitunpair),Nat,Iso).

working as follows:

?- as(nat2,nat,2008,Pair).

Pair = p(60, 26)

?- as(nat,nat2,p(60,26),N).

N = 2008

6 Directed Graphs and Hypergraphs

We will now show that more complex data types like digraphs and hypergraphs
have extremely simple encoders. This shows once more the importance of com-
positionality in the design of our embedded transformation language.

6.1 Encoding Directed Graphs

We can find a bijection from directed graphs (with no isolated vertices, corre-
sponding to their view as binary relations), to finite sets by fusing their list of
ordered pair representation into finite sets with a pairing function:
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digraph2set(Ps,Ns) :- maplist(bitpair,Ps,Ns).

set2digraph(Ns,Ps) :- maplist(bitunpair,Ns,Ps).

The resulting Encoder is:

digraph(Iso):-set(Set),

compose(iso(digraph2set,set2digraph),Set,Iso).

working as follows:

?- as(digraph,nat,2008,D),as(nat,digraph,D,N).

D = [p(1, 1), p(2, 0), p(2, 1), p(3, 1), p(0, 2), p(1, 2), p(0, 3)],

N = 2008

6.2 Encoding Hypergraphs

Definition 1 A hypergraph (also called set system) is a pair H = (X, E) where
X is a set and E is a set of non-empty subsets of X.

We can easily derive a bijective encoding of hypergraphs, represented as sets of
sets:

set2hypergraph(S,G) :- maplist(nat2set,S,G).

hypergraph2set(G,S) :- maplist(set2nat,G,S).

The resulting Encoder is:

hypergraph(Iso):-set(Set),

compose(iso(hypergraph2set,set2hypergraph),Set,Iso).

working as follows

?- as(hypergraph,nat,2008,G),as(nat,hypergraph,G,N).

G = [[0, 1], [2], [1, 2], [0, 1, 2], [3], [0, 3], [1, 3]],

N = 2008

7 Applications

Besides their utility as a uniform basis for a general purpose data conversion
library, let us point out some specific applications of our isomorphisms.

7.1 Combinatorial Generation

A free combinatorial generation algorithm (providing a constructive proof of
recursive enumerability) for a given structure is obtained simply through an
isomorphism from nat:

nth(Thing,N,X) :- as(Thing,nat,N,X).

stream_of(Thing,X) :- nat_stream(N),nth(Thing,N,X).

nat_stream(0).

nat_stream(N):-nat_stream(N1),succ(N1,N).
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?- nth(set,42,S).

S = [1, 3, 5]

?- stream_of(hfs,H).

H = [] ;

H = [[]] ;

H = [[[]]] ;

H = [[], [[]]] ;

H = [[[[]]]] ;

H = [[], [[[]]]] ;

...

7.2 Random Generation

Combining nth with a random generator for nat provides free algorithms for
random generation of complex objects of customizable size:
random_gen(Thing,Max,Len,X):-

random_fun(Max,Len,Ns),

as(Thing,fun,Ns,X).

random_fun(Max,Len,Ns):-

length(Ns,Len),

maplist(random_nat(Max),Ns).

random_nat(Max,N):-random(X),N is integer(Max∗X).

?- random_gen(set,100,4,R).

R = [16, 39, 118, 168].

?- random_gen(fun,100,4,R).

R = [92, 60, 47, 76].

?- random_gen(nat,100,4,R).

R = 26959946667150641291244691713864218914210413126375567920582101041152.

?- random_gen(hfs,4,3,R).

R = [[[]], [[], [[[]]]], [[[]], [[], [[]]]]]

?- random_gen(hff,4,3,R).

R = [[], [], [[]]]

Besides providing arbitrary precision random numbers as a “free algorithm” on
top of a builtin limited precision floating point generator, one can see that this
technique can be used to implement elegantly random test generators in tools
like QuickCheck [11] without having to write data structure specific scripts.

7.3 Succinct Representations

Depending on the information theoretical density of various data representations
as well as on the constant factors involved in various data structures, significant
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data compression can be achieved by choosing an alternate isomorphic represen-
tation, as shown in the following examples:

?- as(hff,hfs,[[[]], [[], [[]]], [[], [[[]]]]],HFF).

HFF = [[[]], [[]], [[]]]

?- as(nat,hff,[[[]], [[]], [[]]],N).

N = 42

In particular, mapping to efficient arbitrary length integer implementations
(usually C-based libraries), can provide more compact representations or im-
proved performance for isomorphic higher level data representations. We can
compare representations sharing a common datatype to conjecture about their
asymptotic information density.

7.4 Experimental Mathematics

For instance, after defining:

length_as(Thing,X,Len) :-nat(Nat),

call(Thing,T),with(Nat,T,Iso),

fit_iso(length,Iso,X,Len).

sum_as(Thing,X,Len) :-nat(Nat),

call(Thing,T),with(Nat,T,Iso),

fit_iso(sumlist,Iso,X,Len).

size_as(Thing,X,Len) :-nat(Nat),

call(Thing,T),with(Nat,T,Iso),

fit_iso(tsize,Iso,X,Len).

one can conjecture that finite functions are more compact than sets asymptoti-
cally

?- length_as(fun,123456789012345678901234567890,L).

L = 54

?- length_as(set,123456789012345678901234567890,L).

L = 54

?- length_as(fun,123456789012345678901234567890,L).

L = 54

?- sum_as(set,123456789012345678901234567890,L).

L = 2690

?- sum_as(fun,123456789012345678901234567890,L).

L = 43

and then observe that the same trend applies also to their hereditarily finite
derivatives:
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?- size_as(hfs,123456789012345678901234567890,L).

L = 627

?- size_as(hff,123456789012345678901234567890,L).

L = 91

7.5 A surprising “free algorithm”: strange sort

A simple isomorphism like nat set can exhibit interesting properties as a build-
ing block of more intricate mappings like Ackermann’s encoding, but let’s also
note a (surprising to us) “free algorithm” – sorting a list of distinct elements
without explicit use of comparison operations:

strange_sort(Unsorted,Sorted):-

nat_set(Iso),

to(Iso,Unsorted,Ns),

from(Iso,Ns,Sorted).

?- strange_sort([2,9,3,1,5,0,7,4,8,6],Sorted).

Sorted = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

This algorithm emerges as a consequence of the commutativity of addition and
the unicity of the decomposition of a natural number as a sum of powers of 2.
The cognoscenti might notice that such surprises are not totally unexpected.
In a functional programming context, they go back as early as Wadler’s Free
Theorems [12].

7.6 Other Applications

A fairly large number of useful algorithms in fields ranging from data compres-
sion, coding theory and cryptography to compilers, circuit design and computa-
tional complexity involve bijective functions between heterogeneous data types.
Their systematic encapsulation in a generic API that coexists well with strong
typing can bring significant simplifications to various software modules with the
added benefits of reliability and easier maintenance. In a Genetic Programming
context [13] the use of isomorphisms between bitvectors/natural numbers on one
side, and trees/graphs representing HFSs, HFFs on the other side, looks like a
promising phenotype-genotype connection. Mutations and crossovers in a data
type close to the problem domain are transparently mapped to numerical do-
mains where evaluation functions can be computed easily. In the context of Soft-
ware Transaction Memory implementations (like Haskell’s STM [14]), encodings
through isomorphisms are subject to efficient shortcuts, as undo operations in
case of transaction failure can be performed by applying inverse transformations
without the need to save the intermediate chain of data structures involved.
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8 Related work

This work can be seen as part of a larger effort to cover in a declarative program-
ming paradigm some fundamental combinatorial generation algorithms along the
lines of Donald Knuth’s recent work [15].

The closest reference on encapsulating bijections as a data type is [16] and
Connan Eliot’s composable bijections Haskell module [17], where, in a more
complex setting, Arrows [18] are used as the underlying abstractions. While our
Iso data type is similar to the Bij data type in [17] and BiArrow concept of [16],
the techniques for using such isomorphisms as building blocks of an embedded
composition language centered around encodings as Natural Numbers are new.

Ranking functions can be traced back to Gödel numberings [1, 2] associated
to formulae. Together with their inverse unranking functions they are also used in
combinatorial generation algorithms [19, 15, 20, 21]. However the generic view of
such transformations as hylomorphisms obtained compositionally from simpler
isomorphisms, as described in this paper, is new.

Natural Number encodings of Hereditarily Finite Sets have triggered the
interest of researchers in fields ranging from Axiomatic Set Theory and Founda-
tions of Logic to Complexity Theory and Combinatorics [22–27]. Computational
and Data Representation aspects of Finite Set Theory have been described in
logic programming and theorem proving contexts in [9, 28].

Pairing functions have been used in work on decision problems as early as [29,
30]. A typical use in the foundations of mathematics is [31]. An extensive study
of various pairing functions and their computational properties is presented in
[32].

9 Conclusion

We have shown the expressiveness of Prolog as a metalanguage for executable
mathematics, by describing encodings for functions and finite sets in a uniform
framework as data type isomorphisms with a group structure. Prolog’s higher
order predicates and recursion patterns have helped the design of an embedded
data transformation language. Using higher order combinators a simplified ran-
dom testing mechanism has been implemented as an empirical correctness test.
The framework has been extended with hylomorphisms providing generic mech-
anisms for encoding Hereditarily Finite Sets and Hereditarily Finite Functions.
In the process, a few surprising “free algorithms” have emerged, including Ack-
ermann’s encoding from Hereditarily Finite Sets to natural numbers. We plan
to explore in depth in the near future, some of the results that are likely to be
of interest in fields ranging from combinatorics to data compression and arbi-
trary precision numerical computations. While we have not explicitly provided
a complexity analysis for various isomorphisms, it is clear from the actual code
that our transformations typically work in time and space proportional to the
overall size of the representation. In particular, when natural numbers are the
source or the target, complexity is O(log(N)), given that log(N) is the bitsize
of the representation of N .
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Abstract. In this paper we present a series of tiny programs that verify
that a Prolog heap garbage collector can find specific forms of garbage.
Only 2 out of our tested 7 Prolog systems pass all tests. Comparing
memory usage on realistic programs dealing with finite datastructures
using both poor and precise garbage collection shows only a small dif-
ference, providing a plausible explanation why many Prolog implemen-
tors did not pay much attention to this issue. Attributed variables allow
for creating infinite lazy datastructures. We prove that such datastruc-
tures have great practical value and their introduction requires ‘precise’
garbage collection. The Prolog community knows about three techniques
to reach at precise garbage collection. We summarise these techniques
and provide more details on scanning virtual machine instructions to
infer reachability in a case study.

1 Introduction

All modern Prolog systems come with a heap garbage collector, no longer limiting
the programmer to revert to failure driven loops or findall/3 to free unneeded
memory through backtracking. For this article, we define a ‘precise’ garbage
collector as a garbage collector that reclaims all data that can no longer be
reached considering all possible execution paths from the current state without
considering semantics. I.e. in 1==2, A=ok, A is unreachable due to the semantics
of ==/2, but we consider all parts of a conjunction reachable and therefore A is
considered reachable. Our survey of 7 popular Prolog systems (Sect. 3) reveals
that only two satisfy this definition. We compared the memory requirements
between the poorest and best performance of GC on 5 very different real-world
programs (Tab. 2). The comparison indicates that precise GC is unimportant
for many programs, which provides a plausible explanation why precise GC is
not widespread.

Precise GC becomes important for processing infinite datastructures, in this
case distinguished from cyclic structures. A truly infinite structure clearly never
fits into finite physical memory. We are concerned with datastructures that grow
due to further instantiation while (older) parts of the datastructure become
unreachable after processing and can be reclaimed by the garbage collector. A
typical example is processing input using a list: the list is expanded as new
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input becomes available, while the head of the list becomes unreachable after
being processed deterministically. This approach is used in [1], where infinite lists
are used for communication between concurrent processes. Similar consideration
motivated improvements in functional languages [2].

This article is organised as follows. First, in Sect. 2 we make a case for the
practical value of infinite lazy datastructures and the requirement of precise GC.
In Sect. 3 we identify possible leaks and test 7 Prolog implementations for them,
5 of which exhibit two or more leaks. This is followed by a survey of known
existing techniques to reach precise GC and the description and evaluation of a
case study adding precise GC to SWI-Prolog.3

2 A case for infinite lazy datastructures: pure input

Prolog DCG and other parsing techniques are based on processing lists. Unfortu-
nately, the data that needs to be parsed is often provided as a Prolog stream that
accesses data from the outside world. This problem has been identified long ago
and many implementations of DCG provide a hook ’C’/3 to read an input char-
acter. This hook is of little practical use, notably due to the poor combination
of non-determinism and side-effects. The current proposal for an ISO standard
on DCGs [3] no longer mentions ’C’/3. Fortunately, extended unification [4–7]
using attributed variables as found in many modern Prolog systems provides a
straightforward mechanism to remedy this problem.

Figure 1 presents the simple algorithm to apply a grammar rule on input from
a file as it appears in the SWI-Prolog library pure input.pl. Besides standard
ISO predicates, the implementation depends on freeze(Var, Goal), which delays
Goal until Var becomes instantiated (coroutining); call cleanup(Goal, Cleanup)
which allows for closing the input handle when Goal becomes inaccessible due to
deterministic termination, an exception or pruning of a choicepoint and finally
read pending input(Handle, Head, Tail) which reads a block of buffered in-
put into the difference-list Head\Tail. Freeze or a substitute is available in all
systems with attributed variables. Call cleanup is available in multiple Prolog
implementations and has been discussed for inclusion in the upcoming revision
of Part I of the ISO Prolog standard.4 A block-read operation is not defined by
the ISO standard but trivial to implement while it provides a very significant
speedup (12× in SWI-Prolog 5.6.59) because it only needs to validate and lock
the stream handle once.

The phrase from file(:DCG, +File) definition in Fig. 1 allows for applying
an arbitrary non-deterministic DCG completely transparently on the content of
a file while, given precise GC, the memory usage is independent from the size
of this file. We compared the use of a DCG on a file with a carefully hand-
crafted program to count words in a text-file. We summarise the key results in
the table below and conclude that the DCG version is much easier to read and
very comparable in performance.
3 http://www.swi-prolog.org
4 Inclusion is stalled because the precise semantics prove hard to describe.



126 Jan Wielemaker, Ulrich Neumerkel

read_to_input_stream(Handle, Pos1, Stream0) :-

set_stream_position(Handle, Pos1),

( at_end_of_stream(Handle)

-> Stream0 = []

; read_pending_input(Handle, Stream0, Stream1),

stream_property(Handle, position(Pos2)),

freeze(Stream1, read_to_input_stream(Handle, Pos2, Stream1))

).

phrase_from_file(Phrase, File) :-

open(File, read, Handle),

stream_property(Handle, position(Pos)),

freeze(Stream, read_to_input_stream(Handle, Pos, Stream)),

call_cleanup(phrase(Phrase, Stream), close(Handle)).

Fig. 1. Implementation of input streams.

traditional DCG on file
Code size (lines) 31 22
Time (sec., 25MB file) 16.1 17.1
GC time (sec.) 0.9 1.4

From the above, we conclude that infinite (lazy) terms have great practical value
and it is therefore desirable that garbage collection is capable of reclaiming the
no-longer-accessible part of the term.

3 State of the art

Can pure input as described above be used in current Prolog systems with corou-
tining? We reviewed 7 Prolog implementations. The first obvious requirement
is that there is no memory leak after a deterministic wakeup of a delayed goal
(Sect. 3.1). The other requirements are about reclaiming unneeded parts of the
input list within and-control and or-control. I.e. we must be able to create a list
of arbitrary size if there are no references to the entire list. The simplest form is
the test below. Predicate f/1 builds a list, but as nobody uses it, GC reclaims
it and run/0 runs forever in constant space.

run :- f(_).

f([f|X]) :- f(X).

This is the simplest case, where the initial list is created through a singleton
variable. In WAM-based systems with registers, the list resides in a register
that is overwritten in each recursion. On virtual machines such as the ZIP [8,
9] and ATOAM [10] that pass arguments over the stack, last-call optimization
overwrites the arguments, making the head inaccessible.
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We will now go systematically through requirements to deal with infinite
(lazy) datastructures. The first property validates that deterministic instantia-
tion of an attributed variable does not leak. The remaining properties validate
that various scenarios where the head of the list becomes inaccessible are de-
tected by the garbage collector. Each test case considers a situation that requires
special attention in one or more virtual machines, based on our understanding
of, notably, the WAM and ZIP. As the number of possible virtual machines is
unbounded, it is not possible to be sure that these cases cover all cases in all
possible virtual machines. Each property is accompanied by a program that must
run forever in constant space. A test is considered ‘failed’ if the system aborts
or memory usage exceeds 1Gb. The given programs are very simple, using a fact
dummy/1 to pretend access to a variable. We assume that dummy/1 cannot
be optimized away by the compiler, otherwise a more complex replacement is
needed.

3.1 Property 1: Permanent removal of attributes

Attributed variables that have been unified deterministically with a non-variable
term must be reclaimed completely. This property can be tested using the pro-
gram below. It creates delayed goals and executes them through determinis-
tic binding. Note that for most constraint solvers, complete reclamation of at-
tributed variables is not strictly necessary. Most CLP(FD) programs are con-
cerned with finding solutions nondeterministically via a labeling procedure, thus
most volatility stems from backtracking and not from forward recursion.

run :- run(_).

run(X) :- freeze(X, dummy(X)), X = 1, run(T).

dummy(_).

3.2 Property 2: And-control (head variables)

Variables appearing in the head of a rule and in the body must be discarded as
soon as possible. We test this using the following which, like the previous test,
must run forever in bounded memory. The call to dummy/2 ensures L0 is not
made inaccessible due to last call optimization.

run :- run(_,_).

run(L0, L) :- f(L0, L1), dummy(L1, L).

f([g|X], Y) :- f(X, Y).

dummy(Xs, Xs).

3.3 Property 3: And-control (existential variables)

Existential variables that occur in several goals, but not the last one. Ideally
such variables should be covered by environment trimming [11] in the WAM.
Careful environment trimming avoids more complex treatment.
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run :- run(_,_).

run(L0, L) :- dummy(L0, L1), f(L1, L2), dummy(L2, L).

f([f|X], Y) :- f(X, Y).

dummy(Xs, Xs).

3.4 Property 4: Or-control

Or-control covers the case where a variable is only accessible from a choicepoint.
A well behaved garbage collector will reset such variables and discard their cur-
rent value (early-reset, [12]). This situation arises in disjunctions in grammars.
E.g. (...,"a"|...,"b"), where ...//0 is defined to match an unbounded string.

run :- run(_).

run(X) :- f(X).

run(X) :- X == [].

f([f|X]) :- f(X).

3.5 Property 5: Branching inside a clause

Branching (A;B and If ->Then;Else) using different ordering of the variables in
both branches cannot be handled optimally with the WAM environment trim-
ming as the branches require different environment layout. This test is only of
interest for systems that open code disjunctions, avoiding an auxiliary internal
definition.

run(Z) :- p(_,_,Z).

p(X,Y,Z) :- (Z > 0 -> f(X), g(Y), dummy ; g(Y), f(X), dummy).

f([f|X]) :- f(X).

g([g|X]) :- g(X).

dummy.

3.6 Conclusion from our survey

1 2 3 4 50 51 VM

SICStus 3.12.5 ok ok ok ok ok ok WAM

Ciao 1.10p8 ok ok ok ok ok ok WAM

YAP 5.0.1 n ok ok ok ok n WAM

ECLiPSe 5.10 ok ok n ok n n WAM

SWI 5.6.54 n n n n n n ZIP

BProlog 7.1 n ok n n n n ATOAM

XSB 3.1 n ok n n n n WAM

Table 1. Evaluation of GC in some popular Prolog systems with coroutining. The
numbers correspond to the properties. Property 5 is tested for both branches.
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In the above sections we have provided tests for the main properties of Prolog
coroutining and garbage collection needed to be able deal with infinite lazy
datastructures. The results are shown in Tab. 1. As detailed descriptions of GC
in these systems is either not in the literature or the description is likely to be
outdated and we do not have access to the source code of all these systems we
have not examined why tests succeed or fail. We merely conclude that precise
GC has not been given much attention by the respective developers. Table 2
justifies this behaviour in the absence of infinite datastructures.

To the best of our knowledge, SICStus5 and the derived Ciao system [1] reach
a precise result using WAM registers, environment trimming and the implemen-
tation of in-clause alternative execution paths using anonymous predicates. The
YAP VM uses virtual machine instructions for in-clause alternative execution
paths, which cannot be handled perfectly with only environment trimming as
explained in Sect. 4. It is hard to explain the behaviour of the other systems.

Our study started with providing a pure input library for SWI-Prolog. SWI-
Prolog design was ok for property 1, but the implementation was proven flawed.
As the SWI-Prolog virtual machine passes arguments over the stack and does
not use environment trimming, it failed on all test.

4 Related work on data reachability in Prolog

Prolog systems discard data during backtracking. During forwards execution,
discarding data is achieved by the heap garbage collector. The garbage collector
preserves all data that is accessible through a set of root pointers [13]. The precise
set of root pointers depends on the Virtual Machine (VM) architecture, where
we distinguish between VMs that pass arguments in registers (WAM) and VMs
that pass arguments using the stack (ZIP, ATOAM). The current stack frame
and choice point are always root pointers. Registers and global variables are
other examples. There are several mechanisms by which data becomes inacces-
sible from the set of root pointers that are part of the normal Prolog (forward)
execution:

– Temporary variables allocated in registers become inaccessible when they
are overwritten.

– Arguments (on machines passing arguments over the stack) and environment
slots become inaccessible if the frame is discarded due to last-call optimiza-
tion.

– Environment trimming (see below) shrinks the environment, discarding un-
needed parts as the execution of the clause progresses.

Environment trimming [11] allocates variables in the environments ordered
by the last subgoal that references the variable. Each call to a subgoal has
an additional numeric argument that states that the first N variables of the

5 www.sics.se/sicstus/ explained to one of the authors by Mats Carlsson.



130 Jan Wielemaker, Ulrich Neumerkel

environment are still valid. Together with registers for argument passing and last-
call optimization, environment trimming reaches a precise result if there are no
alternative execution paths in the VM instructions. This implies that disjunction
(A;B) and If ->Then;Else must be translated into pure (anonymous) predicates
with some additional machinery to deal with proper scoping of the cut. This
technique is used by SICStus Prolog and Ciao (see Sect. 3.6.

Many virtual machines realise disjunction and if-then-else using branch in-
structions in the VM. As different subgoal ordering in the alternate execution
paths may require different ordering of variables in the environment (Sect. 3.5),
there is no longer a perfect order and garbage collection that scans the entire
environment will mark data that is no longer reachable because there is no in-
struction that refers to some variable. Table 1 suggests this is the status in
YAP 5.0.1.

Environment trimming cannot deal with arguments that are passed over the
stack as their order is determined by the calling convention and, analogous to in-
clause branching, different clauses of the predicate generally require a different
ordering.

VMs that pass arguments over the stack as well as VMs that use branching
instructions to code in-clause alternate execution paths need additional mea-
sures to regain precise GC. Two techniques to achieve this have been part of the
Prolog folklore for some time.6 One scans the VM instructions from the contin-
uation points to find the accessible variables. It was used by old versions of BIM
Prolog. With native code this became very hard to maintain. The other uses
compiler generated bitmaps for each possible continuation point that represent
all reachable variables. This is used by BIM Prolog and hProlog.

In systems based on ‘Binary Prolog’ [14], continuations take the place of en-
vironments. They are represented by ordinary Prolog terms and therefore profit
from the same data representations [15]. Garbage collection in such systems [16]
do not require any special treatment. On the other hand, Binary Prolog requires
more space for representing variables within continuations than traditional im-
plementations. Every occurrence of a variable is now represented separately,
while traditional environments represent each variable only once.

5 Our case study: SWI-Prolog

SWI-Prolog is based on the ZIP VM which passes arguments over the stack and
uses branching instructions inside a clause. Like most today’s Prolog systems,
the VM is emulated. We briefly examine these properties under the assumption
that the optimal choice depends on the specific setting: desired performance,
portability, transparency for debugging, simplicity and speed of the compiler.

– Argument passing
The use of registers for argument passing as the WAM has some clear advan-
tages. It keeps the environment small and simplifies last-call optimization.

6 according to Bart Demoen
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This comes at a price: the compiler is more complicated and it is harder
to provide a (graphical) debugger that provides access to variables in the
parent frames.

– Branching instructions
Using branching instructions to code disjunction and if-then-else prohibits
precise trimming of the environment as we have seen in Sect. 4. On the other
hand, execution is generally faster as no environment needs to be created for
the anonymous predicates that otherwise replace different in-clause execution
paths. We have no information on the implementation effort associated with
these approaches.

– Emulated VM vs. native code
An emulated VM is clearly easier to implement and if the VM is written in
a portable language, portability of the system comes for free. In addition, it
allows for simple decompilation [17] and simplifies two tasks in GC: identify
not-yet-initialized variables in the environment and identify variables that
can still be accessed from a given program counter (PC) location. SICStus
has dropped native code in release 47

The above observations make it clear that scanning VM instructions to rem-
edy the reachability problem is the most obvious approach for SWI-Prolog. Be-
cause most todays Prolog implementation use an emulated VM and Tab. 1 proves
that several systems still need to realise precise GC we believe a description of
our case study will help persuading other implementors to implement precise
GC and will help them to take the correct decisions right away.

6 Implementation

The SWI-Prolog VM differs considerable from the much more widely adopted
WAM. SWI-Prolog’s garbage collector however closely follows the SICStus Pro-
log garbage collector, which is described excellently in [12]. The fact that our GC
closely follows a GC for a WAM-based system gives some confidence that our
findings are applicable to a wider range of Prolog implementations. This section
only concentrates on the modifications to the algorithm described in [12] and
cannot be understood without detailed understanding of this paper.

Our modifications only affect the marking phase of GC. The modified algo-
rithm is provided in pseudo code in Fig. 2 and discussed below. Added lines and
deleted lines are marked with +/- at the start of the line.

First, initialize and mark() marks all data that is accessible from the con-
tinuation PC and at the same time initialises variables for which it finds a
‘first-access’ instruction, finishing the initialization of the environment. All en-
vironments are marked as ‘seen’. This is the same as in [12], except

7 Mats Carlsson has confirmed that SICStus 4 uses VM code scan-
ning to deal with uninitialized variables in the environment. See also
http://www.sics.se/sicstus/docs/latest4/pdf/relnotes.pdf
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procedure mark_environments(env, PC)

while ( env )

if ( not_seen(env) )

set_seen(env)

- initialize(env, PC)

+ initialize_and_mark(env, PC)

PC = env->PC

env = env->parent

else

+ mark(env, PC)

return

procedure mark_choices(ch)

env = ch->environment

early_reset_trail()

while ( ch )

if ( pc_choice(ch) )

mark_environments(env, ch->PC)

else if ( alt_clause(ch) )

+ unmarked = count_unmarked_arguments(env)

+ while ( unmarked > 0 && clause )

+ mark_arguments(env, clause->code)

+ clause = next_visible(clause)

if ( not_seen(env) )

set_seen(env)

mark_environments(env->parent, env->PC),

+ else if ( foreign_choice(ch) )

+ mark_all_arguments(env);

procedure mark_stacks(env, ch, PC)

mark_environments(env, PC)

mark_choices(ch)

Fig. 2. Pseudo code for the marking algorithm
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– Mark variables in the environment that are referred to by instructions reach-
able from the PC instead of all variables in the environment.

– If we find a reference pointer to a parent environment, we mark the pointer
and continue marking the referenced destination. In the traditional algorithm
the variable in the parent is marked if we mark the parent environment. Now
we must cover the case where the corresponding variable is accessed in this
frame, but not in the parent frame.

– When called from mark choices(), that marking is normally aborted if the
frame has already been seen. Now we must continue to mark the first seen
environment as this continuation may have a different PC and thus access
to different variables. There is no need to continue with the parent frame as
that has already been marked using the same PC.

Marking choicepoints is also similar to [12]. It resets trail entries that point
to garbage cells (early reset, dealing with property 4) and then marks the as-
sociated environment. As SWI-Prolog passes arguments over the stack, if an
alternate clause is encountered we need to keep all arguments that are used
by the remainder of the clause list (possibly reduced due to indexing). Simply
scanning the code of each clause could scan a lot of code on, for example, pred-
icates with many facts. We avoid this by computing the number of unmarked
arguments and abort the scan if all arguments are marked. Note that a clause
without singleton variables in the head accesses all arguments and thus stops the
search. Ground facts are a common example. Finally, as we have no information
on how a foreign predicate accesses its arguments we must mark all arguments
as accessible.

Sweeping an environment has been changed slightly. In [12], all heap refer-
ences in the environment are inserted into relocation chains. Now, we first check
whether the heap reference is marked. If so, we put it into a relocation chain as
before, otherwise we assign the atom ’<garbage_collected>’ to the variable.
This ensures consistency of the environment variable after heap relocation and is
needed by the debugger if execution switches from normal mode to debug mode
after a user interrupt or explicit call to trace/0 inside code running in no-debug
mode. In such cases, the debugger may show arguments of parent goals that
were executed in normal mode as ’<garbage_collected>’ and the graphical
debugger may show variables from the environment this way.

Note that if the program was started in debug mode, all data remains ac-
cessible through extra ‘debug’ choicepoints that also facilitate ‘retry’ at goals
that were started deterministically. Figure 6 illustrates the problem using an
explicit call to garbage collect/0 and trace/0. Explicitly calling trace/0 is
common practice to start debugging in a very specific state. The explicit call to
garbage collect/0 is there only to illustrate what happens if GC was invoked
at that specific point, while the system still operates in no-debug mode.
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test :-

read_line_to_codes(user_input, List),

all_spaces(List).

all_spaces([]).

all_spaces([0’ |T]) :- !, all_spaces(T).

all_spaces(_) :- garbage_collect, trace, fail.

1 ?- test.

|: xx.

Call: (11) fail ? goals

[11] fail

[10] all_spaces(’<garbage_collected>’)

[1] ’$toplevel’

Call: (11) fail ?

Fig. 3. The debugger showing a garbage collected argument

7 Evaluation

Our evaluation considers four aspects: time, space, implementation effort and
maintenance. In the tradition of SWI-Prolog, we consider mainly real and large
applications. We selected the following applications because of diversity, size and
the amount of garbage collection involved: chat80 (Pereira & Warren, 1986)
running its test-suite in a forward chaining loop to force GC, Back52 (Thomas
Hoppe et all., 1993) running its test suite, CHR compiler (Tom Schrijvers) com-
piling itself, k123.pl (Peter Vanbroekhoven) and pgolf.pl (Mats Carlsson).

The results are shown in Tab. 2. The first set of columns describe the overall
timing, the last set describes characteristics of the code scanning version only
and is discussed in Sect. 7.3. All timings are executed on an AMD Athlon X2
5400+; 64-bit Linux 2.6 using the 64-bit development version of SWI-Prolog
based on 5.6.55. Reported time is in seconds. Frequency stepping was disabled
during the tests.

7.1 Time evaluation

Table 2 shows that the overall execution time is only slightly affected by our
changes. Note that the logic to trigger GC depends on the amount of memory
that is accessible after the previous GC and therefore different effectiveness of
GC leads to unpredictable overall behaviour of the program in terms of time
and number of garbage collections.

We obtained a detailed breakdown of the garbage collector using valgrind
[18] with the callgrind tool and kcachegrind to explore the results. The overhead
of analysing instructions is approximately 1% of the garbage collector marking
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Test Time #GC GCLeft GCTime AvgScan AvgCls AvgInstr

Without code scanning

k123 8.88 164 1,594,534 1.35
chat80 2.56 109 18,661 0.10
back52 2.31 406 5,589 0.17
pgolf 13.22 53 7,328,689 3.44
chr 6.41 36 3,466,387 1.17

With code scanning

k123 8.71 209 1,111,646 1.20 1.51 0.09 12.10
chat80 2.42 111 12,301 0.08 1.68 0.60 14.52
back52 2.21 420 3,360 0.15 1.56 0.12 11.19
pgolf 11.06 53 7,151,304 3.19 1.42 0.01 12.37
chr 6.29 38 3,265,471 1.15 1.91 0.32 14.52

Table 2. Effects of code scanning. Time is the total execution time (including GC
time); #GC the number of garbage collections; GCLeft the average amount of memory
(heap+trail) immediately after GC and GCTime the time spent on GC. AvgScan is
the average number of continuation points that must be explored for an environment;
AvgCls the average number of additional clauses scanned; AvgInstr the average number
of instructions scanned before reaching the end of the clause.

time. These timing are slightly distorted because gcc’s inline function optimiza-
tion needs to be disabled to analyse the breakdown of execution time over the
various functions.

7.2 Space evaluation

Our approach based on marking accessible data by scanning the VM instructions
obviously reaches the ‘precise’ result as defined in the introduction for the heap
and trail stack. It does not provide the optimal result for the environment stack.
Only the approach as taken by SICStus is optimal here in the sense that the stack
contains no variables that are not accessible, while using our marking approach
the variables remain in the environment, bound to ’<garbage_collected>’.
Environment stack usage is in practice rarely a bottleneck and our deficiency is
a constant amount rather than the difference between finite and infinite stack
usage.

Table 2 also explains why precise GC is not widespread. Except for mem-
ory usage of the k123.pl test, we find no noticeable differences in the memory
usage after GC. The k123 program is a small program (75 lines after cleanup
of unreachable code). The central predicate mmul/3 in Fig. 4 is deterministic.
Lacking temporary registers and environment trimming, the old SWI-Prolog,
could not dispose the intermediate matrices.

Implementation and maintenance Only the code for marking environments and
clearing uninitialised variables was extended from originally 150 lines (C), to 557
including comment and debugging statements. Total implementation effort was
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mmul(M, M6) :-

mmul(M, M, M1), mmul(M1, M1, M2), mmul(M2, M2, M3),

mmul(M3, M3, M4), mmul(M4, M4, M5), mmul(M5, M5, M6).

Fig. 4. Main routine of k123.pl

4 days. One of the problems associated with VM instruction interpretation is
maintenance that results from changing the instruction set. SWI-Prolog main-
tains information of the instruction format for each instruction. This is used to
list VM instructions, deal with saving and loading and simplifies VM instruction
scanning as it allows enumerating the instructions using a generic loop. Four
instructions have variable length data associated with them (packed string and
unbounded integer) and need (uniform) special attention.

In addition to the generic code walking, 36 out of 89 instructions require
special attention as described in table Tab. 3. The table states the number of
instructions the marking algorithm needs to understand, the number of groups
of instructions that require different treatment (especially the variable accessing
functions are often handled using the same code) and the number of lines of
C-code involved.

Description instructions groups lines

Identify flow control 6 5 44
Realise initialization of uninitialised variables 3 1 10
Identify variable access for marking (body) 14 6 30
Identify variable access for marking (head) 13 6 27

Table 3. Statistics on interpreting VM instructions

7.3 Discussion

Before we arrived at the current implementation we had two worries: prohibitive
costs of multiple scans of the same code from different continuations and pro-
hibitive scans of code from multiple clauses to identify the still-reachable argu-
ments. Column AvgCls of Tab. 2 (page 135) indicates that scanning alternative
clauses is cheap, while the value of equal GC behaviour between in-clauses dis-
junctions and alternative clauses is obvious.

Our first prototype avoided multiple scans of the same code from different
continuations. Not correctly dealing with early-reset, this code was flawed and
abandoned. Nevertheless, it executed the above programs correctly and we ob-
tained statistics on its effectiveness. On the above test cases, multiple scans
increase the number of scanned instructions by 0, 58%, 7%, 7% and 3% (same
order as Tab. 2). As the scanning itself is responsible for less than 1% of the
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time of the mark phase, it is considered neglectable. This conclusion can also be
drawn from column AvgScan and AvgInstr together with the 1% time spent on
code scanning.

8 Conclusions

We have defined a set of five properties, each of which accompanied with a very
simple test case, that must be satisfied to deal with infinite (lazy) datastructures
in Prolog. We have proven that such datastructures are of significant practical
value as they can be used to realise processing a repositionable input stream
using the full power of non-deterministic grammar rules (DCGs). The majority
of Prolog implementations that provide the required attributed variables to re-
alise a lazy datastructure does not provide the required precise garbage collector.
Precise GC can be realised using a VM that uses registers to pass arguments,
implements environment trimming and codes in-clauses disjunction using anony-
mous predicates. Our case study indicates that other virtual machines can be
remedied by scanning virtual machine instructions to identify reachable vari-
ables in the environment. This technique is viable for any Prolog system based
on emulating virtual machine instructions. Next to supporting infinite datas-
tructure, the approximately 1% extra cost in the marking phase is more than
compensated for in the compacting phase of the garbage collector.

The current version of SWI-Prolog is shipped with the described enhance-
ments to the garbage collector and a library to use DCGs on repositionable input
streams.
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Abstract. A “pairing function” J associates a unique natural number z
to any two natural numbers x,y such that for two “unpairing functions”
K and L, the equalities K(J(x,y))=x, L(J(x,y))=y and J(K(z),L(z))=z
hold. Using pairing functions on natural number representations of truth
tables, we derive an encoding for Binary Decision Diagrams with the
unique property that its boolean evaluation faithfully mimics its struc-
tural conversion to a a natural number through recursive application
of a matching pairing function. We then use this result to derive rank-
ing and unranking functions for BDDs and reduced BDDs. The paper
is organized as a self-contained literate Prolog program, available at
http://logic.csci.unt.edu/tarau/research/2008/pBDD.zip.
Keywords: logic programming and computational mathematics, pairing/un-
pairing functions, encodings of boolean functions, binary decision dia-
grams, natural number representations of truth tables

1 Introduction

This paper is an exploration with logic programming tools of ranking and un-
ranking problems on Binary Decision Diagrams. The practical expressiveness of
logic programming languages (in particular Prolog) are put at test in the pro-
cess. The paper is part of a larger effort to cover in a declarative programming
paradigm, arguably more elegantly, some fundamental combinatorial generation
algorithms along the lines of [1]. However, our main focus is by no means “yet an-
other implementation of BDDs in Prolog”. The paper is more about fundamental
isomorphisms between logic functions and their natural number representations,
in the tradition of [2], with the unusual twist that everything is expressed as a
literate Prolog program, and therefore automatically testable by the reader. One
could put such efforts under the generic umbrella of an emerging research field
that we would like to call executable theoretical computer science. Nevertheless,
we also hope that the more practically oriented reader will be able to benefit
from this approach by being able to experiment with, and reuse our Prolog code
in applications.

The paper is organized as follows: Sections 2 and 3 overview efficient eval-
uation of boolean formulae in Prolog using bitvectors represented as arbitrary
length integers and Binary Decision Diagrams (BDDs).
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Section 4 discusses classic pairing and unpairing operations and introduces
pairing/unpairing predicates acting directly on bitlists.

Section 5 introduces a novel BDD encoding (based on our unpairing func-
tions) and discusses the surprising equivalence between boolean evaluation of
BDDs and the inverse of our encoding, the main result of the paper.

Section 6 describes ranking and unranking functions for BDDs and reduced
BDDs.

Sections 7 and 8 discuss related work, future work and conclusions.
The code in the paper, embedded in a literate programming LaTeX file, is

entirely self contained and has been tested under SWI-Prolog.

2 Parallel Evaluation of Boolean Functions with
Bitvector Operations

Evaluation of a boolean function can be performed one value at a time as in the
predicate if then else/4

if_then_else(X,Y,Z,R):-

bit(X),bit(Y),bit(Z),

( X==1->R=Y
; R=Z
).

bit(0).

bit(1).

resulting in a truth table1

?- if_then_else(X,Y,Z,R),write([X,Y,Z]:R),nl,fail;nl.

[0, 0, 0]:0

[0, 0, 1]:1

[0, 1, 0]:0

[0, 1, 1]:1

[1, 0, 0]:0

[1, 0, 1]:0

[1, 1, 0]:1

[1, 1, 1]:1

Clearly, this does not take advantage of the ability of modern hardware to per-
form such operations one word a time - with the instant benefit of a speed-up
proportional to the word size. An alternate representation, adapted from [1] uses
integer encodings of 2n bits for each boolean variable X0, . . . , Xn−1. Bitvector
operations evaluate all value combinations at once.

1 One can see that if the number of variables is fixed, we can ignore the bitsrings
in the brackets. Thus, the truth table can be identified with the natural number,
represented in binary form by the last column.
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Proposition 1 Let xk be a variable for 0 ≤ k < n where n is the number of
distinct variables in a boolean expression. Then column k in the matrix represen-
tation of the inputs in the the truth table represents, as a bitstring, the natural
number:

xk = (22n

− 1)/(22n−k−1
+ 1) (1)

For instance, if n = 2, the formula computes x0 = 3 = [0, 0, 1, 1] and x1 = 5 =
[0, 1, 0, 1].

The following predicates, working with arbitrary length bitstrings are used
to evaluate variables xk with k ∈ [0..n−1] with formula 1 and map the constant
boolean function 1 to the bitstring of length 2n, 111..1, representing 22n − 1

% maps variable K in [0..NbOfBits-1] to Xk

var_to_bitstring_int(NbOfBits,K,Xk):-

all_ones_mask(NbOfBits,Mask),

var_to_bitstring_int(NbOfBits,Mask,K,Xk).

var_to_bitstring_int(NbOfBits,Mask,K,Xk):-

NK is NbOfBits-(K+1),
D is (1<<(1<<NK))+1,
Xk is Mask//D.

% represents constant 1 as 11...1 build with NbOfBits bits

all_ones_mask(NbOfBits,Mask):-Mask is (1<<(1<<NbOfBits))-1.

We have used in var to bitstring int an adaptation of the efficient bitstring-
integer encoding described in the Boolean Evaluation section of [1]. Intuitively, it
is based on the idea that one can look at n variables as bitstring representations
of the n columns of the truth table.

Variables representing such bitstring-truth tables (seen as projection func-
tions) can be combined with the usual bitwise integer operators, to obtain new
bitstring truth tables, encoding all possible value combinations of their argu-
ments. Note that the constant 0 is represented as 0 while the constant 1 is
represented as 22n − 1, corresponding to a column in the truth table containing
ones exclusively.

3 Binary Decision Diagrams

We have seen that Natural Numbers in [0..22n − 1] can be used as represen-
tations of truth tables defining n-variable boolean functions. A binary decision
diagram (BDD) [3] is an ordered binary tree obtained from a boolean function,
by assigning its variables, one at a time, to 0 (left branch) and 1 (right branch).
In virtually all practical applications BDDs are represented as DAGs after de-
tecting shared nodes. We safely ignore this here as they represent the same logic
function, which is all we care about at this point. Typically in the early litera-
ture, the acronym ROBDD is used to denote reduced ordered BDDs. Because
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this optimization is now so prevalent, the term BDD is frequently use to refer
to ROBDDs. Strictly speaking, BDD in this paper will stand for ordered BDD
with reduction of identical branches but without node sharing.

The construction deriving a BDD of a boolean function f is known as Shan-
non expansion [4], and is expressed as

f(x) = (x̄ ∧ f [x← 0]) ∨ (x ∧ f [x← 1]) (2)

where f [x ← a] is computed by uniformly substituting a for x in f . Note that
by using the more familiar boolean if-the-else function Shannon expansion can
also be expressed as:

f(x) = if x then f [x← 1] else f [x← 0] (3)

We represent a BDD in Prolog as a binary tree with constants 0 and 1 as
leaves, marked with the function symbol c/1. Internal if-then-else nodes marked
with ite/3 are controlled by variables, ordered identically in each branch, as
first arguments of ite/1. The two other arguments are subtrees representing
the Then and Else branches. Note that, in practice, reduced, canonical DAG
representations are used instead of binary tree representations.

Alternatively, we observe that the Shannon expansion can be directly derived
from a 2n size truth table, using bitstring operations on encodings of its n vari-
ables. Assuming that the first column of a truth table corresponds to variable
x, x = 0 and x = 1 mask out, respectively, the upper and lower half of the truth
table.

% splits a truth table of NV variables in 2 tables of NV-1 variables

shannon_split(NV,X, Hi,Lo):-

all_ones_mask(NV,M),

NV1 is NV-1,

all_ones_mask(NV1,LM),

HM is xor(M,LM),

Lo is /\(LM,X),

H is /\(HM,X),

Hi is H>>(1<<NV1).

Note that the operation shannon split can be reversed as follows:

% fuses 2 truth tables of NV-1 variables into one of NV variables

shannon_fuse(NV,Hi,Lo, X):-

NV1 is NV-1,

H is Hi<<(1<<NV1),
X is \/(H,Lo).

?- shannon_split(2, 7, X,Y),shannon_fuse(2, X,Y, Z).

X = 1,

Y = 3,

Z = 7.

?- shannon_split(3, 42, X,Y),shannon_fuse(3, X,Y, Z).
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X = 2,

Y = 10,

Z = 42.

Another way to look at these two operations (for a fixed value of NV), is
as bijections associating a pair of natural numbers to a natural number, i.e. as
pairing functions.

4 Pairing and Unpairing Functions

Definition 1 A pairing function is a bijection f : Nat × Nat → Nat. An
unpairing function is a bijection g : Nat→ Nat×Nat.

Following Julia Robinson’s notation [5], given a pairing function J , its left
and right inverses K and L are such that

J(K(z), L(z)) = z (4)

K(J(x, y)) = x (5)

L(J(x, y)) = y (6)

We refer to [6] for a typical use in the foundations of mathematics and to
[7] for an extensive study of various pairing functions and their computational
properties.

4.1 Cantor’s Pairing Function

Starting from Cantor’s pairing function

cantor_pair(K1,K2,P):-P is (((K1+K2)∗(K1+K2+1))//2)+K2.

bijections from Nat × Nat to Nat have been used for various proofs and con-
structions of mathematical objects [5, 6].

For X, Y ∈ {0, 1, 2, 3} the sequence of values of this pairing function is:

?- findall(R,(between(0,3,A),between(0,3,B),cantor_pair(A,B,R)),Rs).

Rs = [0, 2, 4, 6, 1, 5, 9, 13, 3, 11, 19, 27, 7, 23, 39, 55]

Note however, that the inverse of Cantor’s pairing function involves potentially
expensive floating point operations that are also likely to loose precision for
arbitrary length integers.
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4.2 The Pepis-Kalmar Pairing Function

Another pairing function that can be implemented using only elementary integer
operations is the following:

f(x, y) = 2x(2y + 1)− 1 (7)

The predicates pepis pair/3 and pepis unpair/3 are derived from the function
pepis J and its left and right unpairing companions pepis K and pepis L that
have been used, by Pepis, Kalmar and Robinson in some fundamental work on
recursion theory, decidability and Hilbert’s Tenth Problem in [8–10]:

pepis_pair(X,Y,Z):-pepis_J(X,Y,Z).

pepis_unpair(Z,X,Y):-pepis_K(Z,X),pepis_L(Z,Y).

pepis_J(X,Y, Z):-Z is ((1<<X)∗((Y<<1)+1))-1.
pepis_K(Z, X):-Z1 is Z+1,two_s(Z1,X).
pepis_L(Z, Y):-Z1 is Z+1,no_two_s(Z1,N),Y is (N-1)>>1.

two_s(N,R):-even(N),!,H is N>>1,two_s(H,T),R is T+1.
two_s(_,0).

no_two_s(N,R):-two_s(N,T),R is N // (1<<T).

even(X):- 0 =:= /\(1,X).

odd(X):- 1 =:= /\(1,X).

This pairing function is asymmetrically growing (faster growth on the first ar-
gument). It works as follows:

?- pepis_pair(1,10,R).

R = 41.

?- pepis_unpair(10,1,R).

R = 3071.

?- findall(R,(between(0,3,A),between(0,3,B),pepis_pair(A,B,R)),Rs).

Rs=[0, 2, 4, 6, 1, 5, 9, 13, 3, 11, 19, 27, 7, 23, 39, 55]

4.3 Pairing/Unpairing operations acting directly on bitlists

We will describe here pairing operations, that are expressed exclusively as bitlist
transformations of bitmerge unpair and its inverse bitmerge pair, and are
therefore likely to be easily hardware implementable. As we have found out
recently, they turn out to be the same as the functions defined in Steven Pigeon’s
PhD thesis on Data Compression [11], page 114).

The predicate bitmerge pair implements a bijection from Nat×Nat to Nat
that works by splitting a number’s big endian bitstring representation into odd
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and even bits, while its inverse to pair blends the odd and even bits back to-
gether. The helper predicates to rbits and from rbits, given in the Appendix,
convert to/from integers to bitlists.

bitmerge_pair(X,Y,P):-

to_rbits(X,Xs),

to_rbits(Y,Ys),

bitmix(Xs,Ys,Ps),!,

from_rbits(Ps,P).

bitmerge_unpair(P,X,Y):-

to_rbits(P,Ps),

bitmix(Xs,Ys,Ps),!,

from_rbits(Xs,X),

from_rbits(Ys,Y).

bitmix([X |Xs],Ys,[X |Ms]):-!,bitmix(Ys,Xs,Ms).
bitmix([],[X |Xs],[0 |Ms]):-!,bitmix([X |Xs],[],Ms).
bitmix([],[],[]).

The transformation of the bitlists, done by the bidirectional predicate bitmix is
shown in the following example with bitstrings aligned:

?- bitmerge_unpair(2008,X,Y),bitmerge_pair(X,Y,Z).

X = 60,

Y = 26,

Z = 2008

% 2008:[0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1]

% 60:[ 0, 1, 1, 1, 1]

% 26:[ 0, 1, 0, 1, 1 ]

Note that we represent numbers with bits in reverse order (least significant on
the left). Like in the case of Cantor’s pairing function, we can see similar growth
in both arguments:

?- between(0,15,N),bitmerge_unpair(N,A,B),

write(N:(A,B)),write(’ ’),fail;nl.

0: (0, 0) 1: (1, 0) 2: (0, 1) 3: (1, 1)

4: (2, 0) 5: (3, 0) 6: (2, 1) 7: (3, 1)

8: (0, 2) 9: (1, 2) 10: (0, 3) 11: (1, 3)

12: (2, 2) 13: (3, 2) 14: (2, 3) 15: (3, 3)

?- between(0,3,A),between(0,3,B),bitmerge_pair(A,B,N),

write(N:(A,B)),write(’ ’),fail;nl.

0: (0, 0) 2: (0, 1) 8: (0, 2) 10: (0, 3)

1: (1, 0) 3: (1, 1) 9: (1, 2) 11: (1, 3)

4: (2, 0) 6: (2, 1) 12: (2, 2) 14: (2, 3)

5: (3, 0) 7: (3, 1) 13: (3, 2) 15: (3, 3)

It is also convenient sometimes to see pairing/unpairing as one-to-one functions
from/to the underlying language’s ordered pairs, i.e. X-Y in Prolog :
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bitmerge_pair(X-Y,Z):-bitmerge_pair(X,Y,Z).

bitmerge_unpair(Z,X-Y):-bitmerge_unpair(Z,X,Y).

5 Encodings of Binary Decision Diagrams

We will build a BDD by applying bitmerge unpair recursively to a Natural
Number TT, seen as an N -variable 2N bit truth table. This results in a complete
binary tree of depth N . As we will show later, this binary tree represents a BDD
that returns TT when evaluated applying its boolean operations.

% NV=number of varibles, TT=a truth table, BDD the result

plain_bdd(NV,TT, bdd(NV,BDD)):-

Max is (1<<(1<<NV)),
TT<Max,
isplit(NV,TT, BDD).

% recurses to depth NV, splitting TT into pairs

isplit(0,TT,c(TT)).

isplit(NV,TT,R):-NV>0,
NV1 is NV-1,

bitmerge_unpair(TT,Hi,Lo),

isplit(NV1,Hi,H),

isplit(NV1,Lo,L),

ite(NV1,H,L)=R.

The following examples show the results returned by plain bdd for all 22k

truth
tables associated to k variables, with k = 2.

?- between(0,15,TT),plain_bdd(2,TT,BDD),write(TT:BDD),nl,fail;nl

0:bdd(2, ite(1, ite(0, c(0), c(0)), ite(0, c(0), c(0))))

1:bdd(2, ite(1, ite(0, c(1), c(0)), ite(0, c(0), c(0))))

2:bdd(2, ite(1, ite(0, c(0), c(0)), ite(0, c(1), c(0))))

...

13:bdd(2, ite(1, ite(0, c(1), c(1)), ite(0, c(0), c(1))))

14:bdd(2, ite(1, ite(0, c(0), c(1)), ite(0, c(1), c(1))))

15:bdd(2, ite(1, ite(0, c(1), c(1)), ite(0, c(1), c(1))))

5.1 Reducing the BDDs

The predicate bdd reduce reduces a BDD by trimming identical left and right
subtrees, and the predicate bdd associates this reduced form to N ∈ Nat.

bdd_reduce(BDD,bdd(NV,R)):-nonvar(BDD),BDD=bdd(NV,X),bdd_reduce1(X,R).

bdd_reduce1(c(TT),c(TT)).

bdd_reduce1(ite(_,A,B),R):-A==B,bdd_reduce1(A,R).
bdd_reduce1(ite(X,A,B),ite(X,RA,RB)):-A\==B,
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bdd_reduce1(A,RA),bdd_reduce1(B,RB).

bdd(NV,TT, ReducedBDD):-

plain_bdd(NV,TT, BDD),

bdd_reduce(BDD,ReducedBDD).

Note that we omit here the reduction step consisting in sharing common subtrees,
as it is obtained easily by replacing trees with DAGs. The process is facilitated
by the fact that our unique encoding provides a perfect hashing key for each
subtree. The following examples show the results returned by bdd for NV=2.

?- between(0,15,TT),bdd(2,TT,BDD),write(TT:BDD),nl,fail;nl

0:bdd(2, c(0))

1:bdd(2, ite(1, ite(0, c(1), c(0)), c(0)))

2:bdd(2, ite(1, c(0), ite(0, c(1), c(0))))

3:bdd(2, ite(0, c(1), c(0)))

...

13:bdd(2, ite(1, c(1), ite(0, c(0), c(1))))

14:bdd(2, ite(1, ite(0, c(0), c(1)), c(1)))

15:bdd(2, c(1))

5.2 From BDDs to Natural Numbers

One can “evaluate back” the binary tree representing the BDD, by using the
pairing function bitmerge pair. The inverse of plain bdd is implemented as
follows:

plain_inverse_bdd(bdd(_,X),TT):-plain_inverse_bdd1(X,TT).

plain_inverse_bdd1(c(TT),TT).

plain_inverse_bdd1(ite(_,L,R),TT):-

plain_inverse_bdd1(L,X),

plain_inverse_bdd1(R,Y),

bitmerge_pair(X,Y,TT).

?- plain_bdd(3,42, BDD),plain_inverse_bdd(BDD,N).

BDD = bdd(3,

ite(2,

ite(1,

ite(0, c(0), c(0)),

ite(0, c(0), c(0))),

ite(1,

ite(0, c(1), c(1)),

ite(0, c(1), c(0))))),

N = 42

Note however that plain inverse bdd/2 does not act as an inverse of bdd/3,
given that the structure of the BDD tree is changed by reduction.
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5.3 Boolean Evaluation of BDDs

This raises the obvious question: how can we recover the original truth table from
a reduced BDD? The obvious answer is: by evaluating it as a boolean function!
The predicate ev/2 describes the BDD evaluator:

ev(bdd(NV,B),TT):-

all_ones_mask(NV,M),

eval_with_mask(NV,M,B,TT).

evc(0,_,0).

evc(1,M,M).

eval_with_mask(_,M,c(X),R):-evc(X,M,R).

eval_with_mask(NV,M,ite(X,T,E),R):-

eval_with_mask(NV,M,T,A),

eval_with_mask(NV,M,E,B),

var_to_bitstring_int(NV,M,X,V),

ite(V,A,B,R).

The predicate ite/4 used in eval with mask implements the boolean function
if X then T else E using arbitrary length bitvector operations:

ite(X,T,E, R):-R is xor(/\(X,xor(T,E)),E).

Note that this equivalent formula for ite is slightly more efficient than the
obvious one with ∧ and ∨ as it requires only 3 boolean operations. We will
use ite/4 as the basic building block for implementing a boolean evaluator for
BDDs.

5.4 The Equivalence

A surprising result is that boolean evaluation and structural transformation with
repeated application of pairing produce the same result, i.e. the predicate ev/2
also acts as an inverse of bdd/2 and plain bdd/2.
As the following example shows, boolean evaluation ev/2 faithfully emulates
plain inverse bdd/2, on both plain and reduced BDDs.

?- plain_bdd(3,42,BDD),ev(BDD,N).

BDD = bdd(3,

ite(2,

ite(1,

ite(0, c(0), c(0)),

ite(0, c(0), c(0))),

ite(1,

ite(0, c(1), c(1)),

ite(0, c(1), c(0))))),

N = 42

?- bdd(3,42,BDD),ev(BDD,N).

BDD = bdd(3,
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ite(2,

c(0),

ite(1,

c(1),

ite(0, c(1), c(0))))),

N = 42

The main result of this subsection can now be summarized as follows:

Proposition 2 Let B be the complete binary tree of depth N , obtained by re-
cursive applications of bitmerge unpair on a truth table T , as described by the
predicate plain bdd(N,T,B).

Then for any NV and any T , when B is interpreted as an (unreduced) BDD,
the result V of its boolean evaluation using the predicate ev(N, B, V ) and the
result R obtained by applying plain inverse bdd(N, B, R) are both identical to
T . Moreover, the operation ev(N, B, V ) reverses the effects of both plain bdd
and bdd with an identical result.

Proof: The predicate plain bdd builds a binary tree by splitting the bitstring
tt ∈ [0..2N − 1] up to depth N . Observe that this corresponds to the Shannon
expansion [4] of the formula associated to the truth table, using variable order
[n− 1, ..., 0]. Observe that the effect of bitstring unpair is the same as

– the effect of var to bitstring int(N,M,(N-1),R) acting as a mask select-
ing the left branch

– and the effect of its complement, acting as a mask selecting the right branch.

Given that 2N is the double of 2N−1, the same invariant holds at each step, as
the bitstring length of the truth table reduces to half. On the other hand, it
is clear that ev reverses the action of both plain bdd and bdd as BDDs and
reduced BDDs represent the same boolean function [3].

This result can be seen as a yet another intriguing isomorphism between
boolean, arithmetic and symbolic computations.

6 Ranking and Unranking of BDDs

One more step is needed to extend the mapping between BDDs with N variables
to a bijective mapping from/to Nat: we will have to “shift toward infinity” the
starting point of each new block of BDDs in Nat as BDDs of larger and larger
sizes are enumerated.

First, we need to know by how much - so we compute the sum of the counts
of boolean functions with up to N variables.

bsum(0,0).

bsum(N,S):-N>0,N1 is N-1,bsum1(N1,S).

bsum1(0,2).

bsum1(N,S):-N>0,N1 is N-1,bsum1(N1,S1),S is S1+(1<<(1<<N)).
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The stream of all such sums can now be generated as usual:

bsum(S):-nat(N),bsum(N,S).

nat(0).

nat(N):-nat(N1),N is N1+1.

What we are really interested in, is decomposing N into the distance to the last
bsum smaller than N, N M and the index of that generates the sum, K.

to_bsum(N, X,N_M):-

nat(X),bsum(X,S),S>N,!,
K is X-1,

bsum(K,M),

N_M is N-M.

Unranking of an arbitrary BDD is now easy - the index K determines the number
of variables and N M determines the rank. Together they select the right BDD
with plain bdd and bdd/3.

nat2plain_bdd(N,BDD):-to_bsum(N, K,N_M),plain_bdd(K,N_M,BDD).

nat2bdd(N,BDD):-to_bsum(N, K,N_M),bdd(K,N_M,BDD).

Ranking of a BDD is even easier: we first compute its NumberOfVars and its rank
Nth, then we shift the rank by the bsums up to NumberOfVars, enumerating the
ranks previously assigned.

plain_bdd2nat(bdd(NumberOfVars,BDD),N) :-

B=bdd(NumberOfVars,BDD),
plain_inverse_bdd(B,Nth),

K is NumberOfVars-1,

bsum(K,S),N is S+Nth.

bdd2nat(bdd(NumberOfVars,BDD),N) :-

B=bdd(NumberOfVars,BDD),
ev(B,Nth),

K is NumberOfVars-1,

bsum(K,S),N is S+Nth.

As the following example shows, nat2plain bdd/2 and plain bdd2nat/2 im-
plement inverse functions.

?- nat2plain_bdd(42,BDD),plain_bdd2nat(BDD,N).

BDD = bdd(4,

ite(3,

ite(2,

ite(1,

ite(0, c(0), c(0)),

ite(0, c(1), c(0))),

ite(1,

ite(0, c(1), c(0)),

ite(0, c(0), c(0)))),
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ite(2,

ite(1,

ite(0, c(0), c(0)),

ite(0, c(0), c(0))),

ite(1, ite(0, c(0), c(0)),

ite(0, c(0), c(0)))))),

N = 42

The same applies to nat2bdd/2 and its inverse bdd2nat/2.

?- nat2bdd(42,BDD),bdd2nat(BDD,N).

BDD = bdd(4,

ite(3,

ite(2,

ite(1, c(0),

ite(0, c(1), c(0))),

ite(1,

ite(0, c(1),c(0)), c(0))),

c(0))),

N = 42

We can now generate infinite streams of BDDs as follows:

plain_bdd(BDD):-nat(N),nat2plain_bdd(N,BDD).

bdd(BDD):-nat(N),nat2bdd(N,BDD).

?- plain_bdd(BDD).

BDD = bdd(1, ite(0, c(0), c(0))) ;

BDD = bdd(1, ite(0, c(1), c(0))) ;

BDD = bdd(2, ite(1, ite(0, c(0), c(0)), ite(0, c(0), c(0)))) ;

BDD = bdd(2, ite(1, ite(0, c(1), c(0)), ite(0, c(0), c(0)))) ;

...

?- bdd(BDD).

BDD = bdd(1, c(0)) ;

BDD = bdd(1, ite(0, c(1), c(0))) ;

BDD = bdd(2, c(0)) ;

BDD = bdd(2, ite(1, ite(0, c(1), c(0)), c(0))) ;

BDD = bdd(2, ite(1, c(0), ite(0, c(1), c(0)))) ;

BDD = bdd(2, ite(0, c(1), c(0))) ;

...

7 Related work

Pairing functions have been used in work on decision problems as early as [8, 9,
5]. Ranking functions can be traced back to Gödel numberings [2, 12] associated
to formulae. Together with their inverse unranking functions they are also used
in combinatorial generation algorithms [13, 1]. Binary Decision Diagrams are the
dominant boolean function representation in the field of circuit design automa-
tion [14]. BDDs have been used in a Genetic Programming context [15, 16] as
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a representation of evolving individuals subject to crossovers and mutations ex-
pressed as structural transformations and recently in a machine learning context
for compressing probabilistic Prolog programs [17] representing candidate the-
ories. Other interesting uses of BDDs in a logic and constraint programming
context are related to representations of finite domains. In [18] an algorithm for
finding minimal reasons for inferences is given.

8 Conclusion and Future Work

The surprising connection of pairing/unpairing functions and BDDs, is the in-
direct result of implementation work on a number of practical applications. Our
initial interest has been triggered by applications of the encodings to combina-
tional circuit synthesis in a logic programming framework [19, 20]. We have found
them also interesting as uniform blocks for Genetic Programming applications
of Logic Programming. In a Genetic Programming context [21], the bijections
between bitvectors/natural numbers on one side, and trees/graphs representing
BDDs on the other side, suggest exploring the mapping and its action on vari-
ous transformations as a phenotype-genotype connection. Given the connection
between BDDs to boolean and finite domain constraint solvers it would be inter-
esting to explore in that context, efficient succinct data representations derived
from our BDD encodings.
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Appendix

To make the code in the paper fully self contained, we list here some auxiliary
functions.

% converts an int to a list of bits, least significant first

to_rbits(0,[]).

to_rbits(N,[B |Bs]):-N>0,B is N mod 2, N1 is N//2,

to_rbits(N1,Bs).

% converts a list of bits (least significant first) into an int

from_rbits(Rs,N):-nonvar(Rs),from_rbits(Rs,0,0,N).

from_rbits([],_,N,N).

from_rbits([X |Xs],E,N1,N3):-NewE is E+1,N2 is X<<E+N1,
from_rbits(Xs,NewE,N2,N3).
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Abstract. In parallel constraint solving, work stealing not only allows
for dynamic load balancing, but also determines which parts of the search
tree are searched next. Thus the place from where work is stolen has a
dramatic effect on the efficiency of a parallel search algorithm. In this
paper we examine quantitatively how optimal work stealing can be per-
formed given an estimate of the relative solution densities of the sub-
trees at each node in the search tree and show how this is related to
the branching heuristic strength. We propose an adaptive work stealing
algorithm that automatically performs different work stealing strategies
based on the strength of the branching heuristic at each node. Many
parallel depth-first search patterns arise naturally from our algorithm.
Our algorithm is able to produce near perfect or super linear algorithmic
efficiencies on all problems tested. Real speedups using 8 threads ranges
from 4-5 times speedup to super linear speedup.

1 Introduction

In parallel constraint solving, work stealing has often been seen only as a mech-
anism for keeping processors occupied. Analysis of work stealing schemes often
assume that the amount of work to be done is fixed and independent of the work
stealing scheme, e.g. [1]. While this is true for certain kinds of problems, e.g.
finding all solutions, proving unsatisfiability, it is not true for others, e.g. finding
the first solution, finding the optimal solution. Such analyses fail to account for
the fact that the place from which work is stolen determines the search strategy
and can have a dramatic effect on the efficiency of the parallel algorithm. Many
systems choose to steal from as close to the root of the search tree as possible,
e.g. [2], as this tends to give the greatest granularity. However, this is not always
the best place to steal from in terms of the efficiency of the algorithm.

We illustrate how work stealing from different places can have different ef-
fects on efficiency with two examples. Let us consider a relatively simple frame-
work for parallel search. One thread begins with ownership of the entire search
tree. When a thread finishes searching the subtree it was responsible for, it will
pick an unexplored part of the search tree and steal that subtree off its current
owner. This continues until a solution is found, or the entire search tree has been
searched in the case of unsatisfiability or optimization.
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Example 1. The first problem we will consider is the Travelling Salesman Prob-
lem. In our experiments, with 8 threads, stealing left and low (as deep in the
tree as possible) requires visiting a number of nodes equal to the sequential al-
gorithm, while stealing high (near the root) requires visiting ∼30% more nodes
on average (see Table 1).

The explanation for this is simple. Let us examine the details of one particular
instance. In this instance, with the sequential algorithm, the optimal solution is
found after 47 seconds of CPU time, after which the algorithm spends another
∼300 seconds proving that no better solution exists. When work stealing is done
as left and low as possible in the parallel search, all of the threads are working
towards finding that leftmost optimal solution, and the optimal solution is found
in 47 seconds of total CPU time as before (wall clock time ∼6 seconds). After
this, the search takes another 300 seconds of CPU time to conclude. Thus we
have perfect linear speedup both in finding the optimal solution, and in proving
that no better solution exist.

If we steal high however, only 1 of the threads is actually exploring the left-
most part of the search tree and working towards that leftmost optimal solution.
The other 7 threads are off searching other parts of the search tree, unfruitfully in
this case. This time, the optimal solution is found in 47 seconds of wall clock time
(376 seconds of CPU time!). The algorithm then spends another 200 seconds of
CPU time proving that no better solution exists. What has happened is that we
got no speedup whatsoever for finding the optimal solution, but linear speedup
for proving that no better solution exists. Since we found the optimal solution
so much later in the search (376 seconds CPU time instead of 47 seconds), the
threads spent an enormous amount of CPU time searching without the pruning
benefits of the optimal solution, thus the total number of nodes searched in this
instance is dramatically increased, leading to a great loss of efficiency. Clearly,
this effect gets worse as a higher number of threads is used. �

It may appear from this example that stealing left and low would be efficient
for all problems. However, such a strategy can produce at best linear speedup.

Example 2. The second problem we will consider is the n-Queens problem. The
search tree is very deep and a top level mistake will not be recovered from for
hours. Stealing low in parallel search solves the instance within the time limit
if and only if the sequential depth first search solved it within the time limit.
This only occurred when a solution falls in the very leftmost part of the search
tree (only 4 instances out of 100 tested, see Table 2). Stealing high, in contrast,
allows many areas of the search tree to be explored, so a poor choice at the root
of the search tree is not as important. Stealing high results in solving 100 out of
100 instances tested. This is clearly far more robust than stealing low, producing
greatly super-linear speedup. �

Veron et al [3] claims that linear and super linear speedups can be expected
for branch and bound problems, but they fail to note that finding the optimal
solution does not parallelize trivially as shown by Example 1. Rao and Kumar [4]
(and others) show that super linear speedup ought to be consistently attainable
for finding the first or the optimal solution for certain types of problems. Their
analysis is valid if the search tree is random (i.e. we have no idea how the solutions
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are distributed), but is not valid in systems where the branching heuristic orders
the branches based on their likelihood of yielding a solution. The presence of
such a branching heuristic makes linear speedup in finding solutions non-trivial.
Gendron and Crainic [5] describe the issue and provide a description how the
issue is handled in several systems. In general, the solutions utilise some kind of
best-first criterion to guide how the problem is split up (see e.g. [6, 7]).

Our contributions in this paper are as follows. We perform a quantitative
analysis of how different work stealing strategies affect the total amount of work
performed and explain the relationship between branching heuristic strength and
the optimal search strategy. We propose an adaptive work stealing algorithm
that, when provided with a user given confidence, which is the estimated ratio
of solution densities between the left and right subtrees at each node, will work
steal in a near optimal manner. We show that confidence based work stealing
leads to very good algorithmic efficiencies, i.e. it does not visit many more nodes,
and sometimes much less, than sequential DFS (Depth First Search).

Although our analysis is done in the context of work stealing in parallel
constraint programming systems, the analysis is actually about the relation-
ship between branching heuristic strength and the optimal search order in the
search tree created by that branching heuristic. Thus the analysis actually ap-
plies to all complete tree search algorithms whether sequential or parallel. As
we will show later, when the assumptions about branching heuristic strength
that lie behind standard sequential algorithms such as DFS, Interleaved Depth
First Search (IDFS), Limited Discrepancy Search (LDS) or Depth-bounded Dis-
crepancy Search (DDS) is given to our algorithm as confidence estimates, our
algorithm automatically produces the exact same search patterns used in those
algorithms. Thus our analysis and algorithm provides a framework which ex-
plains/unifies/produces all those standard search strategies. In contrast to the
standard sequential algorithms which are based on rather simplistic assumptions
about how branching heuristic strength varies in different parts of the search
tree, our algorithm can adapt to branching heuristic strength on a node by node
basis, potentially producing search patterns that are vastly superior to the stan-
dard ones. Our algorithm is also fully parallel and thus we have automatically
parallelised DFS, IDFS, LDS and DDS as well.

The layout of the paper is as follows. In section 2 we perform a quantitative
analysis of optimal work stealing. In section 3 we describe our adaptive work
stealing algorithm. In section 4 we give examples of the behaviour of our algo-
rithm. In section 5 we present our experimental evaluation. Finally in section 6
we conclude.

2 Analysis of Work Allocation

In this section we show quantitatively that the strength of the branching heuristic
determines the optimal place to work steal from. We will concentrate on the case
of solving a satisfaction problem. The case for optimization is related since it is
basically a series of satisfaction problems.

Preliminary definitions. A constraint state (C,D) consists system of constraints
C over variables V with initial domain D assigning possible values D(v) to
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each variables v ∈ V . The propagation solver, solv repeatedly removes values
from the domains of variables that cannot take part in the solution of some
constraint c ∈ C, until it cannot detect any new values that can be removed. It
obtains a new domain solv(C,D) = D′. If D′ assigns a variable the empty set
the resulting state is a failure state. If D′ assigns each variable a single value
(|D(v)| = 1, v ∈ V ) then the resulting state is a solution state. Failure states and
solution states are final states.

Finite domain propagation interleaves propagation solving with search. Given
a current (non-final) state (C,D) where D = solv(C,D) the search process
chooses a search disjunction ∨ni=1ci which is consequence of the current state
C∧D. The child states of this state are calculated as (C∧ci, solv(C∧ci, D)), 1 ≤
i ≤ n. Given a root state (C,D), this defines a search tree of states, where each
non-final state is an internal node with children defined by the search disjunction
and final states are leaves.

The solution density of a search tree T with x nodes and y solution state
nodes is y/x. The solution density is the inverse of the mean nodes to solution
of T defined as x/y.

Optimal split for binary nodes For simplicity, assume that the cost of visiting
each node in the search tree is roughly equal. Intuitively, the optimal way to
perform a search is to assign all of our threads to the most promising parts of
the search tree at each stage. These places are the parts of the search tree where
the mean nodes to solution is lowest, or in other words where the solution den-
sity is highest. Assuming an oracle that could give us accurate solution density
information, work stealing from nodes whose subtrees have the highest solution
densities will be optimal. In practice however, the solution density estimates will
not be perfect, thus we have to take various other factors into account. Namely:

1. Any estimate of the solution density of a subtree will have a very high error,
with a substantial chance that the solution density is actually zero.

2. The real solution densities, and hence the errors in the estimate, are highly
correlated between subtrees that are close together, as they share decision
constraints from higher up in the tree, and these constraints may already
have made solutions impossible or plentiful.

3. The solution density estimate of a subtree should decrease as nodes in that
tree are examined without finding a solution. This is caused by two factors.
(a) As the most fruitful parts of the subtree are searched, the average solu-

tion density of the remaining nodes decrease.
(b) The correlation between solution densities between nearby subtrees mean

that the more nodes have failed in that subtree, the more likely the
remaining nodes are to fail as well.

We have to take these issues into account when utilizing solutions densities to
determine where to work steal.

Example 3. Let T be a search tree with a binary decision at the root. Let A = 0.6
and B = 0.4 be the solution density estimates for the left and right branches
of T . Assume also that the two subtrees have the same number of nodes. If we
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had 8 threads, what is the optimal division of threads between the two branches
such that the expected time to find a solution is lowest?

If the solution density estimate was perfect, we would simply send all 8
threads down the left branch. However, according to (1) the estimate has a very
large error. Further according to (2) the solution density of the subtrees down the
left branch are highly correlated. If we send all 8 threads down the left branch,
and it turns out that the real solution density is small or zero, then all 8 threads
end up stuck. Because of (1) and (2), it is actually better to send some of the
threads down the right branch as well as long as B is not far smaller than A, for
example, for values of A = 0.6, B = 0.4, we may wish to send 6 threads down
the left branch and 2 threads down the right branch. �

Given the actual solution density probability distribution for the two branches,
we can calculate the expected number of nodes searched to find a solution. We
derive the expression for a simple case. Suppose the solution density probability
distribution is uniform, i.e. has equal probability of being any value between 0
and S where S is the solution density estimate. Let A and B be the solution
density estimates for the left and right branch respectively, and assume a pro-
portion p and (1 − p) of the processing power is sent down the left and right
branch respectively. Then the expected number of nodes to be searched is given
by the hybrid function (see Appendix A for the details of the calculation):

f(A,B, p) =

{
1
pA (2 + ln( pA

(1−p)B )) for pA > (1− p)B
1

(1−p)B (2 + ln( (1−p)B
pA )) otherwise

(1)

The shape of this function does not depend on the absolute values of A and
B (which only serves to scale the function), but on their ratio, thus the shape
is fixed for any fixed value of r = A/(A + B). The value of p which minimizes
this function for a given value of r is shown in Figure 1. This graph tells us
the optimal way to divide up our processing power so that we have the lowest
expected number of nodes to search.

As can be seen, although not linear, the optimal values of p are well approx-
imated by the straight line p = r. In fact the value of the f function at p = r
is no more than 2% higher than the true minimum for any r over the range of
0.1 ≤ r < 0.9. For simplicity we will make this approximation from now on. This
means that it is near optimal to divide the amount of processing power according
to the ratio of the solution density estimate for the two branches. For example,
if r = 0.9, which means that A is 9 times as high as B, then it is near optimal to
send 0.9 of our processing power down the left branch and 0.1 of our processing
power down the right. Or if r = 0.5, which means that A = B, then it is near
optimal to send equal amounts of processing power down the two branches.

Define the confidence of a branching heuristic at each node as the ratio
r = A/(A+ B). The branching heuristic can be considered strong when r → 1,
that is the solution density estimate of the left branch is far greater than for
the right branch, or in other words, the heuristic is really good at shaping the
search tree so that solutions are near the left. In this case, our analysis shows that
since r is close to 1, we should allocate almost all our processing power to the left
branch everytime. This is equivalent to stealing as left and as low as possible. The
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Fig. 1. Optimal division of processing power based on solution density ratio

branching heuristic is weak when r ≈ 0.5, that is the solution density estimate
of the left branch and right branch are similar because the branching heuristic
has no clue where the solutions are. In this case, our analysis shows that since
r = 0.5, the processing power should be distributed evenly between left and right
branches at each node. This is equivalent to stealing as high as possible.3

3 Adaptive work stealing

Our analysis shows that the optimal work stealing strategy is dependant on the
strength of the branching heuristic. Since we have a quantitative understanding
of how optimal work stealing is related to branching heuristic strength, we can
design a search algorithm that can automatically adapt and produce “optimal”
search patterns when given some indication of the strength of the branching
heuristic by the problem model. In this section, we flesh out the theory and
discuss the implementation details of the algorithm in Gecode [8].

3.1 Dynamically updating solution density estimates

Now we examine how solution density estimates should be updated during search
as more information becomes available.

First we need to relate the solution density estimate of a subtree with root
(C,D) with the solution density estimate of its child subtrees (the subtrees
rooted at its child states (C∧ci, solv(C∧ci, D))). Consider an n-ary node. Let the
subtree have solution density estimate S. Let the child subtree at the ith branch
have solution density estimate Ai and have size (number of nodes) xi. If S and Ai
3 We ignore the possibility of an anti-heuristic where the right branch is preferable to

the left.
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are estimates of average solution density, then clearly: S =
∑n
i=1Aixi/

∑n
i=1 xi,

i.e. the average solution density of the subtree is the weighted average of the
solution densities of its child subtrees.

Assuming no correlation between the solution densities of subtrees, we have
that if the first k child subtrees have been searched unsuccessfully, then the
updated solution density estimate is S =

∑n
i=k+1Aixi/

∑n
i=k+1 xi. Assuming

that xi are all approximately equal, then the expression simplifies to: S =∑n
i=k+1Ai/(n − k). For example, suppose A1 = 0.3, A2 = 0.2, A3 = 0.1, then

initially, S = (0.3 + 0.2 + 0.1)/3 = 0.2. After branch 1 is searched, we have S =
(0.2 + 0.1)/2 = 0.15, and after branch 2 is searched, we have S = (0.1)/1 = 0.1.
This has the effect of reducing S as the branches with the highest values of Ai
are searched, as the average of the remaining branches will decrease.

Now we consider the case where there are correlations between the solution
density estimates of the child subtrees. The correlation is likely since all of the
nodes in a subtree share the constraint C of the root state. Since the correlation
is difficult to model we pick a simple generic model. Suppose the solution density
estimates for each child subtree is given by Ai = ρA′i, where ρ represents the
effect on the solution density due to the constraint added at the root node, and
A′i represents the effect on the solution density due to constraints added within
branch i. Then ρ is a common factor in the solution density estimates for each
branch and represents the correlation between them. We have that:

S =
∑n
i=1Aixi∑n
i=1 xi

= ρ

∑n
i=1A

′
ixi∑n

i=1 xi
.

Suppose that when k out of n of the branches have been searched without finding
a solution, the value of ρ is updated to ρn−kn . This models the idea that the more
branches have failed, the more likely it is that the constraint C added at the root
node has already made solutions unlikely or impossible. Then when k branches
have been searched, we have: S = ρn−kn

∑n
i=k+1A

′
ixi/

∑n
i=k+1 xi. Assuming

that xi are all approximately equal again, then the expression simplifies to:
S = ρn−kn

∑n
i=k+1A

′
i/(n− k) = ρ

n

∑n
i=k+1A

′
i =

∑n
i=k+1Ai/n. Equivalently, we

can write it as:

S =
∑n
i=1Ai
n

(2)

where we update Ai to 0 when branch i fails. The formula can be recursively
applied to update the solution density estimates of any node in the tree given a
change in solution density estimate in one of its subtrees.

In all of our results, the actual values of the solution densities are not required.
We can formulate everything using confidence, the ratio between the solution
densities of the different branches at each node. In terms of confidence, when a
subtree is searched and fails the confidence values should be updated as follows:

Let ri be the confidence value of the node i levels above the root of the failed
subtree and r′i be the updated confidence value. Let r̄i = ri, r̄

′
i = r′i if the failed

subtree is in the left branch of the node ith levels above the root of the failed
subtree and r̄i = 1− ri, r̄′i = 1− r′i otherwise. Then:
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r̄′i = (r̄i −
i∏

k=1

r̄i)/(1−
i∏

k=1

r̄i) (3)

3.2 Confidence model

Given a confidence at each node, we now know how to work steal “optimally”,
and how to update confidences as search proceeds. But how do we get an initial
confidence at each node. Ideally, the problem modeller, with expert knowledge
about the problem and the branching heuristic can develop a solution density
heuristic that gives us a confidence value at each node. However, this may not
always happen, perhaps due to a lack of time or expertise. We can simplify
things by using general confidence models. For example, we could assume that
the confidence takes on an equal value conf for all nodes. This is sufficient to
model general ideas like: the heuristic is strong or the heuristic is weak. Or we
could have a confidence model that assigns r = 0.5 to the top d levels and
r = 0.99 for the rest. This can model ideas like the heuristic is weak for the first
d levels, but very strong after that, much like the assumptions used in DDS.

3.3 The algorithm

Given that we have a confidence value at each node, our confidence based search
algorithm will work as follows. The number of threads down each branch of a
node is updated as the search progresses. When a job is finished, the confidence
values of all nodes above the finished subtree is updated as described in (3).

When work stealing is required, we start at the root of the tree, and use
the number of threads down each branch, the confidence value, and the optimal
division derived in Section 2 to work out whether the thread should be assigned
to the left branch or the right branch. We then move on to that node and
repeat. We continue until we find an unexplored node, at which point we steal
the subtree with that unexplored node as root.

There is an exception to this. Although we may sometimes want to steal as
low as possible, we cannot steal too low, as then the granularity would become
too small and communication costs will dominate the runtime. Thus we dynam-
ically determine a granularity bound under which threads are not allowed to
steal, e.g. 15 levels above the average fail depth. If the work stealing algorithm
guides the work stealing to the level of the granularity bound, then the last
unexplored node above the granularity bound is stolen instead. The granularity
bound is dynamically adjusted to maintain a minimum average job size so that
work stealing does not occur more often than a certain threshold.

Since the confidence values are constantly updated, the optimal places to
search next changes as search progresses. In order for our algorithm to adapt
quickly, we do not require a thread to finish the entire subtree it stole before
stealing again, as this could take exponential time [9]. Instead, after a given
restart time has passed, the thread returns the unexplored parts of its subtree
to the master and work steals again from the top. This is similar to the idea
used in interleaving DFS [10].
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Fig. 2. Example 1

4 Sample behaviour of adaptive work stealing algorithm

In this section, we go through some examples of how the work stealing and
confidence updating works in our algorithm. For the first example, suppose we
know that the branching heuristic is reasonably strong, but not perfect. We may
use conf = 0.8. Refer to Figure 2 in the explanation.

Let’s suppose we have 8 threads. Initially, all the confidence values are 0.8.
When the 8 threads attempt to work steal at the root, the first thread will go
down the left hand side. The second thread will go down the left hand side as
well. The 3rd thread will go down the right hand side. The fourth thread will go
down the left hand side, etc, until we end up with 6 threads down the left and
2 threads down the right. At node 2, we will have 5 threads down the left and
1 thread down the right. At node 3, we will have 2 threads down the left, and
so on. The work stealing has strongly favored sending threads towards the left
side of each node because of the reasonably high confidence values of 0.8.

Suppose as search progresses the subtree starting at node 4 finishes without
producing a solution. Then we need to update the confidence values. Using (3),
the confidence value at node 2 becomes 0, and the confidence value at node 1
becomes 0.44. Now when the threads work steal from the root, things are differ-
ent. Since one of the most fruitful parts of the left branch has been completely
searched without producing a solution, it has become much less likely that there
is a solution down the left branch. The updated confidence value reflects this.
Now the threads will be distributed such that 4 threads are down the left branch
and 4 threads are down the right branch. Next, perhaps the subtree starting at
node 10 finishes. The confidence value at node 5 then becomes 0, the confidence
value at node 2 remains 0 and the confidence value at node 1 becomes 0.14.
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Fig. 3. Example 2

The vast majority of the fruitful places in the left branch has been exhausted
without finding a solution, and the confidence value at the root has been up-
dated to strongly favor the right branch. The threads will now be distributed
such that 7 threads go down the right and 1 go down the left. Next, suppose
the subtree starting at node 6 finishes. The confidence value at node 3 becomes
0 and the confidence value at node 1 becomes 0.44. Since the most fruitful part
of the right branch has also failed, the confidence value now swings back to fa-
vor the left branch more. This kind of confidence updating and redistribution
of threads will continue on, distributing the threads according to the current
best solution density estimates. In our explanation here, for simplicity we only
updated the confidence values very infrequently. In the actual implementation,
confidence values are updated after every job is finished and thus occur much
more frequently and in much smaller sized chunks.

For the second example, suppose we knew that the heuristic was very bad and
was basically random. We may use conf = 0.5, i.e. the initial solution density
estimates down the left and right branch are equal. Refer to Figure 3 in the
explanation.

Let’s suppose we have 4 threads. Initially, all the confidence values are 0.5.
When the 4 threads attempt to work steal at the root, the first thread will go left,
then left, then left, etc. The second thread will go right, then left, then left, etc.
The third thread will go left, then right, then left, etc, and the fourth thread will
go right, then right, then left, etc. This distributes the threads as far away from
each other as possible which is exactly what we want. However, if the search tree
is deep, and the first few decisions that the threads made within its own subtree
are wrong, they may still all get stuck and never find a solution. This is where the
interleaving limit kicks in. After a certain time threshold is reached, the threads
abandon their current search and begin work stealing from the root again. Since
the confidence values are updated when they abandon their current job, they
take a different path when they next work steal. For example, if the thread down
node 5 abandons after having finished a subtree with root node at depth 10, then
the confidence at node 5 becomes 0.498, the confidence at node 2 become 0.499,
and the confidence at node 1 becomes 0.4995. Then when the thread work steals
from the root, it will again go left, then right. When it gets to node 5 however,
the confidence value is 0.498 and there are no threads down either branch, thus
it will go right at this node instead of left like last time. The updated confidence
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values has guided the thread to an unexplored part of the search tree that is as
different from those already searched as possible. This always happens because
solution density estimates are decremented whenever part of a subtree is found
to have failed, so the confidence will always be updated to favour the unexplored
parts of the search tree.

As some other examples, we briefly mention what confidence models leads to
some standard search patterns. DFS: conf = 1, restart = ∞. IDFS: conf = 1,
restart = 1000. LDS: conf = 1-ε, restart = 1 node. DDS: conf = 0.5 if depth <
d, 1-ε if depth ≥ d, restart = 1 node.

5 Experimental evaluation

The confidence based work stealing is implemented in Gecode 2.1.1 [8]. The
benchmarks are run on a Dell PowerEdge 6850 with 4x 3.0 Ghz Xeon Dual Core
Pro 7120 CPUs. 8 threads are used for the parallel search algorithm. We use
a time limit of 20 min CPU time (so 2.5 min wall clock time for 8 threads), a
restart time of 5 seconds, and a dynamic granularity bound that adjusts itself
to try to steal no more than once every 0.5 seconds. We collected the following
data: wall clock runtime, CPU utilization, communication overhead, number of
steals, total number of nodes searched and number of nodes explored to find the
optimal solution.

In our first set of experiments we examine the efficiency of our algorithm for
two optimization problems from Gecode’s example problems. The problems are:
Travelling Salesman Problem (TSP), Photo and Queens-Armies. A description
of these problems can be found at [8]. We use the given search heuristic (in
the Gecode example file) for each, except for TSP where we try both a strong
heuristic based on maximising cost reduction and a weak heuristic that just picks
variables and values in order. For both Photo and TSP, we randomly generated
many instances of an appropriate size for benchmarking. Only the size 9 and
size 10 instances of Queen-Armies are of an appropriate size for benchmarking.
We use the simple confidence model with conf = 1, 0.66 and 0.5. The results
are given in Table 1.

It is apparent from our experiments that the hardware/OS we experimented
on is highly non-ideal and does not in fact give us a linear increase in real pro-
cessing speed when more processors are used. We suspect this is due to issues
such as cache contention, memory contention, context switching, etc. The effect
causes threads to slow down by up to 40% at 8 threads. In view of this, the
primary statistics we will look at in our analysis of our algorithm will be al-
gorithmic efficiency and the communication cost. Algorithmic efficiency minus
the communication cost represents the theoretical efficiency on an ideal parallel
computer. The runtime efficiency represents what you may get on a real world,
non-ideal parallel computer.

It is clear that in all of our problems, runtime is essentially proportional to
the number of nodes searched, and it is highly correlated to the amount of time
taken to find the optimal solution. The quicker the optimal solution is found, the
fewer the nodes searched and the lower the total runtime. The communication
cost, which includes all work stealing and synchronisation overheads, is less than
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Table 1. Experimental results for optimization problems with simple confidence model.
The results show: number of problems solved in the time limit (Solved), wall clock run-
time in seconds (Runtime), speedup relative to the sequential version (Speedup), and
runtime efficiency (RunE) which is Speedup/8, CPU utilization (CPU%), communi-
cation overhead (Comm%), number of steals (Steals), total number of nodes explored
(Nodes), the algorithmic efficiency (AlgE) the total number of nodes explored in the
parallel version versus the sequential version, the number of nodes explored to find the
optimal solution (Onodes), and the solution finding efficiency (SFE) the total number of
nodes explored in the parallel version to find the optimal versus the sequential version.
Values for Runtime, CPU%, Comm%, Steals, Nodes, and Onodes are the geometric
mean of the instances solved by all 4 versions.

TSP with strong heuristic, 200 instances
conf Solved Runtime Speedup RunE CPU% Comm% Steals Nodes AlgE Onodes SFE
Seq 181 56.0 — — 99.8% 0.0% — 1240k — 180k —
1 172 11.3 4.95 0.62 94.7% 2.8% 447 1222k 1.01 218k 0.82
0.66 170 13.3 4.20 0.53 94.6% 0.5% 370 1517k 0.82 580k 0.31
0.5 160 16.2 3.45 0.43 94.2% 1.3% 533 1564k 0.80 658k 0.27

TSP with weak heuristic, 200 instances
conf Solved Runtime Speedup RunE CPU% Comm% Steals Nodes AlgE Onodes SFE
Seq 189 78.6 — — 99.8% 0.0% — 1.99M — 1.59M —
1 186 17.7 4.45 0.56 96.5% 4.0% 686 1.99M 1.00 1.59M 1.00
0.66 186 17.7 4.46 0.56 96.3% 0.4% 319 1.97M 1.01 1.60M 1.00
0.5 184 15.7 5.01 0.63 95.5% 0.8% 287 1.73M 1.15 1.39M 1.15

Photo, 200 instances
conf Solved Runtime Speedup RunE CPU% Comm% Steals Nodes AlgE Onodes SFE
Seq 173 63.9 — — 99.9% 0.0% — 5.01M — 622k —
1 152 15.5 4.12 0.52 98.0% 1.7% 636 4.93M 1.02 542k 1.15
0.66 153 15.5 4.12 0.52 97.5% 0.4% 388 4.91M 1.02 467k 1.33
0.5 152 15.4 4.15 0.52 97.7% 0.4% 253 4.90M 1.02 492k 1.26

Queen Armies, 2 instances
conf Solved Runtime Speedup RunE CPU% Comm% Steals Nodes AlgE Onodes SFE
Seq 2 1146 — — 99.7% 0.0% — 27.1M — 800k —
1 2 219 5.24 0.65 98.7% 1.1% 2519 28.8M 0.94 1669k 0.48
0.66 2 213 5.38 0.67 98.2% 0.5% 1924 28.4M 0.96 1781k 0.45
0.5 2 217 5.29 0.66 98.3% 0.4% 1631 28.6M 0.95 1902k 0.42

1% for most problems, but goes up to around 3-4% for some steal low strategies.
For algorithmic efficiency, we will examine each the problem in turn.

The strong heuristic in TSP is quite strong. Using conf = 1 achieves near
perfect algorithmic efficiency. Other values of conf clearly cause an algorithmic
slowdown. The optimal solution is found on average 2.7 and 3.0 times slower for
conf = 0.66 and 0.5 respectively, resulting in an algorithmic efficiency of 0.82 and
0.80 respectively. The opposite is true when the weak heuristic is used. Using conf
= 1 or 0.66 allows us to find the leftmost optimal solution in approximately the
same number of nodes as the sequential algorithm, but using conf = 0.5 to reflect
that the heuristic is weak allows the algorithm to find the optimal solution even
faster, producing an algorithmic efficiency of 1.15 compared to the sequential
algorithm.
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Table 2. Experimental results for satisfaction problems with simple confidence model

n-Queens, 100 instances
conf Solved Runtime Speedup RunE CPU% Comm% Steals Nodes AlgE
Seq 4 2.9 — — 99.9% 0.0% — 1859 —
1 4 10.4 — — 99.0% 86.6% 2 1845 —
0.66 29 18.0 — — 81.6% 0.3% 9 15108 —
0.5 100 2.9 — — 65.5% 1.6% 8 14484 —

Knights, 40 instances
conf Solved Runtime Speedup RunE CPU% Comm% Steals Nodes AlgE
Seq 7 0.22 — — 99.9% 0.0% — 1212 —-
1 7 0.26 — — 68.1% 59.7% 2 1150 —
0.66 13 0.50 — — 48.0% 4.7% 8 8734 —
0.5 21 0.66 — — 35.2% 6.0% 8 8549 —

Perfect-Square, 100 instances
conf Solved Runtime Speedup RunE CPU% Comm% Steals Nodes AlgE
Seq 15 483.1 — — 99.9% 0.0% — 213k —
1 13 72.3 6.68 0.83 98.0% 19.1% 419 216k 0.99
0.66 14 71.2 6.78 0.85 86.4% 2.9% 397 218k 0.98
0.5 82 8.9 54.02 6.75 89.0% 4.8% 21 32k 6.64

The branching heuristic in Photo is designed to minimize the size of the
search tree, rather than to place the solutions on the left side of the tree, hence,
it is a “weak” heuristic as far as our analysis is concerned. Using conf = 0.66
and 0.5 to reflect this clearly produce higher solution finding efficiency than
conf = 1, giving 1.33 and 1.26 vs 1.15 respectively. However, for the Photo
problem, there are so many optimal solutions in the search tree that one gets
found extremely quickly regardless of which strategy is used, and hence finding
the optimal solution faster has no real effect on total runtime.

The results for Queens-Armies show little difference depending on confidence.
Clearly the heuristic is better than random at finding an optimal solution, and
solution finding efficiency degrades slightly as we ignore the heuristic. But the
overall nodes searched are almost identical for all confidence values.

In our second set of experiments we examine the efficiency of our algorithm
for three satisfaction problems from Gecode’s examples [8]. The problems are:
n-Queens, Knights, and Perfect-Square.

The sequential version solved very few instances of n-Queens and Knights.
Furthermore, all those solves are extremely fast (< 3 sec) and are caused by
the search engine finding a solution at the very leftmost part of the search tree.
Most of the time spent in those runs is from travelling down to the leaf of the
search tree rather than actual search and is not parallelizable, thus comparison
of the statistics for the parallel vs sequential algorithms on those instances is not
meaningful as there is very little work to parallelize. The number of instances
solved is the more interesting statistic and is a better means of comparison. The
parallel algorithm beats the sequential algorithm by an extremely large margin
in terms of the number of instances solved.

n-Queens and Knights both have very deep subtrees and thus once the se-
quential algorithm fails to find a solution in the leftmost subtree, it will often end
up stuck effectively forever. Modelling the fact that the branching heuristic is



Confidence based Work Stealing 167

Table 3. Experimental results using accurate confidence values, where we follow the
confidence value to degree α.

Golomb-Ruler 12
α Nodes AlgE
Seq 5.31M —
1 2.24M 2.37
0.5 3.48M 1.53
0 4.27M 1.24
-0.5 10.8M 0.49
-1 10.6M 0.50

Golomb-Ruler 13
α Nodes AlgE
Seq 71.0M —
1 53.2M 1.34
0.5 57.6M 1.23
0 61.9M 1.15
-0.5 74.8M 0.95
-1 111M 0.64

very weak at the top by using conf = 0.5 clearly produce a super linear speedup.
The parallel algorithm solves 100 out of 100 instances of n-Queens compared to
4 out of 100 instances for the sequential algorithm or the parallel algorithm with
conf = 1. The speedup cannot be measured as the sequential algorithm does not
terminate for days when it fails to find a solution quickly. Similarly the parallel
algorithm with conf = 0.5 solved 21 instances of Knights compared to 7 for the
sequential and the parallel version with conf = 1.

Perfect Square’s heuristic is better than random, but is still terribly weak.
Using conf = 0.5 to model this once again produces super linear speedup, solving
82 instances out of 100 compared to 15 out of 100 for the sequential algorithm.
We can compare runtimes for this problem as the sequential version solved a
fair number of instances and those solves actually require some work (483 sec
on average). The speedup in this case is 54 using 8 threads.

So far, we have tested the efficiency of our algorithm using simple confidence
models where the confidence value is the same for all nodes. This is the most
primitive way to use our algorithm and does not really illustrate its full power.
We expect that our algorithm should perform even better when confidence values
specific to each node are provided, so that we can actually encode and utilise
information like, the heuristic is confident at this node but not confident at
that node, etc. In our third set of experiments, we examine the efficiency of our
algorithm when node specific confidence values are provided.

Due to our lack of domain knowledge, we will not attempt to write a highly
accurate confidence heuristic. Rather, we will simulate one by first performing an
initial full search of the search tree to find all solutions, then produce confidence
estimates for the top few levels of the search tree using several strategies like,
follow the measured solution density exactly, follow it approximately, ignore it,
go against it, etc, to see what effect this has on runtime. Let α quantify how
closely we follow the measured confidence value and let conf be the measured
confidence value. Then we use the following formula for our confidence estimate:
conf ′ = α× conf + (1− α)× 0.5. If α = 1, then we follow it exactly. If α = −1,
we go against it completely, etc. We use the Golomb-Ruler problem (see [8]) for
our experiment as the full search tree is small enough to enumerate completely.
The results are shown in Table 3.

The results show that using confidence values that are even a little biased
towards the real value is sufficient to produce super linear speedup. And not
surprisingly, going against the real value will result in substantial slowdowns.
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6 Conclusion

By analysing work stealing schemes using a model based on solution density, we
were able to quantitatively relate the strength of the branching heuristic with
the optimal place to work steal from. This leads to an adaptive work stealing
algorithm that can utilise confidence estimates to automatically produce “op-
timal” work stealing patterns. The algorithm produced near perfect or better
than perfect algorithmic efficiency on all the problems we tested. In particular,
by adapting to a steal high, interleaving search pattern, it is capable of produc-
ing super linear speedup on several problem classes. The real efficiency is lower
than the algorithmic efficiency due to hardware effects, but is still quite good at
a speedup of at least 4-5 at 8 threads. Communication costs are negligible on all
problems even at 8 threads.
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A Expected Search Time Calculation

Calculating the expected search time requires a double integration of a hybrid
function. Since this is rather difficult we will pick a simple solution density
probability distribution. Suppose the solution density probability distribution is
uniform, i.e. when the solution density estimate is A, there is an equal chance of
the actual value being anything from 0 to A. The real solution density values are
actually discrete as there can only be a whole number of solutions, but for ease
of integration we leave it as a continuous function. This probability distribution
satisfies our criteria that there is a large error in the estimate and that there is
a substantial chance that it is actually 0. Suppose the solution density estimates
for the left and right branch are A and B respectively, and that they each have n
nodes. Suppose also the solutions are randomly distributed among the n nodes.
We know that when there are m items randomly located in n locations, the
expected number of locations to look before we find one of them is given by
n+1
m+1 . Thus if a is the real solution density in the left branch, the expected time
to find a solution in the left branch is n+1

an+1 ≈
n

an+1 = 1
a+ 1

n

. Suppose we divide up
our processing power such that p units is sent down the left branch, and (1− p)
units is sent down the right branch. The expected number of nodes searched
will depend on which of the branches yield a solution first, thus for real solution
density values of a and b for the left and right branch, it is given by the hybrid
function:

min(
1

p(a+ 1
n )
,

1
(1− p)(b+ 1

n )
) (4)

The expected number of nodes to be searched for solution density estimates
A and B for the left and right branch respectively, given a uniform solution
density probability distribution will then be given by:

1
AB

∫ A

0

∫ B

0

min(
1

p(a+ 1
n )
,

1
(1− p)(b+ 1

n )
)db da (5)

To evaluate this, we need to split the integral into two domains corresponding
to the two halves of the hybrid function. The boundary of the hybrid function
is given by:

p(a+ 1
n ) = (1− p)(b+ 1

n )

⇒ a = 1−p
p (b+ 1

n )− 1
n

or b = p
1−p (a+ 1

n )− 1
n

There are four cases depending on whether the boundary of the hybrid func-
tion intersects the a or the b axis and whether it intersects the a = A line or the
b = B line. For p > 0.5 and p(A + 1

n ) > (1 − p)(B + 1
n ), which corresponds to

intersecting the b axis and the b = B line, we have:
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1
AB

∫ A

0

∫ B

0

min(
1

p(a+ 1
n )
,

1
(1− p)(b+ 1

n )
)dbda

= 1
AB [

∫ B

p
(1−p)n

− 1
n

∫ 1−p
p (b+ 1

n )− 1
n

0

1
(1− p)(b+ 1

n )
dadb+

∫ 1−p
p (B+ 1

n )− 1
n

0

∫ p
1−p (a+ 1

n )− 1
n

0

1
p(a+ 1

n )
dbda+∫ A

1−p
p (B+ 1

n )− 1
n

∫ B

0

1
p(a+ 1

n )
dbda

= 1
AB [

∫ B

p
(1−p)n

− 1
n

1
p
− 1

(1− p)n(b+ 1
n )
db+

∫ 1−p
p (B+ 1

n )− 1
n

0

1
1− p

− 1
pn(a+ 1

n )
da+∫ A

1−p
p (B+ 1

n )− 1
n

B

p(a+ 1
n )
da

= 1
AB [ [

B

p
− 1

(1− p)n
ln(B +

1
n

)− 1
(1− p)n

+
1
pn

+
1

(1− p)n
ln(

p

(1− p)n
)] +

[
B + 1

n

p
− 1

(1− p)n
− 1
pn

ln(
1− p
p

(B +
1
n

)) +
1
pn

ln(
1
n

)] +

[
B

p
ln(A+

1
n

)− B

p
ln(

1− p
p

(B +
1
n

))]]

= 1
AB [

2(B + 1
n )

p
− 1
n

ln(
1− p
p

(nB + 1)) +

B

p
ln(

p

1− p
(nA+ 1)
(nB + 1)

)− 2
(1− p)n

− 1
(1− p)n

ln(
1− p
p

(Bn+ 1))]

If we are reasonably high up in the search tree, which is where the results of
this calculation is most important, then we can assume that we are expecting
a potentially large number of solutions down each branch, e.g. An,Bn � 1.
In that case, all of the terms containing 1/n are much smaller than the terms
containing A or B and the expression simplifies to:
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1
AB

[2
B + 1

n

p
− 1
n

ln(
1− p
p

(nB + 1)) + (6)

B

p
ln(

p

1− p
(nA+ 1)
(nB + 1)

)− 2
(1− p)n

− 1
(1− p)n

ln(
1− p
p

(Bn+ 1))]

=
1
AB

[
2B
p

+
B

p
ln(

pA

(1− p)B
)]

=
1
pA

(2 + ln(
pA

(1− p)B
)) (7)

The calculation for the case p < 0.5 and p(A+ 1
n ) > (1−p)(B+ 1

n ) is similar,
and after the simplification, yields the same equation as (6). Since the problem
is symmetric with respect to A and B, and p and (1− p), we can trivially derive
the equation for the other two cases, which is:

1
(1− p)B

(2 + ln(
(1− p)B
pA

)) (8)

Thus the full function for calculating the expected number of nodes searched
given A, B and p is given by the hybrid function:

f(A,B, p) =

{
1
pA (2 + ln( pA

(1−p)B )) for pA > (1− p)B
1

(1−p)B (2 + ln( (1−p)B
pA )) otherwise
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Abstract. The overhead of matching CHR’s multi-headed rules is al-
leviated by constraint store indexing. The attributed variable interface
provides efficient means of indexing on logical variables. Current state-
of-the-art indexing strategies for ground terms use hash tables. However,
the hash tables incur considerable performance overhead, especially when
frequently computing hash values for large terms.
We propose a high-level approach which improves the efficiency of ground
term indexing. In this approach, we introduce a new data representa-
tion for ground terms, inspired by attributed variables, that avoids the
overhead of hash-table indexing. The experimental evaluation establishes
the usefulness of our representation, but indicates a high cost of map-
ping between this representation and Prolog’s standard terms. Thus, we
reuse previously implemented post-processing program transformations
to compensate for this overhead. We compare our approach with the
current state of the art, and give measurements of its effectiveness in the
K.U.Leuven CHR system.
keywords: Constraint Handling Rules, indexing, program transforma-
tion, term representation, attributed variables

1 Introduction

Constraint Handling Rules (CHR) [4] is a high-level rule-based declarative pro-
gramming language, usually embedded in a host language such as Prolog or
Haskell. Typical applications of CHR include scheduling [1] and type check-
ing [14]. CHR features multi-headed rules, i.e., rules with multiple predicates on
the left-hand side (the head), which sets it apart from conventional declarative
languages, e.g., Prolog or Haskell, where a rule’s head admits only one predicate
or function.

Multi-headed rules afford much of CHR’s expressive power by allowing to
easily combine information from distinct constraints via matching. However, as
the matching procedure significantly affects the complexity of rule evaluation [5],
this source of expressiveness often leads to performance bottlenecks. This effect is

? Post-Doctoral Researcher of the Fund for Scientific Research - Flanders (Belgium)
(F.W.O. - Vlaanderen)
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borne out by the approximative complexity formula of [5], where the multiplicity
of rule’s head appears in the exponent.

Aware of this problem, CHR developers have built data structures supporting
efficient indexing on variables (attributed variables [7]) and ground data (search
trees [8]). With [12] came the realization that O(1) indexing is essential for
implementing CHR algorithms with optimal complexity, which led to the use of
hash tables for indexing ground data, and the general result that the complexity
of CHR systems equals that of RAM machines [13]. CHRd [9] has slimmed the
original attributed variable indexing for faster evaluation of the class of direct-
indexed CHR and use in a tabulated environment.

In this paper we advance the research on CHR indexing with a high-level ap-
proach to efficient indexing on ground terms. Specifically, we make the following
contributions:

– propose an alternative to hash tables for indexing ground data, which does
not suffer from amortization-related overhead (Section 3),

– reuse previously developed post-processing program transformations [10] to
reduce the disadvantages of the new approach (Section 4),

– demonstrate the measurements of the usefulness of the presented technique
in K.U.Leuven CHR system (Section 5), and

– provide an implementation of the presented techniques (available online at
http://www.cs.kuleuven.be/~toms/CHR/AttributedData/).

The presentation begins with an overview of CHR and indexing in Section 2.
Section 3 describes our new representation for ground terms, the conversions
between the new representation and Prolog terms, and the program transfor-
mation for introducing these conversions. Section 4 discusses the overhead of
the conversions, and treats it with the post-processing program transformation.
Section 5 presents the experimental evaluation of the proposed transformations,
Section 6 relates our approach to other work, and Section 7 concludes.

2 Preliminaries

CHR is a language of multi-headed rewriting rules that is particularly well-
suited for specifying custom constraint solvers at a high-level. A CHR program
prescribes the transformations of a constraint store (a collection of user-defined
constraints), based on the built-in constraints of the host language. For the
purpose of this paper we consider Prolog as the host language; the built-in
constraints are Prolog predicates and equations (unifications) of Herbrand terms.

CHR Syntax. A CHR program is a finite set of rules of the form:

label @ Head ?=> Guard | Body

The label names the rule and may be omitted along with the trailing @. The
arrow ?=> denotes the kind of transformation a rule defines, and may be either
<=> or ==> (we use ?=> as a shorthand notation for both forms). There are
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:- chr_constraint arrow/2, merge/2.

pick @ merge(N,A), merge(N,B) <=> A<B | M is N+1, arrow(A,B), merge(M,A).

join @ arrow(X,A) \ arrow(X,B) <=> A<B | arrow(A,B).

Table 1. An example CHR program encoding the merge-sort algorithm

three kinds of CHR rules. The most general are simpagation rules of the form:
H1 \ H2 <=> G | B, where H1 and H2 are sequences of user-defined constraint
terms (the d constraint terms. A rule specifies that when constraints in the store
match H1 and H2 and the guard G holds, the constraints that match H2 can be
replaced by the corresponding constraints in B. The literal true represents an
empty sequence of constraint terms. The guard part, G |, may be omitted when
G is empty.

A simplification rule, which has the form: H2 <=> G | B, specifies that when
the stored constraints match the head, and the guard holds, the head constraints
can be replaced by the body constraints. A rule of this form can be represented
by a simpagation rule: true \ H2 <=> G | B.

A propagation rule, which has the form: H1 ==> G | B, specifies that when the
stored constraints match the head, and the guard holds, the body constraints can
be added to the store. A rule of this form can be represented by a simpagation
rule: H1 \ true <=> G | B.

Example 1. Consider the CHR program in Table 1. The simplification rule pick
states that each pair of stored constraints matching merge(N,A) and merge(N,B)
such that A<B should be replaced with the pair of constraints arrow(A,B) and
merge(M,A) where M=N+1. The simpagation rule join states that, in the pres-
ence of two constraints arrow(X,A) and arrow(X,B) such that A<B, the con-
straint arrow(X,B) should be replaced by arrow(A,B).

The program, by Thom Frühwirth, encodes the classical merge-sort algo-
rithm. The algorithm is executed in the bottom-up fashion: the pick rule selects
two sublists of elements at the same level for merging, whereas the join rule
merges two selected sublists together.

CHR Semantics. CHR has a well-defined declarative as well as operational se-
mantics [4, 3, 9]. The declarative interpretation of a CHR program is given by
the set of universally quantified formulas corresponding to the CHR rules, and
an underlying consistent constraint theory.

The original operational interpretation of a CHR program [4] is a non-deter-
ministic transition system. The transitions are made when an unsolved constraint
is added to the store, or by firing any applicable program rule.

The refined operational semantics [3]3 defines a more deterministic transition
system, specifying, among others, that rules are tried in textual order. An ex-

3 followed by most CHR implementations
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〈[merge(1, 80), merge(1, 40), merge(1, 50), merge(1, 70)], ∅〉 (1)

�∗ 〈[merge(1, 40), merge(1, 50), merge(1, 70)], {merge(1, 80)}〉 (2)

�pick 〈[arrow(40, 80), merge(2, 40), merge(1, 50), merge(1, 70)], ∅〉 (3)

�∗ 〈[merge(2, 40), merge(1, 50), merge(1, 70)], {arrow(40, 80)}〉 (4)

�∗ 〈[merge(1, 50), merge(1, 70)], {arrow(40, 80), merge(2, 40)}〉 (5)

�∗ 〈[merge(1, 70)], {arrow(40, 80), merge(2, 40), merge(1, 50)}〉 (6)

�pick 〈[arrow(50, 70), merge(2, 50)], {arrow(40, 80), merge(2, 40)}〉 (7)

�∗ 〈[merge(2, 50)], {arrow(40, 80), merge(2, 40), arrow(50, 70)}〉 (8)

�pick 〈[arrow(40, 50), merge(3, 40)], {arrow(40, 80), arrow(50, 70)}〉 (9)

�join 〈[arrow(50, 80), merge(3, 40)], {arrow(50, 70), arrow(40, 50)}〉 (10)

�join 〈[arrow(70, 80), merge(3, 40)], {arrow(50, 70), arrow(40, 50)}〉 (11)

�* 〈[merge(3, 40)], {arrow(50, 70), arrow(40, 50), arrow(70, 80)}〉 (12)

�* 〈[ ], {arrow(50, 70), arrow(40, 50), arrow(70, 80), merge(3, 40)}〉 (13)

Table 2. An example derivation for the merge-sort program

tended version of the same transition system is used by the set-based operational
semantics [9].

Example 2. The merge-sort program from Example 1 constructs a sorted list
from a collection of sorted sublists. The head of a sorted sublist is given by
means of a merge(L,N) constraint, where 2L−1 is the sublist’s length and N is
the sublist’s first element. The arrow/2 constraints model the edges between the
nodes of a sorted sublist.

Table 2 outlines an example derivation for the program under the refined
operational semantics. For the clarity of the presentation, the irrelevant transi-
tions and the parts of the execution state not affected by the derivation have
been omitted. For each presented derivation step, the table shows the current
goal, with the active constraint underlined, and the contents of the constraint
store. In the initial goal each sublist consists of a single element, and hence
all sublists have the same length (equal to 21−1). The nodes are collected in
the constraint store until two same-length nodes match the head of the pick
rule. The rule transforms such two nodes into a sorted sublist and increments
the length. The join rule sorts the nodes within each individual sublist. At
the end of the derivation, the constraint store contains a collection of arrow/2
constraints representing the sorted list.

CHR Indexing. Indexing in CHR facilitates retrieval of suspended constraints
to match partner constrains in rule heads. Efficient (constant-time) constraint
store indexing has been traditionally implemented by means of attributed vari-
ables [6], which provide a way to associate Prolog variables with mutable data
represented as arbitrary terms. In the context of CHR, a variable’s attribute
corresponds to those stored constraints, in which the variable is involved. The
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attribute term has the form: attr(Index 1, . . . ,Indexn), where each Index i is a
data structure, typically a list, that contains all constraints on the variable with
a particular constraint symbol. The presence of all variable’s constraints in its
attribute expedites matching when the variable is shared among the constraints
in the heads of the rules.

Constraint store indexing based on attributed variables is efficient, but not al-
ways practical—for example, it is not feasible for ground constraints, in which no
variables are involved. For that reason, in addition to using variable attributes,
early implementations of CHR accumulated constraints in global, unordered
lists. This representation supported O(1)-time insertion of the constraints, how-
ever, constraint lookup and deletion were—in the worst case—linear in the store
size. The introduction of hash tables [12] facilitated indexing on ground data,
yielding amortized constant time complexity for all operations. A hash-table
constraint store is defined as an array, in which every element represents a set
of colliding constraints (i.e., constraints that evaluate to the same value of the
hash function). The table is initialized to a small size, and dynamically expanded
whenever the number of constraints exceeds given threshold. The expansion in-
volves replacing the current array with an array of doubled size, and re-evaluating
the hash function for all elements. Frequent evaluation of the hash function, the
number of colliding constraints, and the resizing operation incur constant, but
potentially considerable, overhead on processing the hash tables, which makes
them altogether slower than attributed variables.

3 Attributed Data

In this section, we consider constraints containing arguments that are ground
terms. If such arguments are matched against each other in rule heads, then
constant-time matching is realized by means of a hash-table index on these
ground arguments.

As an alternative to hash tables, we propose attributed data, which provide
O(1) indexing with constant factors closer to those of attributed variables. The
key insight underlying our approach is that the CHR run time can internally use
an attributed-variable–like representation for externally provided ground terms.

3.1 Indexing Key Declarations

In our approach, ground arguments of the constraints that are matched against
each other in rule heads—and hence serve as indexing keys—are internally rep-
resented using a special data type key type. The programmers indicate such con-
straint arguments using the new annotation ‘as chr key’. The specifier ‘+type
as chr key keytype’ states that the argument in question is ground (+), and uses
type as its external representation and keytype as its internal representation. The
abstract key type for a given indexing key in a CHR program is generated auto-
matically by the CHR compiler based on the occurrence pattern of that key in
the heads of the program rules.



An Efficient Term Representation for CHR Indexing 177

Example 3. In the merge-sort program from Example 1, since the second argu-
ment of merge/2 as well as both arguments of arrow/2 are always ground and
correspond to the numbers being sorted, a programmer may decide to capture
all of them using the same internal representation. Denoted as elem key, this
representation is declared as follows:

:- chr_constraint
merge(+int,+int as_chr_key elem_key),
arrow(+int as_chr_key elem_key,+int as_chr_key elem_key).

3.2 Indexing Key Representation

The instances of the new data type resemble the attribute terms of attributed
variables. The key type representation, however, does not include the actual
variables to avoid unnecessary indirection.

The internal representation I of a ground indexing key in a CHR program
is a term:

I = key(E,Index 1, . . . ,Indexn)

where each Index i is an index on an argument position of that key in a head
constraint of some program rule, and E is the key’s original external value.

The number and form of the indexes in the internal representation for a
particular key is orthogonal to the use of attributed data, and is determined
by the CHR compiler based on the form of the rule heads and the subset of
head constraints available when looking for a matching partner. For a detailed
discussion of this issue we refer the reader to Section 3.2 of [8].

For the purpose of this paper we assume that the default representation of
argument indexes Index i is a flat list of constraint suspensions, with predefined
operations for adding and removing the constraints. The main structure itself
can be updated (e.g. for replacing an old index with a new one) by the destructive
argument update predicate setarg/3 implemented by most Prolog systems.

Example 4. Since two of the three argument positions declared as indexing keys
in Example 3 are never used to retrieve partner constraints, the CHR compiler
decides that only one index—for the first argument of arrow/2— will be ex-
ploited to speed-up the matching of the join rule.

Hence, given the number 80 as the external representation, the corresponding
internal representation, assuming that the single index is empty, is key(80,[]).

Definition 1 (Conversion Functions). For a ground indexing key type t, the
injective conversion function φ maps an external value tE of t onto the internal
representation tI of t:

φ(tE) =


h[tE ] if h[tE ] is defined
tI otherwise

such that tI = key(tE,∅1, . . . ,∅n)
and h := h[tE → tI]
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where h is a global hash table relating the external values of ground indexing
keys to their known internal representations. The injective conversion function
ψ = φ−1 maps the internal representations tI onto the external values tE:

ψ(key(tE,Index 1, . . . ,Indexn)) = tE

Example 5. The following internal representations are initially computed for the
list of numbers given in the query in Example 1: φ(80) = key(80,[]), φ(40)
= key(40,[]), φ(50) = key(50,[]), φ(70) = key(70,[]). Figure 1 depicts
these internal representations, as well as the example hash table (with a linked
list of buckets) underlying φ.

Hashtable

80   

50   

70   

40   

key(80,  )

key(50,  )

key(70,  )

key(40,  )

Fig. 1. Internal representation of 80, 40, 50 and 70, and hash table for φ.

3.3 Source-to-Source Transformation

In this section we define a source-to-source transformation for mapping between
the external and internal representations of ground indexing keys. Without loss
of generality, we only formalize the transformation for a single key type. Multiple
keys are easily supported by repeated application of the transformation, while
making sure to avoid name clashes.

The conversion rule Φ applies the conversion function φ at run time:

Definition 2 (Conversion Rule). The conversion rule Φ replaces the external
value of a ground indexing key argument ti in a constraint term c/n with its
internal representation t′ = φ(t):

c(t1,. . .,ti,. . .,tn) <=> t′i = φ(ti), c′(t1,. . .,t
′
i,. . .,tn).

Example 6. The dynamic conversion rule for the arrow/2 constraint from the
merge-sort program is of the form:
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arrow(X,Ne) <=> Ni = φ(Ne), arrow’(X,Ni).

Definition 3 (Converted Rule). The converted CHR rule is defined as:

φ(H ?=> G | B) = H ′ ?=> G′, G | B

where

– H ′ differs from H in that any constraint c(t1, . . . , ti, . . . , tn) is replaced by
its converted form c′(t1, . . . , xi, . . . , tn), where xi is a fresh variable.

– the new guard G′ relates the original arguments of each constraint to the new
ones: G′ contains one ti = ψ(xi) for each converted argument.

Example 7. The converted join rule from the merge-sort program is of the form:

join’ @ arrow’(X1,AI) \ arrow’(X2,BI) <=>
X = ψ(X1), X = ψ(X2),
A = ψ(AI), B = ψ(BI), A<B |
arrow(A,B).

Definition 4 (Converted Program). The converted CHR program φ(P ) is
defined as the set of converted rules R comprising the original program, the
functions φ and ψ, and the encoding of Φ:

φ(P ) = φ(R) ∪ φ ∪ ψ ∪ Φ

3.4 Elaborated Example

Consider the merge-sort program, and the query

?- merge(1,80), merge(1,40), merge(1,50), merge(1,70).

evaluated as shown in Table 2. In the execution state (9), arrow(40,50) is the
active constraint, whereas arrow(40,80) and arrow(50,70) are suspended in
the constraint store. In the following derivation step, the join rule is triggered,
and arrow(40,80) is retrieved from the store to serve as the partner constraint
to match the rule’s head.

Figure 2 illustrates two instances of this situation: (a) with indexing based on
a hash table, and (b) with indexing based on attributed data. In the former case,
retrieving the required partner constraint involves hashing the number 40 into
the table, traversing the bucket list to find the appropriate bucket, and locating
the constraint within the bucket. In the latter case, the internal representation
key(40,L) provides direct access to the linked list containing arrow(40,80).
Clearly, using attributed data avoids the overhead of hashing into the table and
of traversing the bucket list.
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Hashtable

arrow(40,50)

arrow(40,80)

arrow(50,70)

80   

50   

70   

40   

(a) Hashtable

arrow'( , )

key(40,  )

arrow'( , )

key(80,  ) key(50,  )

arrow'( , )

key(70,  )

(b) Attributed Data

Fig. 2. Situation during the merge-sorting of 80, 40, 50 and 70.
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4 Post-Processing

The experimental results in Section 5 indicate that the performance improve-
ment obtained by better indexing is offset, or in some cases even surpassed,
by the run-time overhead of applying the conversion functions. In this section
we outline a transformation that statically eliminates most of this overhead; it
was previously used to avoid similar performance issues in other transformations
based on term flattening [10]. The effectiveness of the transformation is borne
out by the benchmarks in Section 5.

original converted

c(X)
φ

**UUUUUUUUUUUUUUU

c′(Y )
ψ

ttiiiiiiiiiiiiiiii

c(Z)
φ

**UUUUUUUUUUUUUUUU

c′(U)
ψ

ssgggggggggggggggg

. . .

(a) Actual Situation

original converted

c(X)
φ

))SSSSSSSSSSSSSSSS

c′(Y )

��
c′(U)

��. . .

(b) Ideal Situation

Fig. 3. Transitions between the original and converted constraints

Alternating the conversions between the internal and external argument rep-
resentations is a major source of runtime overhead. In a typical scenario (Fig-
ure 3(a)), an external value is converted into the internal representation and
matched in a head of a rule, then it is converted back in the rule’s body for
calling a new constraint, converted again to match another rule, and so on. To
avoid this overhead, the transformed rules should operate solely on the inter-
nal representation of the arguments, whereas the external values should be used
only by the queries external to the programs. We propose a four-step rewriting
procedure that aims to trigger this ideal scenario (Figure 3(b)). Execution of a
program enhanced with the procedure consists of two phases:

(1) conversion of an argument’s external value to the internal representation,
and

(2) processing of the internal representation.

For all but the most trivial programs, we expect the runtime cost of (1) to be
marginal with respect to the cost of (2).
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Our rewriting procedure comprises the following steps.

Step 1: Make conversion explicit.
Unfold constraint calls according to the conversion rules.

Example 8. Consider the join rule from the program in Table 1:

arrow(X,A) \ arrow(X,B) <=> A < B | arrow(A,B).

After conversion, the rule has the form:

arrow’(XI1,AI) \ arrow’(XI2,BI) <=>
X = ψ(XI1), X = ψ(XI2),
A = ψ(AI), B = ψ(BI),
A < B | arrow(A,B).

By applying Step 1 to the above rule we obtain:

arrow’(XI1,AI) \ arrow’(XI2,BI) <=>
X = ψ(XI1), X = ψ(XI2),
A = ψ(AI), B = ψ(BI),
A < B | arrow’(φ(A),φ(B)).

We refer the reader to the work of Tacchella et al. [15] for the formal
definition and correctness proof of unfolding of CHR rules.

Step 2: Eliminate identity conversion.
Apply the following equation from left to right:

∀t : φ ◦ ψ(t) = t

The transformation is valid based on the property that φ is the inverse of
ψ.

Example 9. Applying Step 2 to the last rule in Example 8 yields:

arrow’(XI1,AI) \ arrow’(XI2,BI) <=>
X = ψ(XI1), X = ψ(XI2),
A = ψ(AI), B = ψ(BI),
A < B | arrow’(AI,BI).

Step 3: Convert external values of matchings to the internal representations.

Apply the equivalence from left to right:

∀t1, t2 : ψ(t1) = ψ(t2)⇔ t1 = t2

The transformation is valid based on the property that ψ is injective.
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Example 10. Applying Step 3 to X in the rule from Example 9 yields:

arrow’(XI,AI) \ arrow’(XI,BI) <=>
X = ψ(XI),
A = ψ(AI), B = ψ(BI),
A < B | arrow’(AI,BI).

Step 4: Clean up.
Drop unused conversion guards and refold the unfolded constraint calls
that could not be simplified.

Example 11. Applying Step 4 to the rule in Example 10 yields:

arrow’(XI,AI) \ arrow’(XI,BI) <=>
A = ψ(AI), B = ψ(BI),
A < B | arrow’(AI,BI).

In general, these rewriting steps are not sufficient to enforce the ideal scenario of
Figure 3(b). However, as the results in Section 5 show, they have good practical
effects.

5 Evaluation

We implemented our approach in K.U.Leuven CHR [11] on SWI-Prolog [16]. The
implementation consists of two components: (1) a pre-processor, which trans-
forms a CHR program with key annotations into its converted form, and (2)
the actual code generator of the CHR compiler, which generates attributed data
indexing instructions and emits definitions for the conversion functions. Note
that the pre-processor performs the transformations for all keys simultaneously
rather than sequentially. In doing so, it avoids generating multiple intermediate
conversion rules for constraints involving more than one key type.

We have evaluated our implementation on several standard CHR bench-
marks. All run times, given in seconds for the original programs and relative
to the original for the transformed versions, were measured on a MacBook Pro
Intel Core Duo 1.83 GHz, with 1 GB RAM. Our benchmark suite includes the
following programs:

– chrg, a CHRg parser with an exponential number of parses
– dijkstra, Dijkstra’s shortest path algorithm
– fib, computation of fibonacci numbers, with effective memoing
– fib2, computation of fibonacci numbers, with ineffective memoing
– mergesort, mergesort algorithm
– flat ram, RAM machine interpreter, flattened by symbol specialization [10]
– reverse, reversing chain of list cells
– turing, Turing machine simulator, running the copy program
– uf opt, optimal union-find algorithm
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index representation
benchmark hash table attr. data relative post-processed relative

chrg 2.17 2.10 96.8% 1.58 72.8 %
flat ram 4.69 4.31 91.9% 2.50 53.3%
mergesort 3.33 4.89 146.8% 1.85 55.6 %
reverse 2.55 3.25 127.4% 1.92 75.3%
uf opt 0.34 0.38 111.8% 0.25 73.5%
turing 1.50 1.31 87.3% 1.19 79.3%
wfs 1.32 0.88 66.7% 0.85 64.4%

fib 1.24 1.53 123.4% 1.52 122.6%
fib2 1.61 1.30 80.7% 1.05 65.2%

dijkstra 2.26 4.52 200.0% 3.53 156.2%

Table 3. K.U.Leuven CHR run times (in sec.) for attributed data benchmarks

– wfs, well-founded semantics algorithm.

For each benchmark, we have manually added the as chr key annotations
for the argument positions according to the following prioritized guidelines:

1. If two head constraints share more than one variable, we do not annotate the
corresponding argument positions of those variables, because they are better
served by multi-argument indexing. For instance, consider a rule head of the
form c(X,Y), d(Y,X). Although indexing on a single argument, i.e., using
either X or Y, does work, indexing on the combination of both arguments is
usually more efficient.

2. If two head constraints share exactly one variable, we annotate the corre-
sponding argument positions of that variable with the same key.

3. If no variables are shared, no index is required.

Most benchmarks require a single key type. The exceptions are ram flat and
turing, each using two key spaces to represent instruction labels/states and data
addresses, and wfs with separate key spaces for atoms and clause identifiers.

Table 3 lists the run-time results of exploiting attributed data in K.U.Leuven
CHR, measured for plain hash tables, plain attributed data, and attributed data
with post-processed rule bodies.

The first block of seven benchmarks clearly shows the positive effects of our
approach. Although, the attributed data used alone causes a slow-down (up to
about 50% for mergesort), when augmented with post-processing, it improves
the run time by 20% to 50%.

The second block illustrates two cases of slow-downs incurred by the use of
attributed data. The first benchmark, fib, performs one hash-table lookup per
new constraint, and the initial attributed data conversion preserves that count.
Hence, the attributed data manipulation is pure overhead (25%). The second
benchmark, fib2, modifies the simpagation rule of fib:

fib(N,F1) \ fib(N,F2) <=> F1 = F2.

into a simplification rule:
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fib(N,F1), fib(N,F2) <=> F1 = F2, fib(N,F1).

This modification causes the parameter N to be reused in the new call in the rule’s
body. As a consequence, attributed data requires only one hash-table lookup for
every two new constraints, which results in a visible speed-up.

The second slow-down, in dijkstra, results form a limitation of our cur-
rent implementation, which does not allow multi-argument indices involving
attributed data arguments. For this benchmark, such a multi-argument index
would be more efficient than a single-argument attributed data index.

6 Related Work

Several programming languages define features that resemble our concept of
attributed data. The as chr key annotation is related to (primary, secondary
and foreign) keys in database tables and indexing declarations in some Prolog
systems.

The conversion function φ relates to hash consing—a technique, originated in
Lisp, for mapping to and representing terms by unique (hash) values. Although
the main aim of hash consing is to reduce memory consumption by increased
sharing, it is also used to speed up equality tests.

The solver types facility of Mercury [2] also imposes a dual view of constraint
arguments. The internal representation type is defined by the library program-
mer, rather than generated automatically. Externally, the solver type is abstract,
but coercion functions should be provided for external representations. Finally,
a folklore optimization technique in C/C++ adds (pointer) fields to structures
to compactly represent lists (and other data types) that contain them.

7 Conclusion

We have presented attributed data—a new term representation that facilitates
improving the efficiency of CHR indexing at a high level. A complementary post-
processing procedure compensates for possible overhead of conversions between
the new representation and the standard representation of Prolog terms.

Our technique has been implemented for the K.U.Leuven CHR system on
SWI-Prolog. Evaluation on a set of benchmarks shows that using attributed
data enables performance improvement, and that post-processing is critical to
fully realize this potential.

As a further optimization of the approach, we could directly expose the ab-
stract key types in the situations when there is no preference for the external
argument representation. For example, programmers often use variables and in-
tegers as identifiers in CHR constraints. The nature of the data type is of no
concern, as long as it supports unique value creation and value comparison. The
appropriate choice of the abstract key type could eliminate unnecessary indirec-
tions of attributed variables or hash tables.

Two other interesting avenues for future work involve introducing support
for automated inference of key type annotations, and extending attributed-data
indexing to combinations of multiple arguments.



186 Beata Sarna-Starosta, Tom Schrijvers

Acknowledgments

We are grateful for the helpful comments of the anonymous reviewers.

References

1. Slim Abdennadher and Michael Marte. University course timetabling using con-
straint handling rules. Applied Artificial Intelligence, 14(4):311–325, 2000.

2. Ralph Becket et al. Adding constraint solving to Mercury. In 8th International
Symposium on Practical Aspects of Declarative Languages (PADL), 2006.

3. Gregory J. Duck, Peter J. Stuckey, Maŕıa Garćıa de la Banda, and Christian
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About Redundant Sudoku Rules
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Abstract. The rules of Sudoku are often specified by twenty seven
all different constraints, which we will call big rules. It is shown that
many subsets of six of these big rules are redundant, and that six is
maximal. Any all different constraint can be specified as a (quadratic
sized) set of binary inequalities, which we will call small rules. The re-
dundancy of small rules is also investigated.

1 Introduction

A very common formulation of the 3x3 Sudoku [1] rules is one in which (a)
all numbers in the puzzle are said to be in [1..9] and (b) the numbers in each
column, row and box are said to be different. A CLP-program would typically
code the latter as 27 all different constraints of 9 variables each: we will refer
to these constraints as the big rules. We will use often the word Sudoku in italics
as an abbreviation of the 27 big rules.

Any all different constraint can also be formulated in terms of binary in-
equality constraints. For example, all different([A,B,C,D]) is the conjunc-
tion of the constraints A 6= B, A 6= C, A 6= D, B 6= C, B 6= D and C 6= D. We
will refer to these binary 6=-constraints as the small rules. As we will see, Sudoku
can be rewritten as 810 different small rules.

For most people it is intuitively clear that some of the small rules must be
redundant, i.e., implied by the others. It might be less obvious which ones are
redundant, let alone how many. On the other hand, often, the same people are
convinced that not a single big rule is redundant. These two issues form the
topic of this paper: what is the largest redundant set of big rules, and the largest
redundant set of small rules.

The paper proceeds as follows. We start by revising some Sudoku terminology
in Section 2. In Section 3 we introduce a pictorial representation of big Sudoku
rules that will make proofs much easier. In Section 4 we prove two positive
lemmas that can be used to easily reason about the redundancy of subsets of
the 6 big rules. In Section 5 we describe a Prolog program that systematically
applies the two positive lemmas to find all redundant sets of six big rules. While
doing this we detect 7 negative lemmas. This results in a complete classification.
In Section 6 we turn to the study of sets of seven big rules and show that none
of them are redundant. Again, our Prolog program discovers a new negative
lemma, whose proof is also presented. In Section 7, we show that at least 20%
of the small rules can be redundant, and conjecture that no more are possible.
Finally, in Section 8 we conclude and provide some historical notes.
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2 Terminology

The usual formulation of Sudoku refers to 27 regions on the board:

– the 9 rows, denoted as R1 ... R9
– the 9 columns, denoted as C1 ... C9
– the 9 boxes, denoted as B1 ... B9

as shown in the picture below. By an abuse notation we also write R3 if we mean
that the all different constraint on row R3 is enforced or true.

C1C2C3C4C5C6C7 C9C8

R1

R2

R4

R5

R7

R6

R8

R3

R9

B3B2B1

B4

B7 B8

B5 B6

B9

Individual cells of a puzzle are denoted as
A11, A12 ... A99. We use the word horizontal
(vertical) chute to refer to three horizontal (ver-
tical) boxes - the usual term is band (stack). For
instance, {B2, B5, B8} denotes a vertical chute.
In the usual specification of Sudoku, each cell is
involved in 20 small rules: 8 in the same box, 6
more in the same row and 6 more in the same
column. Since there are 81 cells, and each rule
is posted twice, there are in total 810 different
small rules. When a set S of constraints is equiv-
alent to the conjunction of all the Sudoku constraints, we use the short phrase:
S is Sudoku.

3 Representing Sets of Sudoku Rules

Given the above notation, we could easily represent sets of rules as, for example,
{R1, R2, R3, B1, B5, B9}. However, this only works well for small sets. Since
we will be dealing mostly with sets of more than 20 big rules, we develop a
graphical representation. Our representation always shows the borders of the
boxes of a Sudoku board. A missing column, row or box rule will appear as a
shaded column, row or box, respectively. Figure 1 shows an example.

Fig. 1. The left shows a Sudoku board with all 27 rules, the right shows one with only
22: {C1, C3, C4, C5, C6, C7, C8, C9, R1, R2, R3, R4, R6, R7, R8, R9, B1, B3, B4, B6, B8, B9}

The pictures provide a quick and intuitive insight into which rules are present
and which are not. Note that the absence of a rule does not mean it is violated,
simply that it has not been specified in the associated model.
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We will also use Missing(n) to denote the set {S ⊆ Sudoku|#S = 27− n}.
For example, every element of Missing(5) has 22 big rules.

We can in a similar way show the set of rules defined only for a given a chute:
this is illustrated in Figure 2.

Fig. 2. {R1, R2, R3, B1, B2, B3}, {R1, R2, R3, B1, B3} and {R1, R3, B1, B3}

4 Two Constructive Lemma’s

Lemma 1.

Proof The pictured lemma says that the set of rules {R1, R2, R3, B1, B3} implies
also B2. The proof can be given by trying to fill the chute with 27 numbers, so
that is fulfilled (and of course with all numbers being in [1..9]). Consider
first where we can place a 5. There must be exactly one 5 in R1, one 5 in R2
and one 5 in R3, so there are in total three 5’s in the chute. There is also exactly
one 5 in B1, and one 5 in B3, so the remaining 5 must be in B2. And this holds
also for the other numbers, so B2 is satisfied.

The dual of Lemma 1 is Lemma 2: we leave its proof to the reader.

Lemma 2.

The lemma is clearly trivial and we can state the fol-
lowing corollary by composing the above two lemmas:

Corollary 1.

and are both Sudoku.

Proof Glue together twice the trivial lemma with Lemma 1 or Lemma 2, and
obtain the result immediately.

It is now clear that every single big rule is, by itself, redundant !
The two lemma’s really are constructive: they show how to derive one new big

rule from a set of big rules. The following two theorems exploit that constructive
power to reason about redundancy.
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Theorem 1.

is Sudoku.

Proof We prove this by repeatedly using Lemma 1 and 2 as follows:

III I 3*I

where the labels of the arcs indicate which lemma is used, and how many times
it is used.

The proof of Theorem 2 is also left to the reader.

Theorem 2.

is Sudoku.

The theorems show that at least two elements of Missing(6) are large enough
for representing Sudoku. Note that there are many symmetric versions of the the-
orems, but we have of course chosen the ones that are visually most pleasing. In
the next section we will investigate all elements of Missing(6) that are redun-
dant.

5 A Full Classification of Missing(6)

Lemmas I and II give us a way to increase the number of big rules, as shown in
the proof of Theorem 1. We use this in the algorithm of Figure 3 (where n is a
parameter of the algorithm) to determine all elements of Missing(6) that are
redundant (i.e., those for which the algorithm will output S is Sudoku).

While the number of elements in Missing(6) is relatively small (296,010), it
is much smaller if we eliminate from Missing(6) those elements that can be ob-
tained from the spatial symmetries of Sudoku. We have programmed Algorithm
I in Prolog (of course) and run it over the (reduced) set of Missing(n) for values
of n in 2..6. To our surprise, the algorithm only got stuck for the following seven
values of C:
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for each S ∈Missing(n) do
C ← copy(S)
while Lemma 1 or Lemma 2 is applicable to C

apply it to C
if C == Sudoku

then output S is Sudoku
else output S got stuck in C

Fig. 3. Algorithm I

It is clear that if a C is not Sudoku, then any subset of C is not Sudoku either,
i.e., the S from which C was derived by lemma application, is not Sudoku. So
we set off to prove that the above sets of big rules are not Sudoku. This resulted
in the seven negative lemmas provided in the next section.

5.1 Seven Negative Lemmas

For each of the configurations C above, we can prove the negative result that C
is not Sudoku. The proof of each lemma consists of a simple picture whose details
we explain for the first proof. We expect the reader to work out the details for
the others.

Lemma 3.

is not Sudoku.

Proof

4 5 5 4

Explaining the proof: consider a completely filled out Sudoku puzzle that
satisfies the full set of big rules, and which has a 4 in A11 and a 5 in A13.
This situation is depicted in the left part of the proof. If we swap the 4 and
5 we obtain the picture on the right, where the shadows indicate the only two
big rules that are violated by the swap. Clearly, the filled out puzzle with the
two numbers swapped is not a valid solution to the full set of rules, but it only
violates C1 and C3. That proves the lemma.
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The statements and proofs of the other six negative lemmas are similar: we
always start from a completely filled out Sudoku puzzle, with numbers 4 and 5
at particular places. It is easy to check that such an initial puzzle indeed exists.

Lemma 4.

is not Sudoku.

Proof

4 5

Lemma 5.

is not Sudoku.

Proof

4 5 5 4

Lemma 6.

is not Sudoku.

Proof

4

4

5

5 4 5

4 5
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Lemma 7.

is not Sudoku.

Proof

45

4

4 5

5

Lemma 8.

is not Sudoku.

Proof

4

4

4

5

5

5 5

5

5

4

4

4

Lemma 9.

is not Sudoku.

Proof

54 5

5 44 5

4

5.2 Using the Negative Lemmas

We can increase the accuracy of our first algorithm by noticing that subsets of
non-Sudoku are also non-Sudoku:
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for each S ∈Missing(n) do
C ← copy(S)
while Lemma 1 or Lemma 2 applicable to C

apply a Lemma to C
if C == Sudoku

then output S is Sudoku
else output S is not Sudoku

Fig. 4. Algorithm II

We have run the algorithm with n = 6 and, for each element S of (the
reduced) Missing(6), we have modified the program to generate a picture with
some annotations. These are provided in the Appendix. It turns out there are
40 different elements in (the reduced) Missing(6) that are Sudoku.

6 No Element in Missing(7) is Sudoku

When run with n = 7, Algorithm I gets stuck in only one new set of big rules.
This results in one more negative lemma:

Lemma 10.

is not Sudoku.

Proof

4 5

5 4

4

4

4 5

5

5

Running Algorithm II for n = 7 shows that no element in Missing(7) is
Sudoku. This means that six is the maximal size of a redundant set of big rules.

7 Redundant Sets of Small Rules

Recall that Sudoku can also be specified by 810 small rules, which are obtained
by expanding the big rules to binary inequalities. We will denote the set of all
small rules Sudokusmall. In this section we will briefly study the redundancy of
sets of the small rules. In analogy with Missing(n) which was meant for big rules,
we introduce the notation Missingsmall(n) = {S ⊆ Sudokusmall|#S = 810−n}.
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The output of Algorithm II for n = 6 (shown in the Appendix) indicates that
the largest n for which an element of Missingsmall(n) is known to be Sudoku is
162: indeed, the big rules of Theorem 2 give rise directly to 648 small rules. We
name this set of small rules Small648. Theorem 2 now can be read as: Small648
is Sudoku.

We have used Small648 in an experiment which needed two more ingredients.
The first is a large set of difficult Sudoku puzzles. For this we took the set from
Gordon Royle’s website [2] who has collected a large set (more than 50.000)
distinct and minimal Sudoku puzzles with 17 given entries. Here minimal means
that while with the 17 givens the puzzle has a unique solution, if any one given
is removed the puzzle has more than one solution. We refer to this set as GR.

The second ingredient is a way to transform a given Sudoku solver P to take
into account less small rules. Because of the symmetries, this needs to be done
only 11 times, so we did that by hand. Our P was adapted from an example
CLP(FD) program from the B-Prolog [3] distribution and run under B-Prolog.
Since we did not know in advance how many examples we would run, we wanted
a fast CLP(FD) system. However, the programs also run in e.g., SICStus Prolog.

for each s ∈ Small648 do
S ← Small648 \ {s}
transform P to take into account only S
run P on every problem p ∈ GR
if some p has more than one solution

then output S is not Sudoku
else output S maybe is Sudoku

Fig. 5. Algorithm III

It turns out that the algorithm could always decide that S is not Sudoku.
This proves that the set Small648 forms a locally minimal set of small rules
equivalent to Sudoku. Another way to phrase this result is: Sudoku only needs
80% of its small rules.

Since the number of example problems that needed to be tried before the
modified program P finds more than one second solution is so small, we dare to
conjecture the following:

Conjecture 1. No element of Missingsmall(n) is Sudoku for n > 162.

It is clear that this conjecture should not be attacked with blind and brute
force.

8 Discussion and Conclusion

On 18 May 2008, in rec.puzzles, the following message was posted:

Quick question that I though someone here might know the
answer to - or be able to suggest a different forum.
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If you have a completed sudoku grid, you supposedly need
to check all 9 rows, then all 9 columns, then all 9 boxes
to validate that it has been completed correctly. But it’s
pretty obvious that the grid can be validated with somewhat
less checking. For instance, if each of the boxes has been
checked and the first 2 rows are checked, there’s no need
to check the 3rd row.

So what’s the minimum amount of checking that needs to be
done to show that a completed 9x9 grid is valid?

Before we even saw this post1, other people tried to answer, but it was clear
that none had the full picture presented here. Still, the original poster had figured
out our Theorem 2 on his own, but got stuck there. It was quite satisfactory that
our research started out of curiosity and ended up being of use to someone !

Redundant constraints are often important for a solver to be able to find
a solution efficiently. So it might seem a futile exercise to find out whether a
particular constraint satisfaction problem has redundant constraints. However,
understanding better redundant Sudoku rules might give insight in why the 16-17
problem is so hard. Also, studying redundant Sudoku constraints is interesting
in itself, because it seems not generally known that so many of the big and small
Sudoku rules are redundant. On the other hand, it is difficult to add rules and
stay Sudoku: it is clear that any additional small inequality rule changes the
game.

During our discussion, one particular constraint was considered sacred: all
cells have a value in 1..Max, with Max = 9. It is clear that one cannot maintain
any big constraint for Max strictly smaller than 9. But it seems worthwhile
to investigate Max = 10 (or more) for the usual Sudoku constraints and for
particular givens: the uniqueness of the solutions under such circumstances could
result in a better understanding of Sudoku. It is also clear that our techniques
can be readily applied to the investigation of Sudoku puzzles of different sizes. In
particular, the generalization of our lemmas 1 and 2 to other sizes is not difficult,
and the algorithms remain correct. Still, for large sizes, they might be not as
helpful.
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Appendix

All Elements of Missing(6)

Each element of Missing(6) is annotated as follows:

– upper left corner: indicates the number of small rules that result from ex-
panding the big rules displayed

– lower left corner: S means Sudoku; the other characters indicate in which
configuration algorithm I got stuck; M corresponds to Lemma 4, 2 corre-
sponds to Lemma 5, 4 corresponds to Lemma 6, T corresponds to Lemma
7, xxx corresponds to Lemma 9, and F corresponds to Lemma 8,
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Implementing Thread Cancellation in
Multithreaded Prolog Systems

Atef Suleiman and John Miller

School of Electrical Engineering and Computer Science
Washington State University (Tri-Cities)

West 201B, Richland, WA 99354-2125, USA
{asuleiman,jhmiller}@tricity.wsu.edu

Abstract. The Prolog primitive thread_cancel/1, which simply can-
cels a thread as recommended in ISO/IEC DTR 13211-5:2007, is con-
spicuously absent in well-maintained, widely used multithreaded Prolog
systems. The ability to cancel a thread is useful for application develop-
ment and is critical to Prolog embeddability. The difficulty of cancelling
a thread is due to the instant mapping of Prolog multithreading prim-
itives to the native-machine thread methods. This paper reports on an
attempt to implement thread cancellation using self-blocking threads. A
thread blocks at the same safe execution point where the state of the
underlying virtual machine is defined. A blocked thread awaits a notifi-
cation to resume or terminate. A resumed thread may be redirected to
self-block by a blocking primitive. Experimental results based on a pro-
totype implementation show that using self-blocking threads not only
simplifies the implementation of thread cancellation but also improves
the performance of message-passing primitives.

Key words: Prolog, concurrency, threads

1 Introduction

Explicit expressions of concurrency advance Prolog’s standing as a practical
programming language capable of exploiting modern multiprocessor computers.
Prolog programs consist largely of static code, knowledge expressed as facts and
rules, accessible to any number of execution threads running concurrently, in
parallel or otherwise. Additionally, due to their declarative and high-level na-
ture, Prolog programs retain and expose opportunities for parallel execution
unparalleled in conventional programming languages. To facilitate expressions
of concurrency, a thread model is proposed in ISO/IEC DTR 13211-5:2007 [1],
variants of which are implemented in well-maintained, widely used Prolog sys-
tems, such as Ciao [2], SWI-Prolog [3], XSB [4], Yap [5] and others. The model
includes a set of low-level primitives for thread creation, synchronization and
communication. In addition to sharing the static database on a read-only basis,
Prolog threads may modify and share the dynamic database in a mutually ex-
clusive manner. Recent research in definition and implementation of high-level
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parallelism primitives shows that a relevant speedup is obtainable by exploiting
parallelism expressly at the source-language level [6, 7]. As this research activity
illustrates, there are situations in which a need to cancel a thread arises after
the thread has already started.

The need for cancelling a thread is illustrated by the high-level primitive
threaded/1 defined in [6]. Given a conjunction of well-formed goals, this prim-
itive simulates an and-parallel operator executing the goals concurrently using
a dedicated thread for each goal. The primitive succeeds if all goals succeed;
otherwise, if a goal fails or raises an exception, it fails. Hence, once a thread
at some point returns a failure result for a goal it has executed, the remaining
threads should be cancelled since they serve no purpose at that point. A similar
need for cancelling a thread arises when a threaded goal executes successfully as
part of a deterministic disjunction executing concurrently. These and other prac-
tical examples, such as an asynchronously generated cancel condition initiated
by a user request to exit a running program, show that thread cancellability is
a desirable method of Prolog threads.

The option of cancelling a Prolog thread is provided by the primitive
thread cancel/1, described in [1] as follows:

thread cancel/1 cancels a thread. Any mutexes held by the thread shall
be automatically released. The main Prolog thread cannot be cancelled.
Other than this, any thread can cancel any other thread. It is expected
that all the resources consumed by the thread be released upon thread
cancellation.

Prolog systems, however, implement thread cancel/l in a variable way. XSB
shares the responsibility for cancelling a thread with the programmer, whereas
SWI-Prolog defers the implementation of thread cancel/l altogether to the
programmer, with the insight that the primitive is best implemented depending
on the thread model of the problem at hand. In Ciao, the outcome of cancelling
a thread is partly defined and depends wholly on the state of the target thread.
The implementation of thread cancel/l in these and other otherwise-compliant
Prolog systems suggests that the above description for thread cancel/1 may
be easier said than done.

The difficulty of cancelling a thread is due to blocking functions. Standard
library functions, such as read, accept, wait, are subject to blocking as they
are dependent on external events, e.g., the availability of input, establishment
of a network connection, occurrence of a specified event. A thread attempting
to cancel a blocked thread must be able to interact with the function inside
which the target thread is blocked. The interaction may be initiated by either
the cancelling thread, by means of signalling, or the cancelled thread, by means
of polling. The latter method is adapted by POSIX threads [8], on which the
majority of Prolog systems is based.
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Also referred to as Pthreads, POSIX threads is a set of C functions for man-
aging threads, mutual exclusion and condition variables.1 A Prolog thread is
directly mapped to a POSIX thread, running a Prolog engine within a multi-
engined Prolog virtual machine. Cancelling a Prolog thread in the context of
POSIX threads is a well-defined process insofar as the semantics of the latter is
concerned.

POSIX specifies a subset of blocking functions as cancellation points. A block-
ing function designated as cancellation-point is expected to call an internal or
external Pthreads function, e.g., pthread testcancel, at sufficient intervals and
be prepared for the possibility that the function may not return due to the thread
being cancelled. Consequently, any function calling a cancellation-point function
must be equally prepared to give up control without further notice. A function
prepares for the possible loss of control by registering thread-specific cleanup
functions to be executed in the event of thread cancellation. The process of can-
celling a Prolog thread may, thus, proceed as follows. Given a proper accounting
of consumed resources using pthread cleanup push and pthread cleanup pop
within every lexical scope containing a cancellation point, a thread cancels an-
other thread asynchronously by calling pthread cancel, which flags the target
thread as cancelled and returns immediately. If the target thread is active, the
Prolog engine traps the thread at a safe execution point and destroys it by ex-
iting the thread startup function. Otherwise, if the target thread is blocked or
is to block, Pthreads takes over control at the next cancellation point and be-
gins the actual cancellation process by calling the thread cleanup functions in
a last-in-first-out order. Apart from excluding certain blocking functions, most
notably pthread mutex lock, from the standard list of cancellation points, the
process of cancelling a POSIX thread seems transparent enough to support an
orderly cancellation of the adjoining Prolog thread.

However, as evident by the lack of support for thread cancel/1 in well-
maintained Prolog systems, the direct mapping approach to thread cancellation
faces implementation issues related, in part, to Prolog signals and garbage col-
lection. As recommended in [1], a Prolog thread should be able to signal another
thread to execute a goal as a soft interrupt at safe points, including, for exam-
ple, the point at which a Prolog thread is suspended waiting for a message from
a message queue. At that point, neither POSIX signals nor Pthreads cancella-
tion points provide a mechanism for processing Prolog signals. While a Prolog
thread can process a POSIX signal, thus receive a Prolog signal, it can not ex-
ecute the signal, while the thread is blocked by a cancellation-point function.
Similarly, memory and atom garbage collection algorithms require a high level
of cooperation among Prolog threads incompatible with low-level mapping of
Prolog threads to Pthreads. For example, when an active Prolog thread triggers
atom garbage-collection, all other threads must suspend and produce their list
of atoms. Here, again, a Prolog thread blocked by a cancellation-point function
can not be guaranteed to heed a garbage-collection interrupt in any specifiable
1 Condition variables are synchronization objects that allow threads to wait for certain

events (conditions) to occur.
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manner. In order to effect a working level of cooperation among Prolog threads,
a high-level mapping of Prolog threads to Pthreads is required.

This paper reports on an attempt to implement thread cancellation using
self-blocking threads. A self-blocking thread blocks at the same safe execution
point where the state of the underlying Prolog engine is defined. A blocked
thread awaits a notification to resume or terminate. A resumed thread may be
reinstructed to self-block by a blocking primitive. Experimental results based
on a proof-of-concept implementation show that using self-blocking threads is
a viable approach for creating Prolog threads with the provision of facilitating
their cancellation at any point during execution.

Section 2 presents the approach of self-blocking threads in the context of
enabling synchronous cancellation of active and blocked threads. Section 3 in-
cludes implementation notes related to select blocking primitives. Section 4
presents the results of a performance comparison between self-blocking and
directly-mapped threads. Section 5 briefly describes existing implementations
of thread cancel/1. Section 6 concludes with a summary of the cost-benefits
of self-blocking threads.

2 An Execution Engine and Self-Block

Cancelling an active thread is a straightforward task. The thread is simply tagged
as cancelled and the actual cancellation takes place upon the thread reaching a
safe execution point. Cancelling a blocked thread, on the other hand, is a complex
task requiring the consent and cooperation of the blocking function. Figure 1(a)
shows a conceptual depiction of active and blocked threads inside the execution
engine of a Prolog virtual machine. The difficulty of cancelling a thread lies with
those threads that are blocked as a result of calling blocking functions. Figure
1(b) depicts the same threads in a new formation: active threads continue to be
active; blocked threads are blocked on their own accord, using a self-blocking
mechanism. The blocking functions are replaced by their cooperative counter-
parts, which are asynchronous, persistent and capable of instructing threads to
block (suspend) or unblock (resume) as it may be warranted during execution.
The task of cancelling a blocked thread is specifiable independent of the cancel
method of the underlying native thread.

A blocking function directs a calling thread to self-block by returning a code
indicating a pending result, based on which the thread self-blocks (suspends)
waiting to be resumed or cancelled. A blocked thread is resumed by notifying
the thread to continue execution from the point at which it was suspended, and
is cancelled by notifying the thread to exit using the same control path used
by an active thread exiting normally. A blocked thread may also be notified
to perform atom-garbage collection or execute a goal as an interrupt. Multiple
notifications are serialized using mutual exclusion. A notifying thread acquires
exclusive control of the target thread prior to notification, with the caveat that
control is granted only if the thread is suspended. A thread is suspended using
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(a) Direct mapping (b) Self-blocking

Fig. 1. Graphical depiction of active and blocked threads.

the interrupt-vector mechanism commonly used in single-threaded systems to
break into the top-level loop.

2.1 Implementing the Self-Block

The self-block is implemented using a standard synchronization composite of a
mutex, condition variable and counter. Each thread is associated with a compos-
ite instance, which is initialized upon thread creation in sync with the creating
thread. A blocking thread atomically unlocks the mutex and waits for the con-
dition variable to be signalled by another thread. A signalling thread locks the
mutex momentarily and signals the condition variable of the target thread. A
blocked thread whose condition variable has been signalled re-locks its mutex,
increments the counter and resumes execution. In addition to its standard role
of preventing a race condition, the mutex is used to query the status of a thread.
A thread queries the status of another thread by attempting to lock its mutex. If
the attempt is successful, the thread is idle; otherwise, it is running. The counter
is intended to be used in a test-yield loop to compel a signalled thread to assume
ownership of its mutex.

The start-up algorithm for self-blocking threads is outlined in Figure 2. The
algorithm takes a Prolog engine as input and proceeds as follows. First, it ini-
tializes a synchronization composite and swaps a reference to it with that of the
temporary composite initialized by the creating thread for synchronizing with
the current, newly created, thread (Lines 1-3). Second, it momentarily locks the
mutex and signals the condition variable of the creating thread so that the lat-
ter may proceed (Line 4). Third, the algorithm iteratively suspends and resumes
calling the execution engine for as often as the latter indicates a pending result
(Lines 6-10). Lastly, the synchronization composite is destroyed and the native
thread of control exits detaching from the adjoining Prolog engine.
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Input : A Prolog engine self
initialize (composite = {mutex,condition,counter})1:
lock (mutex)2:
swap (self.composite, composite)3:
lock (mutex), signal (condition), unlock (mutex)4:
composite ← self.composite5:
do6:

wait (condition, mutex)7:
counter ← counter + 18:
execution engine (self)9:

while self.result is a pending result10:
terminate (composite)11:

Fig. 2. Start-up algorithm of self-blocking threads.

2.2 Implementing thread cancel/1

Cancelling a thread involves first suspending the thread, then destroying it. Since
suspending and destroying a thread are well-defined tasks, they are implemented
by the predicates thread suspend/1 and thread destroy/1. With a negligible
risk of raising an unintended exception, thread cancel/1 is defined as follows:

thread_cancel(Thread) :-

thread_suspend(Thread),

thread_destroy(Thread).

The algorithms for implementing thread suspend and thread destroy are listed
in Figure 3 and 4, respectively. Both algorithms begin by decoding the target
thread thread from the current actual arguments of the calling thread self . It
is assumed that access to shared resources, such as the list of existing threads
list of threads, is serialized using a locking mechanism.

The algorithm for thread suspend starts by locking the list of existing threads
and performing a series of tests, including whether the target thread is non-
existent (Lines 3-6), referenced by other threads (Lines 7-10) or itself the calling
thread (Lines 11-14), in which cases it throws an appropriate error-term or re-
turns a pending result; otherwise, it increments the reference counter of the
target thread and unlocks the list of existing threads (Lines 15-16). Next, the
algorithm suspends the target thread by first setting its interrupt vector, then
locking its mutex momentarily (Lines 17-22). Since it is possible that the target
thread suspends for a reason other than having been interrupted, the thread
interrupt vector is reset based on the return result. Lastly, the algorithm decre-
ments the reference counter of the target thread and continues execution with
the following instruction (Lines 23-26). Chances are that the next instruction
to be executed corresponds to thread destroy. In a like manner, thread destroy
algorithm destroys a target thread, provided the thread exists, is idle, different
from the calling thread and unreferenced by any other threads.
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thread ← decode (self,1)1:
lock (thread resource)2:
if thread /∈ list of threads then3:

unlock (thread resource)4:
throw existence error5:

end6:
if thread.reference > 0 then7:

unlock (thread resource)8:
throw permission error9:

end10:
if thread = self then11:

unlock (thread resource)12:
thread.signal ← thread.signal ∨13:
suspend signal
return signal result14:

end15:
thread.reference ← thread.reference + 116:
unlock (thread resource)17:
thread.signal ← thread.signal ∨18:
suspend signal
lock (thread.mutex)19:
if thread.result 6= signal result then20:

thread.signal ← thread.signal ∧21:
¬suspend signal

end22:
unlock (thread.mutex)23:
lock (thread resource)24:
thread.reference ← thread.reference − 125:
unlock (thread resource)26:
goto next instruction27:

Fig. 3. thread suspend algorithm

thread ← decode (self,1)1:
lock (thread resource)2:
if thread /∈ list of threads then3:

unlock (thread resource)4:
throw existence error5:

end6:
if thread = self ∨ thread.reference 6= 07:
∨ ¬ trylock(thread.mutex) then

unlock (thread resource)8:
throw permission error9:

end10:
destroy (thread)11:
unlock (thread resource)12:
goto next instruction13:

Fig. 4. thread destroy algorithm

3 Implementing Thread-Blocking Predicates

Blocking predicates, be they built-in or user-defined, i.e., foreign, block by in-
structing the calling thread to self-block. For Prolog systems that provide a
foreign-language interface, blocking foreign code communicates its blocking in-
structions by calling an appropriate interface function. The following are imple-
mentation notes related to select blocking predicates.

get code(+Stream, ?Code) gets the character code of a single character from
the (non-standard) input stream Stream and unifies it with the term Code.
The predicate behaves like the standard built-in get code/2, except that if the
stream position of Stream is end-of-stream and eof action(suspend) is a prop-
erty of Stream, then the calling thread suspends, with the expectation that the
foreign module that created Stream (e.g., an embedding application or shared
library) will call an appropriate interface function to resume the calling thread
when new characters become available.

thread get message(+Queue, ?Term) searches the message queue Queue for
a term unifiable with the term Term. If a term is found, the term is unified
with Term and deleted from Queue. Otherwise, if a term is not found, the
calling thread is added to a waiting list associated with Queue and instructed to



8 A. Suleiman, J. Miller

block (suspend). The search, deletion and addition are performed in a mutually
exclusive manner.

thread send message(+Queue, @Term) searches the waiting list of the message
queue Queue for a thread whose receiving term is unifiable with the term Term. If
a thread is found, then the thread is deleted from the waiting list, the receiving
term is unified with Term, and the thread is instructed to unblock (resume).
Otherwise, if a receiving thread is not found, Term is added to Queue. The
search, deletion and addition are performed in a mutually exclusive manner.

mutex lock(+Mutex) acquires the Prolog mutex Mutex blocking if necessary. If
Mutex is already acquired by a thread other than the calling thread, then the
calling thread is added to a waiting list associated with Mutex and instructed to
suspend. If Mutex is previously acquired by the calling thread, then the recursion
counter of Mutex is incremented. Otherwise, if Mutex is free, the calling thread
acquires Mutex. The conditionals and corresponding actions are performed in a
mutually exclusive manner.

mutex unlock(+Mutex) releases the Prolog mutex Mutex. If Mutex is acquired
by the calling thread and the recursion counter of Mutex is greater than zero,
then the recursion counter is decremented. If Mutex is acquired by the calling
thread and the recursion counter of Mutex is zero, then Mutex is first released,
then acquired by the first thread, if any, on the waiting list of Mutex and the
thread is instructed to resume. The conditionals and corresponding actions are
performed in a mutually exclusive manner.

sleep(+Interval) suspends execution of the calling thread for the interval In-
terval. If Interval is an integer greater than zero, then the calling thread Self is
suspended immediately and resumed after Interval is elapsed as follows. If an
alarm is already set for a thread Thread and is expected to set off after interval
Interval thread is elapsed, and Interval > Interval thread, then the pair (Self, Inter-
val - Interval thread) is inserted into list List, containing ordered pairs of alarms
to be set and threads to be resumed. Otherwise, if Interval < Interval thread,
then the alarm is cancelled, a new alarm is created to set off after Interval is
elapsed, and the pair (Thread, Interval thread - Interval) is inserted into List.
The insertion and cancellation are performed in a mutually exclusive manner.
The alarm is a special thread that sleeps synchronously for and on behalf of the
intervals and threads in List.

4 Performance Evaluation

A prototype Prolog implementation was developed to assess the performance of
self-blocking threads on two popular operating systems: Linux and Windows.
The prototype is a simple compiler and emulator comparable in performance to
SWI-Prolog [3]. A select number of multithreading primitives were implemented
using the self-blocking method, as described in Section 3, and the direct mapping
method, as implemented in SWI-Prolog. The method in effect is determined at
build time using conditional compilation. Three performance parameters were
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measured: thread-creation time, message-passing time and synchronization time.
The latter parameters were also measured using SWI-Prolog. All measurements
were obtained by averaging ten runs per input per program. The computing
environment is comprised of a single computer, equipped with Intel Core 2 Quad
processor (2.5GHz), 3GB RAM (800MHz), dual-bootable with Linux Debian
version 4.0 and Windows Vista (32-bit).

It should be noted that although both Linux and Windows use one-to-one
mapping between user threads and kernel threads, Linux threads appear to be
considerably more lightweight than Windows threads, possibly due in part to
the Windowing system of Windows being an integral part of Windows kernel.
The objective of this evaluation is to compare the performance of self-blocking
threads to that of directly mapped threads. A thread performance comparison
between Linux and Windows is outside the scope of this paper, let alone the
interests of its authors.

4.1 Thread Creation

As described in Section 2.1, the procedure for creating a self-blocking thread
requires that the calling thread blocks until the newly created thread initializes
its self-blocking mechanism. The thread-creation time parameter is intended to
quantify the overhead incurred by self-blocking threads during thread creation.

The execution time of thread creation of self-blocking and directly mapped
threads was measured directly using two simple programs written in C. The
first program measures the execution time of thread creation of directly mapped
threads. It trivially creates a variable number of threads by calling the func-
tion pthread create, tracking the wall time elapsed using the function clock.
The second program measures the execution time of thread creation of self-
blocking threads. It has the structure of the first program except that the call
to pthread create is embedded in a new function responsible for synchronizing
the calling thread with the thread to be created. The new function initializes a
temporary synchronization composite comprised of a mutex and condition vari-
able, and calls pthread create, passing a reference to the composite. It then
calls pthread cond wait and blocks waiting for the composite to be signalled
by the newly created thread. Meanwhile, the new thread first initializes its self-
blocking mechanism, then signals the composite of the calling thread so that the
latter may proceed.

As shown in Table 1, self-blocking threads are more expensive to create than
directly mapped threads. The average execution time of thread creation of a
self-blocking thread is about twice that of a directly mapped thread on both
Linux and Windows. On Linux, the execution time of thread creation increases
as the number of threads increases, approaching a measurable value when the
number of threads equals or exceeds 1, 000. On Windows, the execution time of
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thread creation is stable, around 200 µs per self-blocking thread and 100 µs per
directly mapped thread, regardless of the number of threads.2

Table 1. Comparison of average execution time of thread creation (µs per thread).

# of
threads

Linux Windows

Direct mapping Self-blocking Direct mapping Self-blocking

100 0 0 107 205

200 0 0 106 207

500 0 0 106 206

1000 2 6 107 205

2000 7 12 106 204

4000 10 15 106 204

4.2 Message Passing

The message-passing time parameter was first measured for the case of a single
sender/receiver, where neither implementation method has an apparent advan-
tage over the other. Here, passing a message involves sending the message and
waking up the receiving thread. The time measurements were obtained using
the program described in [9]. The program involves passing a message between
N threads M times. The threads are linked in a ring structure. The message
is an integer specifying the number of times the message is to be passed. Upon
receiving the integer-message, a thread decrements the integer and passes it to
the next thread. The message passing between threads continues until the inte-
ger becomes less than zero, at which point a thread simply exits. The program
is listed in Figure 5. The message-passing time measurements were estimated
for select numbers of threads performing message passing 1, 000, 000 times. The
results are presented in Table 2.3

Overall, the performance of self-blocking threads and directly mapped threads
are comparable on both Linux and Windows. On a closer examination, however,
the self-blocking approach is consistently, albeit slightly, faster than the direct
mapping approach as implemented in both the prototype and SWI-Prolog. The
2 On Windows, according to spawn-time measurement results obtained from Prototype

and SWI-Prolog, the execution time of POSIX thread creation is the dominant
component of the execution time of Prolog thread creation.

3 For assurance and sheer curiosity, the time measurements of Java threads were also
obtained and presented. On Linux, Java threads perform simple message passing
twice as fast as Prolog threads using either approach. The Java speedup is likely
due to Prolog’s need to validate, in a mutually exclusive manner, the existence of a
thread prior to accessing its message queue. The question as to why Java threads
were unable to maintain a similar speedup factor on Windows is outstanding.
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start(N, M) :- setup(0, Thread, Thread) :- !.
N1 is N - 1, setup(N, Thread, NextThread) :-
thread_self(Thread), Goal = process(Thread),
setup(N1, Thread, NextThread), thread_create(Goal, NewThread, [detached(true)]),
thread_send_message(NextThread, M), N1 is N - 1,
catch(process(NextThread), _, true). setup(N1, NewThread, NextThread).

process(Thread) :-
repeat,

thread_get_message(M),
M1 is M - 1,
thread_send_message(Thread, M1),
M1 < 0,

!.

Fig. 5. Program for measuring simple message-passing time.

number of threads that can be created in SWI-Prolog is limited to less than 100
threads, thus the time measurements corresponding to numbers of threads equal
or exceeding 100 are unobtainable. The simple message-passing time is relatively
stable, around 4 µs on Linux, 12 µs on Windows, per message, for a range of 10
to 400 threads. However, this parameter is likely to increase as the number of
threads increases due in part to cache exhaustion due, in turn, to the uncommon
memory requirements of Prolog threads.

Table 2. Comparison of average execution time of threads performing simple message-
passing (µs per message).

(a) Average execution time on Linux

# of
threads

self-blocking direct mapping
SWI-Prolog

5.6.61
Java

1.6.0 06

10 5.86 5.90 5.99 3.03

20 4.36 5.26 4.73 2.94

40 4.26 4.78 4.58 2.91

80 4.02 4.53 4.94 3.21

100 4.15 4.38 – 3.24

200 4.12 4.38 – 3.35

(b) Average execution time on Windows

# of
threads

self-blocking direct mapping
SWI-Prolog

5.6.61
Java

1.6.0 06

10 11.75 13.21 14.54 11.75

20 11.95 12.20 13.71 11.75

40 11.95 12.73 13.29 11.22

80 11.95 12.48 13.38 11.26

100 12.04 12.83 – 11.39

200 12.78 13.51 – 11.39
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The message-passing time parameter was, second, measured for the case of
multiple senders/receivers, where self-blocking threads have a decisive advan-
tage over directly-mapped threads. Here, message passing may involve a series
of time-consuming operations, including adding (copying) a sender’s message to
a message queue, searching a list of waiting receivers for one whose skeletal mes-
sage matches a newly added message, searching a message queue for a message
matching a receiver’s skeletal message, waking up potential receivers or just a
matching receiver, and adding a new receiver to a list of waiting receivers.

The classic concurrency problem of the dining philosophers was used to il-
lustrate the speed advantage of self-blocking threads in programs that require
extensive message passing. The solution found in [10] was adapted to obtain wall
time measurements for a variable number of philosophers. The measurements are
depicted graphically in Figure 6.

103

104

105

10 20 30 40 50 60 70 80

Time
(ms)

Number of Philosophers

Self-blocking Direct mapping

(a) Linux

103

104

105

106

10 20 30 40 50 60 70 80

Time
(ms)

Number of Philosophers

Self-blocking Direct mapping

(b) Windows

Fig. 6. The Dining Philosophers benchmark (10, 000 eat-think cycle per philosopher.)

As expected, self-blocking threads outperform directly mapped threads, by
a factor of 2 on Linux and by an order of magnitude on Windows. The source of
the speedup is transparent. In the self-blocking approach, a new sender signals at
most one potential receiver, whereas in the direct-mapping approach, the sender
must signal all waiting receivers, even though only one of which might succeed
in getting the sender’s message while the other receivers will attempt in vain to
unify their skeletal messages with the old messages of previous senders. In addi-
tion to performing needless unification, the majority of receivers effects needless
task-switches performed by the operating system at the behest of unassuming
senders.

4.3 Synchronization

The synchronization time parameter was measured using a simple program,
which creates a variable number of threads, each of which updates a shared
resource 10, 000 times. Mutual exclusion is achieved using a global mutex and
the synchronization primitives mutex lock/1 and mutex unlock/1. The average
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execution time per mutual exclusion was estimated by subtracting the wall time
required to execute an equal number of updates sequentially. The results are
presented in Table 3.

Table 3. Comparison of average execution time of threads updating a shared resource
(µs per mutual exclusion).

(a) Average execution time on Linux

# of
threads

self-blocking
direct mapping

(compliant)
direct mapping
(incompliant)

SWI-Prolog
5.6.61

10 7.53 7.97 0.56 0.86

20 7.90 8.01 0.75 0.95

40 7.47 8.52 0.91 1.02

80 7.53 8.70 0.96 1.08

100 6.88 8.78 0.99 –

200 7.89 8.93 1.01 –

(b) Average execution time on Windows

# of
threads

self-blocking
direct mapping

(compliant)
direct mapping
(incompliant)

SWI-Prolog
5.6.61

10 11.06 16.10 1.53 11.31

20 10.90 17.04 1.49 11.91

40 10.46 17.37 1.51 12.52

80 10.89 17.39 1.49 12.49

100 10.57 17.52 1.49 –

200 10.75 18.18 1.48 –

The performance of self-blocking and directly mapped threads in programs
that require extensive synchronization varies depending on the implementation of
Prolog mutex. For implementations potentially compliant with [1], self-blocking
threads compare favorably to directly mapped threads on Linux. On Windows,
the former (self-blocking) threads outperform the latter threads by a factor as
high as 1.7. Moreover, on Windows, the prototype’s compliant implementation
using self-blocking threads outperforms SWI-Prolog incompliant implementation
using directly mapped threads. The criteria for compliance, for the purpose of
this comparison, is that a Prolog mutex is indestructible while it is in use, e.g.,
one or more threads are blocked attempting to acquire the mutex. As shown in
Table 3, lifting this requirement of indestructibility can result in a synchroniza-
tion speed characteristic of low-level programming languages, however, to the
negation of the premise of using self-blocking threads, which is to provide a safe
and user-friendly Prolog multithreaded environment.
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5 Related work

While Prolog systems agree on how to create threads, they differ widely on how
to cancel them.

SWI-Prolog [3] and Yap [5] defer the implementation of thread cancel/1 to
the programmer with the insight that thread cancellation is best implemented
based on the thread model of the application at hand. In the boss/worker thread
model, for example, thread cancel/1 may be implemented by communicating
to the thread to be cancelled a specially coded message instructing the thread
to exit or abort. In a computation-intensive application, for another example,
cancelling a thread may be achieved by signalling the thread to execute a goal
quoting a control primitive, such as thread exit(cancelled).

In XSB [4], thread cancelation is a joint responsibility of the system and
the application. The latter initiates the process of canceling a thread by call-
ing thread cancel/1, giving the thread to be cancelled as an argument. For its
part, XSB internally flags the given thread as canceled and waits for the thread
execution to reach a call or execute port, at which point XSB throws a cancela-
tion error ending its role in the thread cancelation process. The target thread,
henceforth, is expected to catch the error, release any allocated resources and
exit voluntarily.

Ciao [2] provides a primitive named eng kill/1, which attempts to cancel
the thread associated with a given goal identifier. The attempt may succeed,
fail, block or render the system in an unstable state, depending on whether,
irrespectively, the thread to be cancelled is trappable at a standard port, the
goal identifier is valid, the thread is blocked by a system call, or other noted,
however unspecified, situations.

Other Prolog systems, such as BinProlog and Qu-Prolog, provide other vari-
ations on the theme of thread cancellation. However, the primitives tasked with
cancelling a thread are summarily documented. Attempts to learn of the in-
ternals of these primitives, through haphazard queries written with ill intents,
showed that thread cancellation in these systems is problematic.

6 Conclusion

This paper presented an experimental implementation approach for creating
Prolog threads with the provision of facilitating their destruction at any point
during execution. The approach is based on self-blocking threads, a common
implementation technique for managing thread interactions in multithreaded
applications. The ability to cancel a thread safely and synchronously improves
Prolog’s standing as a useful programming language, capable of expressing vari-
able solutions to complex concurrent problems for prototyping or production
purposes. Additionally, it preserves the integrity of Prolog’s traditional top-level
loop program and improves Prolog’s embeddability into multi-paradigm, multi-
language applications.
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Thread cancellability with self-blocking threads increases the complexity of
system and extension development, as might be expected of features of high-
level programming languages. Standard library functions, such as seek, sleep,
select, may not be used directly to implement built-in and library predicates.
Instead, these functions are reemployed within newly designed, more complex
functions which are reentrant, persistent, asynchronous and able to communicate
intermediate results. This added complexity may be viewed as a fair price, paid
at the right layer in the right currency, C, in exchange for preserving Prolog’s
dictum of combining simplicity and power at the user level.

Although native in their own right, self-blocking threads exhibit the pro-
grammability of green threads,4 as they are at most one standard port away from
relinquishing processor control and one wake-up call from regaining it. As such,
they are fit to yield the main benefits of both native and green multithreaded
environments, namely parallelism and portability. Used in this capacity, the self-
blocking approach constitutes a cost-efficient compromise between using native
preemptive threads [11] and nonnative cooperative threads [12].

The performance of self-blocking threads compares favorably to that of di-
rectly mapped threads, despite that the time cost of creating a self-blocking
thread is twice that of a directly mapped thread, due to the initial cost of the
former’s self-blocking mechanism. Self-blocking threads support a wide range of
algorithms for implementing message passing, a primary means of thread com-
munication and synchronization [1]. For programs that require extensive message
passing, experimental results showed that execution times vary by up to an or-
der of magnitude, depending on the operating system and the algorithm used
for matching the messages of senders and receivers. Given that directly mapped
threads can hardly do without a message queue and message passing, the run
time advantage of self-blocking threads should offset the initial cost of their
self-blocking mechanisms.

The utility of self-blocking threads extends beyond simplifying thread can-
cellation to enabling the implementation of high-level features, such as the sep-
aration of thread creation and execution, the implementation of suspend and
resume primitives, backtracking, multiple executions and execution modes. The
ability to separate thread creation from execution, proposed in passing in [13],
facilitates the implementation of a high level API, which subsumes the one rec-
ommended in [1], which in turn facilitates the implementation of yet higher-level
parallel operators analogous to those introduced in [6] and [7]. Experiments are
being conducted to evaluate the merits of new multithreading primitives in terms
of simplicity and expressiveness, as well as performance.

Acknowledgments. The authors thank Jan Wielemaker and Richard O’Keefe
for their insightful, differing views. This research was supported by the Office of
Science (BER), U.S. Department of Energy, Grant No. DE-FG02-05ER64105.

4 Green threads are threads that are scheduled by a virtual machine instead of natively
by the underlying operating system.
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Abstract. We introduce a new programming language construct, Inter-
actors, supporting the agent-oriented view that programming is a dialog
between simple, self-contained, autonomous building blocks.
We define Interactors as an abstraction of answer generation and refine-
ment in Logic Engines resulting in expressive language extension and
metaprogramming patterns.
As a first step toward a declarative semantics, we sketch a pure Prolog
specification showing that Interactors can be expressed at source level,
in a relatively simple and natural way.
Interactors extend language constructs like Ruby, Python and C#’s mul-
tiple coroutining block returns through yield statements and they can
emulate the action of fold operations and monadic constructs in func-
tional languages.
Using the Interactor API, we describe at source level, language extensions
like dynamic databases and algorithms involving combinatorial genera-
tion and infinite answer streams.
Keywords: Prolog language extensions, logic engines, semantics of metapro-
gramming constructs, generalized iterators, agent oriented programming
language constructs

1 Introduction

Interruptible Iterators are a new Java extension described in [1]. The underlying
construct is the yield statement providing multiple returns and resumption of
iterative blocks, i.e. for instance, a yield statement in the body of a for loop
will return a result for each value of the loop’s index.

The yield statement has been integrated in newer Object Oriented languages
like Ruby [2, 3] C# [4] and Python [5] but it goes back to the Coroutine Iterators
introduced in older languages like CLU [6] and ICON [7].

A natural generalization of Iterators, is the more radical idea of allowing
clients to communicate to/from inside blocks of arbitrary recursive computa-
tions. The challenge is to achieve this without the fairly complex interrupt based
communication protocol between the iterator and its client described in [1]. This
suggests some form of structured two-way communication between a client and
the usually autonomous service the client requires from a given language con-
struct, often encapsulating an independent component.
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Agent programming constructs have influenced design patterns at “macro
level”, ranging from interactive Web services to mixed initiative computer hu-
man interaction. Performatives in Agent communication languages [8] have made
these constructs reflect explicitly the intentionality, as well as the negotiation
process involved in agent interactions. At a more theoretical level, it has been
argued that interactivity, seen as fundamental computational paradigm, can ac-
tually expand computational expressiveness and provide new models of compu-
tation [9].

In a logic programming context, the Jinni agent programming language [10]
and the BinProlog system [11] have been centered around logic engine constructs
providing an API that supported reentrant instances of the language processor.
This has naturally led to a view of logic engines as instances of a generalized
family of iterators called Fluents [12], that have allowed the separation of the
first-order language interpreters from the multi-threading mechanism, while pro-
viding a very concise source-level reconstruction of Prolog’s built-ins.

Building upon the Fluents API described in [12], this paper will focus on
bringing interaction-centered, agent oriented constructs from software design
frameworks and design patterns to programming language level.

The resulting language constructs, that we shall call Interactors, will express
control, metaprogramming and interoperation with stateful objects and external
services. They complement pure Horn Clause Prolog with a significant boost in
expressiveness, to the point where they allow emulating at source level virtually
all Prolog builtins, including dynamic database operations.

2 First Class Logic Engines

Our Interactor API is a natural extension of the Logic Engine API introduced
in [12]. An Engine is simply a language processor reflected through an API that
allows its computations to be controlled interactively from another Engine very
much the same way a programmer controls Prolog’s interactive toplevel loop:
launch a new goal, ask for a new answer, interpret it, react to it.

A Logic Engine is an Engine running a Horn Clause Interpreter with LD-
resolution [13] on a given clause database, together with a set of built-in opera-
tions. The command

new_engine(AnswerPattern,Goal,Interactor)

creates a new Horn Clause solver, uniquely identified by Interactor, which
shares code with the currently running program and is initialized with Goal
as a starting point. AnswerPattern is a term, usually a list of variables occur-
ring in Goal, of which answers returned by the engine will be instances. Note
however that new engine/3 acts like a typical constructor, no computations are
performed at this point, except for allocating data areas. In our actual implemen-
tation, with all data areas dynamic, engines are lightweight and engine creation
is extremely fast.
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The get/2 operation is used to retrieve successive answers generated by an
Interactor, on demand. It is also responsible for actually triggering computations
in the engine.

get(Interactor,AnswerInstance)

It tries to harvest the answer computed from Goal, as an instance of AnswerPattern.
If an answer is found, it is returned as the(AnswerInstance), otherwise the
atom no is returned. As in the case of the Maybe Monad in Haskell, returning
distinct functors in the case of success and failure, allows further case analy-
sis in a pure Horn Clause style, without needing Prolog’s CUT or if-then-else
operation.

Note that bindings are not propagated to the original Goal or AnswerPattern
when get/2 retrieves an answer, i.e. AnswerInstance is obtained by first stan-
dardizing apart (renaming) the variables in Goal and AnswerPattern, and then
backtracking over its alternative answers in a separate Prolog interpreter. There-
fore, backtracking in the caller interpreter does not interfere with the new Inter-
actor’s iteration over answers. Backtracking over the Interactor’s creation point,
as such, makes it unreachable and therefore subject to garbage collection.

An Interactor is stopped with the stop/1 operation that might or might not
reclaim resources held by the engine. In our actual implementation we are using
a fully automated memory management mechanism where unreachable engines
are automatically garbage collected.
So far, these operations provide a minimal Coroutine Iterator API, powerful
enough to switch tasks cooperatively between an engine and its client and emu-
late key Prolog built-ins like if-then-else and findall [12], as well as higher
order operations like fold and best of.

3 From Fluents to Interactors

We will now describe the extension of the Fluents API of [12] that provides a
minimal bidirectional communication API between interactors and their clients.

The following operations provide a “mixed-initiative” interaction mechanism,
allowing more general data exchanges between an engine and its client.

3.1 A yield/return operation

First, like the yield return construct of C# and the yield operation of Ruby
and Python, our return/1 operation

return(Term)

will save the state of the engine and transfer control and a result Term to its
client. The client will receive a copy of Term simply by using its get/2 operation.
Similarly to Ruby’s yield, our return operation suspends and returns data from
arbitrary computations (possibly involving recursion) rather than from specific
language constructs like a while or for loop.
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Note that an Interactor returns control to its client either by calling return/1
or when a computed answer becomes available. By using a sequence of return/get
operations, an engine can provide a stream of intermediate/final results to its
client, without having to backtrack. This mechanism is powerful enough to im-
plement a complete exception handling mechanism (see [12]) simply by defining

throw(E):-return(exception(E)).

When combined with a catch(Goal,Exception,OnException), on the client
side, the client can decide, upon reading the exception with get/2, if it wants
to handle it or to throw it to the next level.

3.2 Interactors and Coroutining

The operations described so far allow an engine to return answers from any
point in its computation sequence. The next step is to enable an engine’s client
to inject new goals (executable data) to an arbitrary inner context of an engine.
Two new primitives are needed:

to_engine(Engine,Data)

used to send a client’s data to an Engine, and

from_engine(Data)

used by the engine to receive a client’s Data.
A typical use case for the Interactor API looks as follows:

1. the client creates and initializes a new engine
2. the client triggers a new computation in the engine, parameterized as follows:

(a) the client passes some data and a new goal to the engine and issues a
get operation that passes control to it

(b) the engine starts a computation from its initial goal or the point where
it has been suspended and runs (a copy of) the new goal received from
its client

(c) the engine returns (a copy of) the answer, then suspends and returns
control to its client

3. the client interprets the answer and proceeds with its next computation step
4. the process is fully reentrant and the client may repeat it from an arbitrary

point in its computation

Using a metacall mechanism like call/1 (which can also be emulated in terms
of engine operations [12]) or directly through a source level transformation [14],
one can implement a close equivalent of Ruby’s yield statement as follows:

ask_engine(Engine,(Answer:-Goal), Result):-

to_engine(Engine,(Answer:-Goal)),

get(Engine,Result).

engine_yield(Answer):-

from_engine((Answer:-Goal)),

call(Goal),

return(Answer).
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where ask engine sends a goal (possibly built at runtime) to an engine, which
in turn, executes it and returns a result with an engine yield operation.

As the following example shows, this allows the client to use from outside
the (infinite) recursive loop of an engine as a form of updatable persistent state.

sum_loop(S1):-engine_yield(S1=>S2),sum_loop(S2).

inc_test(R1,R2):-

new_engine(_,sum_loop(0),E),

ask_engine(E,(S1=>S2:-S2 is S1+2),R1),
ask_engine(E,(S1=>S2:-S2 is S1+5),R2).

?- inc_test(R1,R2).

R1=the(0 => 2),

R2=the(2 => 7)

Note also that after parameters (the increments 2 and 5) are passed to the
engine, results dependent on its state (the sums so far 2 and 7) are received
back. Moreover, note that an arbitrary goal is injected in the local context of
the engine where it is executed, with access to the engine’s state variables S1 and
S2. As engines have separate garbage collectors (or in simple cases as a result
of tail recursion), their infinite loops run in constant space, provided that no
unbounded size objects are created.

4 A (mostly) Pure Prolog Specification

At a first look, Interactors deviate from the usual Horn Clause semantics of
pure Prolog programs. A legitimate question arises: are they not just another
procedural extension, say, like assert/retract, setarg, global variables etc.?

We will show here that the semantic gap between pure Prolog and its exten-
sion with Interactors is much narrower than one would expect. The techniques
that we will describe can be seen as an executable specification of Interactors
within the well understood semantics of logic programs (SLDNF resolution).

Toward this end, we will sketch an emulation, in pure Prolog, of the key
constructs involved in defining Interactors.

There are four distinct concepts to be emulated:

1. we need to eliminate backtracking to be able to access multiple answers at
a time

2. we need to emulate copy term as different search branches and multiple uses
of a given clause require fresh instances of terms, with variables standardized
apart

3. we need to emulate suspending and resuming an engine
4. engines should be able to receive and return Prolog terms

We will focus here on the first two, that are arguably less obvious, by pro-
viding actual implementations. After that, we will briefly discuss the feasibility
of the last two.
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4.1 Metainterpreting Backtracking

First, let’s define a clause representation, that can be obtained easily with a
source-to-source translator. Clauses in the database are represented with difference-
list terms, structurally isomorphic to the binarization transformation described
in [14]. The code of a classic Prolog naive reverse + permutation generator pro-
gram becomes:

:-op(1150,xfx,<=).

clauses([

[app([],A,A) |B]<=B,
[app([C |D],E,[C |F]) |G]<=[app(D,E,F) |G],

[nrev([],[]) |H]<=H,
[nrev([I |J],K) |L]<=[nrev(J,M),app(M,[I],K) |L],

[perm([],[]) |N]<=N,
[perm([O |P],Q) |R]<=[perm(P,S),ins(O,S,Q) |R],

[ins(T,U,[T |U]) |V]<=V,
[ins(W,[X |Y],[X |Z]) |X0]<=[ins(W,Y,Z) |X0]

]).

Note that we can assume that variables are local to each clause and therefore
they have been standardized apart accordingly1.

First, let’s define the basic inference step (equivalent to an LD-resolution
step, [13]) as a simple “arrow composition” operation:

compose(F1,F2,A<=C):-copy_term(F1,A<=B),copy_term(F2,B<=C).

We can now add a new “arrow” to a list of existing arrows, provided that the
composition succeeds:

match_one(F1,F2,Fs,[NewF |Fs]):-compose(F1,F2,F3),!,NewF=F3.
match_one(_,_,Fs,Fs).

and lift this to have an arrow (seen as representing the current goal), select from
a list of clauses the ones that match:

match_all([],_,Fs,Fs).

match_all([Clause |Cs],Arrow,Fs1,Fs3):-
match_one(Arrow,Clause,Fs1,Fs2),

match_all(Cs,Arrow,Fs2,Fs3).

We can add a stopping condition to mark the success of an LD-derivation as
matching an arrow of the form Answer<=[]

derive_one(Answer<=[],_,Fs,Fs,As,[Answer |As]).
derive_one(Answer<=[G |Gs],Cs,Fs,NewFs,As,As):-
match_all(Cs,Answer<=[G |Gs],Fs,NewFs).

1 Allowing shared variables would bring a different, but nevertheless interesting se-
mantics, with “inter-clausal variables” seen as write-once global variables.
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With these building blocks in place, an LD-derivation of all answer instances of
a query can be defined as:

all_instances(AnswerPattern,Goal,Clauses,Answers):-

Gs=[AnswerPattern<=[Goal]],
derive_all(Gs,Clauses,[],Answers).

where derive all lifts the derivation process to progressively solve all existing
and newly generated goals:

derive_all([],_,As,As).

derive_all([Arrow |Fs],Cs,OldAs,NewAs):-
derive_one(Arrow,Cs,Fs,NewFs,OldAs,As),

derive_all(NewFs,Cs,As,NewAs).

Finally, we can integrate the clause database:

all_answers(X,G,R):-clauses(Cs),all_instances(X,G,Cs,R).

and try out a few goals:

?- all_answers(Xs+Ys,app(Xs,Ys,[1,2,3]),Rs).
Rs = [[]+[1, 2, 3], [1]+[2, 3], [1, 2]+[3], [1, 2, 3]+[]]

?- all_answers(P,perm([1,2,3],P),Ps).

Ps = [[1, 2, 3], [2, 1, 3], [2, 3, 1], [1, 3, 2], [3, 1, 2], [3, 2, 1]]

Note, that for non-ground queries, answers computed this way keep variable
equalities as expected:

?- List=[A,B,B,A],all_answers(R,nrev(List,R),Rs).
List = [A, B, B, A],

Rs = [[_A, _B, _B, _A]]

Note that, except for relying on copy term and a cut that can be replaced with
a negation as failure, the metainterpreter is entirely written in pure Prolog.

4.2 Emulating copy term

We can emulate the effect of copy term in the previously described metainter-
preter by observing that a logical variable can be “split” into two new ones and
consequently a Prolog term can be recursively deconstructed and rebuilt as two
fresh terms, identical to it up to uniform variable renamings.

fork_term(’$v’(T1,T2), R1,R2):-R1=T1,R2=T2.
fork_term(T, T1,T2):-

nonvar(T),functor(T,F,N),(F/N) \== (’$v’/2),

functor(T1,F,N),functor(T2,F,N),

fork_args(N,T,T1,T2).

fork_args(0,_,_,_).

fork_args(I,T,T1,T2):-I>0,
I1 is I-1,arg(I,T,X),
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fork_term(X,A,B),

arg(I,T1,A),arg(I,T2,B),

fork_args(I1,T,T1,T2).

One can see that this produces indeed two fresh copies of the original term:

?- fork_term(f(A,B,g(B,A)),T1,T2).

A = ’$v’(_A1, _A2),

B = ’$v’(_B1, _B2),

T1 = f(_A1, _B1, g(_B1, _A1)),

T2 = f(_A2, _B2, g(_B2, _A2)).

Note that functor and arg can be seen as generic abbreviations for predi-
cates describing the building/decomposition operations for each function symbol
occurring in the program and $v/2 can be assumed to be any function symbol not
occurring in the program. Along the lines of [15] one can see that this function-
ality can be also expressed through a simple program transformation provided
that nonvar/1 can be expressed using negation as failure as

nonvar(X):- not(X=0),not(X=1).

We will obtain a slightly different definition of composition, that would re-
quire replacing both the clause and the resolvent with one of the copies while
using the other pair of copies for the arrow compositions.

compose(F1,F2, A<=C, NewF1,NewF2):-

fork_term(F1,A<=B,NewF1),
fork_term(F2,B<=C,NewF2).

One can now see that after propagating the extra arguments through the clauses
of the metainterpreter described in subsection 4.1, together with the source
level transformations we just mentioned, a metainterpreter that does not re-
quire copy term can be derived.

4.3 Implementing suspend/resume and term/exchanges

The metainterpreter described in subsection 4.1 can be easily modified to re-
turn the current goal list when observing a return(X) instruction and then
be resumed at will, by adding a clause similar to the one handling the case
Answer<=[]. At this point, data exchange operations and to engine and from engine
can be implemented through an extra argument added to the metainterpreter.

5 Interactors and Higher Order Constructs

As a first glimpse at the expressiveness of the Interactor API, we will implement,
in the tradition of higher order functional programming, a fold operation [16]
connecting results produced by independent branches of a backtracking Prolog
engine:
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efoldl(Engine,F,R1,R2):-

get(Engine,X),

efoldl_cont(X,Engine,F,R1,R2).

efoldl_cont(no,_Engine,_F,R,R).

efoldl_cont(the(X),Engine,F,R1,R2):-

call(F,R1,X,R),

efoldl(Engine,F,R,R2).

Classic functional programming idioms like reverse as fold are then implemented
simply as:

reverse(Xs,Ys):-

new_engine(X,member(X,Xs),E),

efoldl(E,reverse_cons,[],Ys).

reverse_cons(Y,X,[X |Y]).

Note also the automatic deforestation effect [17] of this programming style
- no intermediate list structures need to be built, if one wants to aggregate the
values retrieved from an arbitrary generator engine with an operation like sum
or product.

6 Emulating Dynamic Databases with Interactors

The gain in expressiveness coming directly from the view of logic engines as an-
swer generators is significant. We refer to [12] for source level implementations
of virtually all essential Prolog built-ins (exceptions included). The notable ex-
ception is Prolog’s dynamic database, requiring the bidirectional communication
provided by interactors.

The key idea for implementing dynamic database operations with Interac-
tors is to use a logic engine’s state in an infinite recursive loop, similar to the
coinductive programming style advocated in [18], to emulate state changes in its
client engine.

First, a simple difference-list based infinite server loop is built:

queue_server:-queue_server(Xs,Xs).

queue_server(Hs1,Ts1):-

from_engine(Q),

server_task(Q,Hs1,Ts1,Hs2,Ts2,A),

return(A),

queue_server(Hs2,Ts2).

Next we provide the queue operations, needed to maintain the state of the
database.

server_task(add_element(X),Xs,[X |Ys],Xs,Ys,yes).
server_task(push_element(X),Xs,Ys,[X |Xs],Ys,yes).
server_task(queue,Xs,Ys,Xs,Ys,Xs-Ys).
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server_task(delete_element(X),Xs,Ys,NewXs,Ys,YesNo):-

server_task_delete(X,Xs,NewXs,YesNo).

Then we implement the auxiliary predicates supporting various queue opera-
tions:

server_task_remove(Xs,NewXs,YesNo):-

nonvar(Xs),Xs=[X |NewXs],!,
YesNo=yes(X).

server_task_remove(Xs,Xs,no).

server_task_delete(X,Xs,NewXs,YesNo):-

select_nonvar(X,Xs,NewXs),!,

YesNo=yes(X).
server_task_delete(_,Xs,Xs,no).

select_nonvar(X,XXs,Xs):-nonvar(XXs),XXs=[X |Xs].
select_nonvar(X,YXs,[Y |Ys]):-nonvar(YXs),YXs=[Y |Xs],
select_nonvar(X,Xs,Ys).

Finally, we put it all together, as a dynamic database API:
We can create a new engine server providing Prolog database operations:

new_edb(Engine):-new_engine(done,queue_server,Engine).

We can add new clauses to the database

edb_assertz(Engine,Clause):-

ask_engine(Engine,add_element(Clause),the(yes)).

edb_asserta(Engine,Clause):-

ask_engine(Engine,push_element(Clause),the(yes)).

and we can return fresh instances of asserted clauses

edb_clause(Engine,Head,Body):-

ask_engine(Engine,queue,the(Xs-[])),

member((Head:-Body),Xs).

or remove them from the the database

edb_retract1(Engine,Head):-Clause=(Head:-_Body),
ask_engine(Engine,

delete_element(Clause),the(yes(Clause))).

Finally, the database can be discarded by discarding the engine that hosts it:

edb_delete(Engine):-stop(Engine).

The following example shows how the database generates the equivalent of
clause/2, ready to be passed to a Prolog metainterpreter.

test_clause(Head,Body):-

new_edb(Db),

edb_assertz(Db,(a(2):-true)),
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edb_asserta(Db,(a(1):-true)),

edb_assertz(Db,(b(X):-a(X))),

edb_clause(Db,Head,Body).

As a side note, combining this emulation with the metainterpreter described
in section 4, provides an executable specification of Prolog’s dynamic database
operations in pure Prolog, worth investigating in depth, as future work.

Externally implemented dynamic databases can also be made visible as In-
teractors and reflection of the interpreter’s own handling of the Prolog database
becomes possible. As an additional benefit, multiple databases can be provided.
This simplifies adding module, object or agent layers at source level. By com-
bining database and communication Interactors, software abstractions like mo-
bile code and autonomous agents can be built as shown in [19]. Encapsulating
external stateful objects like file systems or external database or Web service in-
terfaces as Interactors can provide a uniform interfacing mechanism and reduce
programmer learning curves in practical applications of Prolog.

Moreover, Prolog operations traditionally captive to predefined list based
implementations (like DCGs) can be made generic and mapped to work directly
on Interactors encapsulating file, URL and socket Readers.

7 Refining control: a backtracking if-then-else

Modern Prolog implementations (SWI, SICStus, BinProlog, Jinni) also provide
a variant of if-then-else that either backtracks over multiple answers of its
then branch or switches to the else branch if no answers in the then branch
are found. With the same API, we can implement it at source level as follows:
if_any(Cond,Then,Else):-

new_engine(Cond,Cond,Engine),

get(Engine,Answer),

select_then_or_else(Answer,Engine,Cond,Then,Else).

select_then_or_else(no,_,_,_,Else):-Else.

select_then_or_else(the(BoundCond),Engine,Cond,Then,_):-

backtrack_over_then(BoundCond,Engine,Cond,Then).

backtrack_over_then(Cond,_,Cond,Then):-Then.

backtrack_over_then(_,Engine,Cond,Then):-

get(Engine,the(NewBoundCond)),

backtrack_over_then(NewBoundCond,Engine,Cond,Then).

8 Simplifying Algorithms: Interactors and Combinatorial
Generation

Various combinatorial generation algorithms have elegant backtracking imple-
mentations. However, it is notoriously difficult (or inelegant, through the use of
impure side effects) to compare answers generated by different OR-branches of
Prolog’s search tree.
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8.1 Comparing Alternative Answers

Such optimization problems can easily be expressed as follows:

– running the generator in a separate logic engine
– collecting and comparing the answers in a client controlling the engine

The second step can actually be automated, provided that the comparison cri-
terion is given as a predicate

compare_answers(First,Second,Best)

to be applied to the engine with an efold operation

best_of(Answer,Comparator,Generator):-

new_engine(Answer,Generator,E),

efoldl(E,

compare_answers(Comparator),no,

Best),

Answer=Best.

compare_answers(Comparator,A1,A2,Best):-

if((A1\==no,call(Comparator,A1,A2)),
Best=A1,
Best=A2

).

?-best_of(X,>,member(X,[2,1,4,3])).
X=4

8.2 Counting Answers without Accumulating

Problems as simple as counting the number of solutions of a combinatorial gener-
ation problem can become tricky in Prolog (unless one uses impure side effects)
as one might run out of space by having to generate all solutions as a list, just to
be able to count them. The following example shows how this can be achieved
using an efold operation on an integer partition generator:

integer_partition_of(N,Ps):-

positive_ints(N,Is),

split_to_sum(N,Is,Ps).

split_to_sum(0,_,[]).

split_to_sum(N,[K |Ks],R):-N>0,sum_choice(N,K,Ks,R).

sum_choice(N,K,Ks,[K |R]):-
NK is N-K,split_to_sum(NK,[K |Ks],R).

sum_choice(N,_,Ks,R):-split_to_sum(N,Ks,R).

positive_ints(1,[1]).

positive_ints(N,[N |Ns]):-N>1,N1 is N-1,
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positive_ints(N1,Ns).

% counts partitions by running

% the generator on an engine that returns

% 1 for each answer that is found

count_partitions(N,R):-

new_engine(1,

integer_partition_of(N,_),Engine),

efoldl(Engine,+,0,R).

8.3 Encapsulating Infinite Computations Streams

An infinite stream of natural numbers is implemented as:

loop(N):-return(N),N1 is N+1,loop(N1).

The following example shows a simple space efficient generator for the infinite
stream of prime numbers:

prime(P):-prime_engine(E),element_of(E,P).

prime_engine(E):-new_engine(_,new_prime(1),E).

new_prime(N):-N1 is N+1,
if(test_prime(N1),true,return(N1)),

new_prime(N1).

test_prime(N):-

M is integer(sqrt(N)),between(2,M,D),N mod D =:=0

Note that the program has been wrapped, using the element of predicate de-
fined in [12], to provide one answer at a time through backtracking. Alternatively,
a forward recursing client can use the get(Engine) operation to extract primes
one at a time from the stream.

9 Applications of Interactors and Practical Language
Extensions

Interactors and Multi-Threading As a key difference with typical multi-
threaded Prolog implementations like Ciao-Prolog and SWI-Prolog [20, 21], our
Interactor API is designed up front with a clear separation between engines and
threads as we prefer to see them as orthogonal language constructs.

While one can build a self-contained lightweight multi-threading API solely
by switching control among a number of cooperating engines, with the advent
of multi-core CPUs as the norm rather than the exception, the need for native
multi-threading constructs is justified on both performance and expressiveness
grounds. Assuming a dynamic implementation of a logic engine’s stacks, Inter-
actors provide lightweight independent computation states that can be easily
mapped to the underlying native threading API.
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A minimal native Interactor based multi-threading API, has been imple-
mented in the Jinni Prolog system [10] on top of a simple thread launching
built-in

run_bg(Engine,ThreadHandle)

This runs a new Thread starting from the engine’s run() predicate and returns
a handle to the Thread object. To ensure that access to the Engine’s state is
safe and synchronized, we hide the engine handle and provide a simple produc-
er/consumer data exchanger object, called a Hub. Some key components of the
multi-threading API, partly designed to match Java’s own threading API are:

– bg(Goal): launches a new Prolog thread on its own engine starting with
Goal.

– hub ms(Timeout,Hub): constructs a new Hub - a synchronization device on
which N consumer threads can wait with collect(Hub,Data) (similar to
a synchronized from engine operation) for data produced by M producers
providing data with put(Hub,Data) (similar to a synchronized from engine
operation.

Interactor Pools Thread Pools have been in use either at kernel level or
user level in various operating system and language implementations to avoid
costly allocation and deallocation of resources required by Threads. Likewise, for
Interactor implementations that cannot avoid high creation/initialization costs,
it makes sense to build Interactor Pools. An Interactor Pool is maintained by a
dedicated Logic Engine that keeps track of the state of various Interactors and
provides recently freed handles, when available, to new engine requests.

Associative Interactors The message passing style interaction shown in the
previous sections between engines and their clients, can be easily generalized to
associative communication through a unification based blackboard interface [22].
Exploring this concept in depth promises more flexible interaction patterns, as
out of order ask engine and engine yield operations would become possible,
matched by association patterns.

10 Interactors Beyond Logic Programming Languages

We will now compare Interactors with similar constructs in other programming
paradigms.

10.1 Interactors in Object Oriented Languages

Extending Interactors to mainstream Object Oriented languages is definitely of
practical importance, given the gain in expressiveness. An elegant open source
Prolog engine Yield Prolog has been recently implemented in terms of Python’s
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yield and C#’s yield return primitives [23]. Extending Yield Prolog to support our
Interactor API only requires adding the communication operations from engine
and to engine. In older languages like Java, C++ or Objective C one needs to
implement a more complex API, including a yield return emulation.

10.2 Interactors and similar constructs in Functional Languages

Interactors based on logic engines encapsulate future computations that can be
unrolled on demand. This is similar to lazy evaluation mechanisms in languages
like Haskell [24]. Interactors share with Monads [25, 26] the ability to sequen-
tialize functional computations and encapsulate state information. With higher
order functions, monadic computations can pass functions to inner blocks. On
the other hand, our ask engine / engine yield mechanism, like Ruby’s yield,
is arguably more flexible, as it provides arbitrary switching of control (coroutin-
ing) between an Interactor and its client. The ability to define Prolog’s findall
construct as well as fold operations in terms of Interactors, is similar to defini-
tion of comprehensions [26] in terms of Monads.

11 Conclusion

We have shown that Logic Engines encapsulated as Interactors can be used
to build on top of pure Prolog a practical Prolog system, including dynamic
database operations, entirely at source level. We have also provided a sketch of
an executable semantics for Logic Engine operations in pure Prolog. This shows
that, in principle, their exact specification can be expressed declaratively.

In a broader sense, Interactors can be seen as a starting point for rethinking
fundamental programming language constructs like Iterators and Coroutining
in terms of language constructs inspired by performatives in agent oriented pro-
gramming.

Beyond applications to logic-based language design, we hope that our lan-
guage constructs will be reusable in the design and implementation of new func-
tional and object oriented languages.
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Abstract. This paper identifies potential security loopholes in the im-
plementation of support for meta-predicates. Closing these loopholes de-
pends on three conditions: a clear distinction between closures and goals,
support for an extended meta-predicate directive that allows the specifi-
cation of closures, and the availability of the call/2-N family of built-in
meta-predicates. These conditions provide the basis for a set of simple
safety rules that allows meta-predicates to be securely supported. These
safety rules are currently implemented by Logtalk, an object-oriented
logic programming language, and may also be applied in the context of
Prolog predicate-based module systems. Experimental results illustrate
how these rules can prevent several security problems, including acciden-
tal or malicious changes to the original meta-predicate arguments and
bypassing of predicate scope rules and predicate scope directives.

Keywords: logic-programming, meta-predicates, security

1 Introduction

Prolog and Logtalk [1, 2] meta-predicates are predicates with one or more ar-
guments that are called as goals on the body of a predicate clause. A typical
example is the findall/3 predicate whose second argument is used for generating
solutions that are collected into a list. Meta-arguments may also be closures. In
the context of this paper, a closure is defined as a callable term used to construct
a goal by appending one or more arguments. The archetypal example is a list
mapping predicate that succeeds when a closure can be successfully applied to
each element in the list. Meta-predicates are particularly useful in the presence
of an encapsulation mechanism such as a module system or an object-oriented
extension. Defining an exported or public meta-predicate within a module or an
object allows client modules and objects to reuse predicates customized by calls
to local predicates.

Meta-predicates require special care in the context of Prolog module sys-
tems and object-oriented extensions as meta-calls must be executed in the meta-
predicate calling context and not in the meta-predicate definition context.

? This work is partially supported by the FCT research project MOGGY
(PTDC/EIA/70830/2006).
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A recent paper [3] showed that the implementation of meta-predicates found
in most Prolog predicate-based module systems allows a module to call non-
exported predicates of another module, thus breaking encapsulation. This prob-
lem is usually absent from atom-based module systems such as XSB [4] where
atoms, including predicate functors, are internally tagged with the definition
module. The lack of enforcement of module encapsulation can, however, be
thought as a consequence of the original design goals of module systems. Tra-
ditional Prolog module systems never aimed to fulfill any security role, being
designed instead as a simple solution for partitioning code in different names-
paces. Moreover, in most Prolog module systems, any module predicate can be
called by using explicit module qualification (Ciao [5, 6] and ECLiPSe [7] are
notable exceptions, only allowing calls to exported module predicates). Prolog
extensions such as Logtalk, however, are designed to enforce encapsulation and
predicate scope rules. In this case, meta-predicates must be properly supported
without the danger of providing the means of accidental or malicious bypassing
of predicate scope directives. The same paper also exposed flaws in the Logtalk
support of meta-predicates which allowed bypassing of predicate scope directives.
These flaws resulted from clever use of closures and from unsafe handling of goal
execution context in the presence of meta-calls. During our research to correct
these problems, we uncovered other meta-predicate implementation flaws that
are not necessarily related to bypassing of predicate scope directives. In fact,
potential loopholes exist that may allow accidental or carefully crafted meta-
predicate definitions to change the original meta-predicate call. These changes
may allow calling a different predicate in the calling context or calling the in-
tended predicate with corrupted arguments. Calling a predicate different from
the one specified in the original meta-predicate call is always a flaw, even when
the called predicate is public or exported. Corrupting the original meta-predicate
arguments can be done conditionally, resulting in hard to find problems as only
specific usage patterns will lead to compromised results.

Correcting these flaws can be accomplished by finding and implementing a
set of safety rules that ensures secure compilation and use of meta-predicates.
Although our research takes place in the context of the Logtalk programming
language, these safety rules are equally relevant in the context of predicate-
based Prolog module systems (the proposed safety rules are not tied to the
semantic differences between objects and modules). These safety rules are useful
even in the context of module systems that allow the :/2 control construct
to bypass predicate scope rules, promoting better coding standards for meta-
predicate definitions.

This paper is organized as follows. Section 2 describes an extended meta-
predicate declaration directive, which supports the specification of both goals
and closures as meta-arguments. Section 3 discusses how meta-calls can be con-
structed from closures. Section 4 enumerates potential loopholes in the imple-
mentation of meta-predicate support. Section 5 presents and discusses the safety
rules applied by Logtalk to compile and execute meta-predicates. Section 6 iden-
tifies limitations imposed by our safety rules on meta-predicate definitions. Sec-
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tion 7 presents experimental results in testing common Prolog module systems
for the loopholes discussed in this paper. Section 8 presents our conclusions on
safe compilation and use of meta-predicates, together with some remarks on
the importance of increasing the awareness of security issues among the Logic
Programming community.

2 Extended Meta-predicate Directive

User meta-predicates are declared using meta-predicate directives. These di-
rectives use a meta-predicate template to specify which arguments are meta-
arguments, i.e. which arguments will be used as goals or closures in the body
of the meta-predicate clauses. In plain Prolog, meta-predicate directives are op-
tional and primarily useful for cross-reference tools. When module or object
systems are present, meta-predicates directives are required for proper compila-
tion of meta-predicates. An example of a Logtalk meta-predicate directive where
the meta-arguments are goals is:

:- meta_predicate(findall(*, ::, *)).

In meta-predicate templates, the atom :: represents a meta-argument that will
be called as a goal. Normal arguments are represented by the atom *. This is
similar to the declaration of meta-predicates found in most Prolog compilers and
in the ISO Prolog standard for modules [8] (the atom :: is used instead of the
atom : for consistency with the Logtalk message sending operators). A positive
integer, N, specifies a closure that will be used to construct a call by appending
N arguments. For example:

| ?- map(double, [1, 2, 3], L).

L = [2, 4, 6]

yes

The corresponding meta predicate/1 directive would be:

:- meta_predicate(map(2, *, *)).

The first argument in the map/3 template specifies that the meta-argument is a
closure that will be used to construct a meta-call by appending two arguments.
In the example above, this requires the existence of a double/2 predicate in the
calling context of the meta-predicate.

The use of non-negative integers to specify closures was first introduced in
Quintus Prolog [9] for providing information to predicate cross-reference tools.
A description of this usage can also be found on a recent Prolog standardization
proposal [10]. Other Prolog compilers, such as SICStus Prolog [11] and YAP [12],
also accept this notation for compatibility with existing code. As discussed later
in this paper, the support for specifying closures in meta-predicate directives is
essential to ensure safe compilation and use of meta-predicates. The Ciao Prolog
system defines an alternative but equivalent syntax for specifying closures, using
a compound term pred(I) where I is the number of extra arguments.
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3 From Closures to Meta-calls

Given a closure and its additional arguments, the corresponding meta-call is
constructed by appending the extra arguments to the existing ones. Although it
is always possible to use the standard predicate =../2 and a list append predicate
to construct the meta-call, the preferable and simpler solution is to use the call/N

family of built-in meta-predicates found in Logtalk and in most Prolog compilers.
The first argument of these predicates must be a closure, with the remaining
arguments being interpreted as the closure extra arguments. For example, the
query call(integer, 3) is equivalent to the query integer(3). These predicates
provide improved performance when compared with the explicit construction of
meta-calls (which requires building temporary lists).

As discussed later in the paper, the use of the call/N family of built-in meta-
predicates is mandatory when working with closures as they avoid the introduc-
tion of new variables to explicitly represent the constructed meta-calls.

4 Potential Meta-predicate Loopholes

When reasoning about meta-predicate semantics, it is helpful to define a set of
terms which helps us visualize how and where meta-calls take place:

Definition context This is the object or module containing the meta-predicate
definition.

Calling context This is the object or module from which a meta-predicate is
called. This can be the object or module where the meta-predicate is defined
in the case of a local call or another object or module assuming that the
meta-predicate is within scope.

Execution context This comprises both the calling context and the definition
context. It includes all the information needed for the language runtime to
execute a meta-predicate call.

Our research is focused on three potential loopholes when implementing meta-
predicate support. The first loophole can be exploited to corrupt the original
meta-arguments when a meta-predicate is executed:

Making malicious changes to meta-arguments Using unification with the
meta-arguments may allow a meta-predicate to test for specific goals and
closures and modify them before making the corresponding meta-calls. This
potential loophole can be exploited by testing only for some very specific
usage patterns, thus making its detection harder.

The two following loopholes can be exploited to bypass predicate scope directives
or to break predicate scope rules. In the case of Logtalk, predicate scope rules
are supported using predicate scope directives (object predicates are private by
default). In the case of Prolog module systems, it should not be possible to call
non-exported predicates from client modules.
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Hijacking of the predicate execution context Hijacking a predicate exe-
cution context may allow a meta-predicate to gain access to predicates within
the calling context other than the ones specified in the meta-predicate call.

Using closures for constructing unintended meta-calls A potential loop-
hole exists when appending additional arguments to a closure in order to
construct a meta-call. This loophole can be exploited by constructing a call
to a predicate with the same functor of the closure but with an arity different
to that intended by the caller of the meta-predicate.

5 Compiling Meta-predicates for Safety

This section describes four safety rules, illustrated with examples,1 intended
to close the loopholes discussed above in the context of predicate-based encap-
sulation module and object systems. The ideal rules would allow catching all
problems at compile time. Unfortunately, as we will illustrate in this section,
this is not always possible. Some deceiving meta-predicates definitions consti-
tute perfectly valid code; the potential for trouble resulting only from the use
of such definitions. For these cases, the compiler can still print a warning. At
runtime, our safety rules ensure that any inappropriate use of a meta-predicate
definition is caught by generating an appropriate exception.

The first two rules check for the context for meta-predicate calls. The last two
rules check for the consistency of meta-predicate directives and the consistency
between meta-predicate directives and meta-calls. The rules presentation is con-
ceptual: actual implementations may choose to combine the first and second
rules and combine the third and fourth rules. The first three rules are expected
to be implemented at the compiler level. The fourth rule may be implemented
instead in a programming code style or policy checker.

(a) The meta-arguments on a meta-predicate clause head must be variables.

This simple rule helps to prevent a meta-predicate from modifying the original
arguments of a meta-call. By testing and acting upon the actual meta-arguments,
a meta-predicate could try to make a meta-call different from the original one
to be executed in the calling context. Consider the following example (a):

:- object(library).

:- public(map/3).

:- meta_predicate(map(*, 2, *)).

map(In, scale(_), Out) :-

!, map_(In, scale(3), Out).

map(In, Closure, Out) :-

map_(In, Closure, Out).

1 These examples use Logtalk objects. Converting them to Prolog modules requires
replacing object directives with module directives, removing the explicit predicate
scope directives, and rewriting the meta-predicate directives.
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:- meta_predicate(map_(*, 2, *)).

map_([], _, []).

map_([X| Xs], Closure, [Y| Ys]) :-

call(Closure, X, Y),

map_(Xs, Closure, Ys).

:- end_object.

The map/3 meta-predicate in this library object behaves as expected except when
the closure argument unifies with the term scale( ). In this case, the original
predicate argument is simply ignored and replaced by a fixed value. Assume now
that we define the following client object:

:- object(client).

:- public(double/2).

double(Ints, Doubles) :-

library::map(Ints, scale(2), Doubles).

scale(Scale, X, Xscaled) :-

Xscaled is X*Scale.

:- end_object.

In the absence of this safety rule, the compromised behavior of the map/3 meta-
predicate could be illustrated by the following goal:

| ?- client::double([1,2,3], Doubles).

Doubles = [3,6,9]

yes

By implementing this safety rule, Logtalk generates a compile time error2 for
the first clause of the map/3 predicate in the library object:

type_error(variable, scale(_))

This rule is, however, easy to circumvent by simply moving the unification from
the meta-predicate clause head into the clause body. The meta-predicate map/3

in the example above can be easily rewritten as:

map(In, Closure, Out) :-

( Closure = scale(_) ->

map_(In, scale(3), Out)

; map_(In, Closure, Out)

).

Despite this weakness, there are three reasons to include this rule. First, it pro-
vides a necessary condition for the second safety rule, described next. Second,
rule violations result in compile time errors, which are always preferable to run-
time errors. Third, it is trivial to implement: the compiler can apply it before
any other rule by simply checking the meta-arguments in the clause heads.
2 Arguably, this error is more of a representation error than a type error; nevertheless,

we decided to follow the practice established by the current ISO Prolog standard.
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(b) Meta-calls whose arguments are not variables appearing in meta-argument
positions in the clause head must be compiled as calls to local predicates.

This rule applies to the compilation of both meta-predicates and normal predi-
cates. It prevents hijacking of the execution context, which could otherwise be
used to call predicates in the calling context not passed as meta-arguments. This
problem can occur with e.g. a naive implementation of execution context passing
from a clause head to the goals in the clause body.

This rule is trivial to implement when compiling clauses of normal predicates:
any meta-call in a clause body must be compiled as a local meta-call. This rule
is also easy to implement when compiling clauses of meta-predicates since the
corresponding meta-predicate directive is mandatory.

As a consequence of this rule, when a meta-predicate calls a second meta-
predicate, the meta-arguments executed in the calling context will be strictly the
ones coming from the call to the first meta-predicate. That is, the programmer
cannot use a second meta-predicate to construct a meta-call different from the
one intended by the original caller of the meta-predicate. Consider the following
example (b1):

:- object(library).

:- public(meta/2).

:- meta_predicate(meta(::, ::)).

meta(Goal1, Goal2) :-

call(Goal1), call(Goal2).

:- public(meta/1).

:- meta_predicate(meta(::)).

meta(Goal1) :-

meta(Goal1, local).

local :-

write(’local predicate in object library’), nl.

:- end_object.

The rule requires that client calls to the meta/1 predicate must result in the
interpretation of local/0 as a call to a local predicate, thus executed in the
context of the object library. We use the following client object to illustrate the
correct behavior:

:- object(client).

:- public(test/0).

test :-

library::meta(goal).

goal :-

write(’goal meta-argument in object client’), nl.
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local :-

write(’local predicate in object client’), nl.

:- end_object.

This safety rule will ensure the following result:

| ?- client::test.

goal meta-argument in object client

local predicate in object library

yes

Meta-calls can also appear in the body of normal predicates. This rule ensures
that an object cannot hijack the execution context of the original, non meta-
predicate call and use it through a local meta-predicate to construct arbitrary
calls to predicates in the calling context. Therefore, we cannot convert a normal
argument into a meta-argument by calling a local meta-predicate. Consider the
following simplified version of an example found in [3] (b2):

:- object(library).

:- meta_predicate(meta(::)).

meta(Goal) :-

call(Goal).

:- public(normal/1).

normal(Arg) :-

meta(Arg).

:- end_object.

In this case, the argument in the meta-predicate call, Arg, must be interpreted
as a local meta-call. Consider now the following client object:

:- object(client).

:- public(test/0).

test :-

library::normal(term).

term :-

write(’Some local, private predicate.’).

:- end_object.

This safety rule will ensure the following result:

| ?- catch(client::test, E, write(E)).

E = error(existence_error(procedure,term), context(object,library,_))

yes
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Therefore, the predicate term/0 in the object client (which is the calling context
for the normal/1 predicate) will not be called.

Although the two examples above make use of additional user-defined meta-
predicates whose meta-arguments are goals, the rule also applies when working
with closures and when calling built-in meta-predicates. For example, consider
the following tentative exploit (b3) using the call/1 built-in meta-predicate and a
meta-predicate definition that does not comply with the corresponding directive
(as two arguments are appended to the closure instead of one):

:- object(library).

:- public(m/2).

:- meta_predicate(m(1, *)).

m(Closure, Arg) :-

Closure =.. List,

list::append(List, [Arg, _], NewList),

Call =.. NewList,

call(Call).

:- end_object.

With this safety rule in place, the meta-call call(Call) above is compiled as a
local meta-call since the variable Call does not occur in the head of the meta-
predicate clause in a meta-argument position. The following definition of a simple
client object illustrates the consequences of the meta-predicate definition above:

:- object(client).

:- public(test/1).

test(X) :-

library::m(a, X).

a(1). a(2).

a(3, three). a(4, four).

:- end_object.

After compiling and loading these two objects, an example test query would be:

?- catch(client::test(X), E, true).

E = error(existence_error(procedure, a/2), context(object, library, _))

yes

As the exception term shows, the meta-call is compiled and executed as a local
call in the context of the library object. Without this safety rule in place, a
faulty implementation would wrongly call the predicate a/2 defined in the object
client:
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?- catch(client::test(X), E, true).

X = 3 ;

X = 4

yes

The above example shows that meta-predicates with meta-arguments that are
closures cannot be defined using call/1 calls as explicitly constructing the meta-
call from the closure results in a new variable not occurring in the clause head. It
follows that the use of the call/2-N built-in predicates is mandatory for defining
meta-predicates that work with closures. This is subsumed by the third rule:

(c) Meta-predicate closures must be used within a call/2-N built-in predicate
call that complies with the corresponding meta-predicate directive.

The number of additional arguments appended to a closure in a call/2-N call
must comply with the meta-predicate declaration; simply ensuring that a closure
is a variable occurring in a meta-argument position is not a sufficient condition.
This rule ensures that a meta-predicate cannot construct a predicate call with
the same functor but with a different arity of the original meta-argument. For
example, a meta-predicate definition (c) such as:

:- meta_predicate(map(1, *)).

map(Closure, [Element| Rest]) :-

..., call(Closure, Element, Result), ...

would result in the following compile time error:

arity_mismatch(closure, call(map, Element, Result), map(1, *))

The call/3 meta-call in this example does not comply with the meta-predicate
specification, which requires a single additional argument. In fact, the actual
meta-call would not be the one that the programmer intended when calling the
meta-predicate. Moreover, the call could correspond either to a predicate in the
calling context that is not within scope of the meta-predicate definition context
or to a non-existing predicate (which would result in a runtime existence error).

(d) The meta-predicate arity should be equal to the sum of the extra arguments
specified by each closure plus the number of normal, non meta-arguments.

Assume that we correct the meta-predicate directive used to illustrate the pre-
vious rule in order to be consistent with the call/2-N call by writing (d):

:- meta_predicate(map(2, *)).

Trying to compile the updated code would result in the following error:

arity_mismatch(closure, map(Closure, [Element| Rest]), map(2, *))

This error results from the meta-predicate directive specifying a closure requir-
ing two extra arguments while only one normal argument is declared. This is
potentially misleading for a client that may expect the library meta-predicate
to call a unary predicate based on the meta-predicate arity.
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6 Known Limitations

6.1 Closures with a Variable Number of Arguments

The proposed safety rules and the extended meta-predicate directive do not
support the specification of meta-predicates that allow a variable number of
arguments to be appended to a closure. This restriction makes some common
meta-predicates such as apply/2 useless as a public or exported predicate. The
usual definition of this predicate is:

apply(Closure, Args) :-

Closure =.. List,

append(List, Args, NewList),

Call =.. NewList,

call(Goal).

As the variable Goal is not a meta-argument in the clause head, the meta-call
call(Goal) is compiled as a call to a local predicate (as per the second safety
rule) and not as a call to a predicate in the calling context of the meta-predicate.
This restriction is not considered, however, a serious limitation as the number
of extra closure arguments is usually known a priori, therefore allowing the use
of the call/2-N built-in meta-predicates.

6.2 Meta-predicates Implemented in Foreign Code

Prolog compilers often include libraries with predicates implemented using a
foreign language interface. It is also possible to implement meta-predicates this
way. A common example is the implementation of callbacks to Prolog code in
the context of GUI extensions (see e.g. the SWI-Prolog XPCE package [13]). In
this case, the verification of the safety rules described in the previous section
would require manual verification of the source code in the foreign language. It
should be noted, however, that the use of foreign language resources rises its
own set of security issues that goes well beyond meta-predicates issues.

7 Prolog Module Systems

In this section, we test five Prolog compilers for the potential meta-predicates
loopholes described earlier: Ciao 1.10#8, ECLiPSe 5.10#141, SICStus Prolog
4.0.2, SWI-Prolog 5.6.59, and YAP 5.1.3. Although there are other Prolog com-
pilers supporting predicate-based module systems, we believe this is a represen-
tative set of module implementation solutions.

Our experiments are complicated by two problems. First, the details of the
module versions of the examples in Section 4 differ for each compiler due to the
lack of a de-facto standard for Prolog module systems.3 In particular, the five
3 The full source code used in the examples for both Logtalk and the tested Prolog

compilers is available at http://logtalk.org/papers/simp/mptests.tar.gz.
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tested systems provide three different materializations of a meta-predicate decla-
ration directive. Second, the documentation of the Prolog module systems often
forces us to resort to experimentation in order to find out the exact operational
semantics of modules, meta-predicate directives, and meta-calls.

The experimental results are presented in Table 1. In this table, a value of
N/A means that the meta predicate/1 directive or its equivalent does not support
the specification of meta-predicate templates. The results for the example (d)

indicate if a Prolog compiler checks for the consistency between meta-predicate
directives and the number of extra arguments required by the declared closures.
This consistency check should result, at least, in a compilation warning but it is
not performed by any of the tested Prolog compilers.

Table 1. Experimental results for the safety rule examples.

Examples Ciao ECLiPSe SICStus SWI (mp) SWI (mt) YAP

(a1) ok wrong ok wrong wrong ok

(a2) ok ok wrong ok ok wrong

(b1) ok wrong ok wrong wrong ok

(b1) ok wrong ok wrong wrong ok

(b2) ok ok ok wrong ok ok

(b3) ok wrong wrong wrong wrong wrong

(c) ok N/A wrong wrong N/A wrong

(d) wrong wrong wrong wrong wrong wrong

The conversion of the Logtalk example (a) into Prolog module code rises an
interesting issue with the module systems of SICStus Prolog and YAP. These sys-
tems expand meta-arguments in goals appearing in the body of meta-predicate
clauses but not in the head of meta-predicate clauses. As a consequence, the first
clause of the map/3 is never used, making the test result for these Prolog compilers
misleading. One workaround is to rewrite this clause using explicit module qual-
ification, which allows all the clauses to be used. Although this rewrite defeats
the purpose of the meta-predicate directive, it is also a possible exploit vector.
Therefore, we chose to split the example (a) in two tests. Test (a1) uses the same
exact clauses as in example (a). Test (a2) uses explicit module qualification for
the scale/1 arguments in the first clause of the meta-predicate map/3.

The results for test (a2) are interesting and a bit surprising. While the results
for SICStus Prolog and YAP are expected, the changes in test (a2) allow both
ECLiPSe and SWI-Prolog to return correct results, reversing the bad score in
test (a1) (it is worth noting that the module systems of ECLiPSe and SWI-
Prolog are distinct). The Ciao compiler is not fooled by these tricks.

Another interesting result concerns the (b2) and (b3) examples of our second
security rule, (b). All compilers behaved correctly in example (b2). However,
with the exception of Ciao, all compilers provided a wrong answer for example
(b3), allowing access to a private predicate, a/2, in the client module, instead of
restricting the access to the predicate a/1 used as argument in the meta-predicate
call. In this case, these Prolog compilers acted properly when meta-arguments
are goals but not when the meta-arguments are closures.
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Some brief, Prolog compiler-specific comments about the results follow:

Ciao. This is the only tested Prolog compiler that disallows writing meta-
predicate directives inconsistent with the meta-predicate definitions. It is also
the Prolog compiler that scored the best test results (as expected, giving the
emphasis by Ciao developers in static code analysis). The test results for the
third example of our second security rule (b3) are particularly interesting. The
Ciao compiler correctly catches our attempts to specify a closure with a single
extra argument while, at the same time, defining the meta-predicate to call the
closure with two extra arguments.4 Correcting the meta-predicate directive to
specify a closure with two extra arguments, however, results in the definition
of a meta-predicate that only allows a single extra argument to be passed. The
Ciao compiler fails to warn the user of this potential problem when compiling
the example (d).

ECLiPSE. This compiler does not provide a meta predicate/1 directive, re-
lying instead on a proprietary tool/2 directive whose arguments are predicate
indicators. Thus, this directive does not allow the programmer to define meta-
predicate templates. The test examples are modified to use the tool/2 directive
and the built-in predicate @/2 as suggested in the ECLiPSe documentation.

SICStus Prolog. This compiler allows the specification of closures in the direc-
tive meta predicate/1 but only for compatibility with existing code. Correcting
the directive in the test example (b3) to make it consistent with the meta-
predicate definition does not lead to a correct answer.

SWI-Prolog. We present two sets of results for SWI-Prolog. The first set, mp,
uses an emulation of the meta predicate/1 directive provided in the compatibility
libraries distributed with SWI-Prolog. The second set, mt, uses the SWI-Prolog
native directive module transparent/1 whose argument is a predicate indicator.
Therefore, it does not allow the programmer to define meta-predicate templates.
We are discussing with the main SWI-Prolog developer the possible implemen-
tation of our safety rules as a component of a general style or policy checker,
integrated with the current cross-referencer tool. This would allow existing code
to be checked for possible violations without the danger of breaking it.

YAP. Similarly to SICStus Prolog, YAP accepts the specification of closures
in the meta predicate/1 directive but only for compatibility with existing code.
Correcting the directive in the example (b3) to match the meta-predicate defini-
tion does not result in a correct answer. The safety rules described in this paper
are expected to be implemented in a forthcoming version of YAP. Their use is
expected to be optional, enabled by a Prolog compiler flag.
4 There is a typo in the Ciao documentation of the meta-predicate specification for clo-

sures. The notation pred(N) indicates the number of extra arguments, with the
closure being used within a call/N+1 predicate, not within a call/N predicate
as described in the documentation.
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8 Discussion and Conclusions

The safety rules described in this paper fix all known flaws on the Logtalk
support for meta-predicates.5 These rules may also be adapted and applied in
the context of predicate-based Prolog module systems in order to correct the
flaws uncovered by our experiments. However, given the syntactic and semantic
differences among the implementations of Prolog modules systems, the existence
of other loopholes is to be expected. Nevertheless, the lack of a formal guarantee
that the proposed rules close all loopholes in current implementations should
not excuse not fixing the known loopholes.

The safety rules are easy to implement and computationally inexpensive, as
exemplified in the current Logtalk compiler implementation. These rules enjoy
the nice property of all the required computations being performed at compile
time. In the worst case, some of the rules imply that the use of a flawed meta-
predicate definition results in a runtime exception due to the meta-calls being
compiled as calls to local predicates and not as calls in the meta-predicate call-
ing context. This is an unfortunate consequence of the fact that some safety
violations only occur when using meta-predicate definitions that, per se, con-
stitute perfectly valid code. It follows that the worst case cannot be improved
by finding stronger compiler checking rules. At best, the compiler could issue a
warning when compiling a public meta-predicate whose meta-calls are compiled
as a local calls for safety reasons.

The extended meta predicate/1 directive described in this paper provides
essential information for preventing misuse of closures. We show that specifying
closures using positive integers is not just an optional feature, useful for cross-
reference and documenting tools or for compatibility reasons, but a necessary
feature for safe compilation and use of meta-predicates.

Calls constructed from closures must be made by using the call/2-N built-in
predicates. This allows the consistency between the meta-predicate directives
and definitions to be checked at compile time, preventing loopholes when ap-
pending arguments to a closure in order to construct a meta-call. The call/2-N

family of built-in predicates is already provided by most Prolog compilers and
is included in the current draft of the ISO Prolog Core revision standardization
proposal.6

There is currently no formal proof that the described safety rules are sufficient
to prevent highjacking of predicate execution context and the misuse of closures
in the context of Logtalk. In the case of Prolog module systems each module
system needs a proof, as there is no de-facto standard. These proofs would need
to be based on formal descriptions of the module systems, to be provided by
their authors; these descriptions are beyond the scope of this paper.

5 All the safety rules are implemented by the Logtalk compiler since version 2.30.6.
6 In the case of Logtalk, although its current version uses a Prolog system as a back-end

compiler, its implementation of the call/2-N built-in predicate does not depend
on the availability of the call/2-N Prolog built-in predicates.
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The problems described in this paper are representative of what can go wrong
when using meta-predicates in field applications where security is a basic require-
ment. It is worth noting that the flaws described in this paper are not always
evident from a quick inspection of compromised source code (which, by itself,
assumes its availability). Despite existing research on improving module systems
(see e.g. [3, 6]), security concerns are often overlooked by Prolog implementors
and programmers. Secure implementation of meta-predicates is just one of the
topics where compilers and language runtimes must perform securely. In a sce-
nario of increasing industrial use of Prolog-based solutions, either in embedded
form or as stand-alone applications, preemptive thinking about security issues
is necessary. In this regard, the Prolog community is still far from the security
mindset found in other programing communities.
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M., eds.: International Conference on Logic Programming 2006. Number 4079 in
LNCS, Springer-Verlag (August 2006) 41–55

4. Group, T.X.R.: The XSB Programmer’s Manual: version 3.1. (2007)
5. Bueno, F., Cabeza, D., Carro, M., Hermenegildo, M., López, P., Puebla, G.: The
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Abstract. The performance of tabled evaluation largely depends on the
implementation of the table space. Arguably, the most successful data
structure for tabling is tries. However, while tries are efficient for variant
based tabled evaluation, they are limited in their ability to recognize
and represent repeated answers for different calls. In this paper, we pro-
pose a new design for the table space where terms in a tabled subgoal
call or/and answer are stored in a common global trie instead of being
spread over several different tries. Our preliminary experiments using
the YapTab tabling system show very promising reductions on memory
usage.
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1 Introduction

Tabling [1–3] is an implementation technique where intermediate answers for
subgoals are stored and then reused whenever a repeated call appears. The per-
formance of tabled evaluation largely depends on the implementation of the table
space – being called very often, fast lookup and insertion capabilities are manda-
tory. Applications can make millions of different calls, hence compactness is also
required. Arguably, the most successful data structure for tabling is tries [4].
Tries meet the previously enumerated criteria of efficiency and compactness.

Used in applications that pose many queries, possibly with a large number
of answers, tabling can build arbitrarily many and/or very large tables, quickly
filling up memory. A possible solution for this problem is to dynamically abolish
some of the tables. This can be done using explicit tabling primitives or using
a memory management strategy that automatically recovers space among the
least recently used tables when memory runs out [5]. An alternative approach is
to store tables externally in a relational database management system and then
reload them back only when necessary [6].

A complementary approach to the previous problem is to study how less
redundant, more compact and more efficient data structures can be used to bet-
ter represent the table space. While tries are efficient for variant based tabled
evaluation, they are limited in their ability to recognize and represent repeated
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answers for different calls. In [7], Rao et al. proposed a table organization us-
ing Dynamic Threaded Sequential Automata (DTSA) which recognizes reusable
subcomputations for subsumption based tabling. In [8], Johnson et al. proposed
an alternative to DTSA, called Time-Stamped Trie (TST), which not only main-
tains the time efficiency of the DTSA but has better space efficiency.

In this paper, we propose a different approach. We propose a new design for
the table space where all terms in a tabled subgoal call or/and answer are stored
in a common global trie instead of being spread over several different trie data
structures. Our approach resembles the hash-consing technique [9], as it tries to
share data that is structurally equal. An obvious goal is to save memory usage
by reducing redundancy in term representation to a minimum. We will focus our
discussion on a concrete implementation, the YapTab system [10, 11], but our
proposals can be easy generalized and applied to other tabling systems.

The remainder of the paper is organized as follows. First, we briefly introduce
some background concepts about tries and the table space. Next, we describe
YapTab’s new design for the table space organization using the common global
trie and then, we describe how we have extended YapTab to provide engine
support for our approach. At last, we present some preliminary experimental
results and we end by outlining some conclusions.

2 Table Space

The basic idea behind tabling is straightforward: programs are evaluated by
storing answers for tabled subgoals in an appropriate data space, called the
table space. Whenever a repeated tabled call is found, the subgoal’s answers are
recalled from the table space instead of being re-evaluated against the program
clauses. The table space may be accessed in a number of ways: (i) to find out if a
subgoal is in the table and, if not, insert it; (ii) to verify whether a newly found
answer is already in the table and, if not, insert it; and (iii) to load answers to
variant subgoals. With these requirements, YapTab implements its table space
using tries [12] which is regarded a very efficient way to implement tables [4].

A trie is a tree structure where each different path through the trie data
units, the trie nodes, corresponds to a term. Each root-to-leaf path represents
a term described by the tokens labelling the nodes traversed. Two terms with
common prefixes will branch off from each other at the first distinguishing token.
For example, the tokenized form of the term p(X, q(Y, X), Z) is the stream of
6 tokens: p/3, V AR0, q/2, V AR1, V AR0, V AR2. Variables are represented using
the formalism proposed by Bachmair et al. [13], where each variable in a term
is represented as a distinct constant. Formally, this corresponds to a function,
numbervar(), from the set of variables in a term t to the sequence of constants
V AR0, ..., V ARN , such that numbervar(X) < numbervar(Y ) if X is encoun-
tered before Y in the left-to-right traversal of t.

Internally, the trie nodes are 4-field data structures. The first field stores the
node’s token, the second field stores a pointer to the node’s first child, the third
field stores a pointer to the node’s parent and the fourth field stores a pointer
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to the node’s next sibling. Each node’s outgoing transitions may be determined
by following the child pointer to the first child node and, from there, continuing
through the list of sibling pointers. To increase performance, YapTab enforces
the substitution factoring [4] mechanism and implements tables using two levels
of tries - one for subgoal calls, the other for computed answers. More specifically,
the table space of YapTab is organized in the following way:

– each tabled predicate has a table entry data structure assigned to it, acting
as the entry point for the predicate’s subgoal trie.

– each different subgoal call is represented as a unique path in the subgoal trie,
starting at the predicate’s table entry and ending in a subgoal frame data
structure, with the argument terms being stored within the path’s nodes.

– the subgoal frame data structure acts as an entry point to the answer trie.
– each different subgoal answer is represented as a unique path in the answer

trie. Oppositely to subgoal tries, answer trie paths hold just the substitu-
tion terms for the free variables which exist in the argument terms of the
corresponding subgoal call.

– the leaf’s child pointer of answers is used to point to the next available an-
swer, a feature that enables answer recovery in insertion order. The subgoal
frame has internal pointers that point respectively to the first and last answer
on the trie. Whenever a variant subgoal starts consuming answers, it sets a
pointer to the first leaf node. To consume the remaining answers, it must
follow the leaf’s linked list, setting the pointer as it consumes answers along
the way. Answers are loaded by traversing the answer trie nodes bottom-up.

An example for a tabled predicate t/2 is shown in Figure 1. Initially, the
subgoal trie is empty. Then, the subgoal t(a(1),X) is called and three trie
nodes are inserted: one for the functor a/1, a second for the constant 1 and
one last for variable X. The subgoal frame is inserted as a leaf, waiting for the
answers. Next, the subgoal t(a(2),X) is also called. It shares one common node
with t(a(1),X) but, having a/1 a different argument, two new trie nodes and
a new subgoal frame are inserted. At the end, the answers for each subgoal are
stored in the corresponding answer trie as their values are computed. Note that,
for this particular example, the completed answer trie for both subgoal calls is
exactly the same.

3 Common Global Trie

We next describe YapTab’s new design for the table space organization. In this
new design, all terms in a tabled subgoal call or/and answer are now stored in a
common global trie (GT) instead of being spread over several different trie data
structures. The GT data structure still is a tree structure where each different
path through the trie nodes corresponds to a term. However, here a term can
end at any internal trie node and not necessarily at a leaf trie node.

The previous subgoal trie and answer trie data structures are now represented
by a unique level of trie nodes that point to the corresponding terms in the GT
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subgoal frame for
t(a(1),VAR0)

1

a/1

2

subgoal
trie

:- table t/2.

t(a(X),a(Y)) :- a(X), a(Y).
a(1).
a(2).

VAR0VAR0

table entry for t/2

answer
trie

a/1

12

subgoal frame for
t(a(2),VAR0)

answer
trie

a/1

12

Fig. 1. YapTab’s original table design

(see Figure 2 for details). For the subgoal tries, each node now represents a
different subgoal call where the node’s token is the pointer to the unique path in
the GT that represents the argument terms for the subgoal call. The organization
used in the subgoal tries to maintain the list of sibling nodes and to access the
corresponding subgoal frames remains unaltered. For the answer tries, each node
now represents a different subgoal answer where the node’s token is the pointer
to the unique path in the GT that represents the substitution terms for the
free variables which exist in the argument terms. The organization used in the
answer tries to maintain the list of sibling nodes and to enable answer recovery
in insertion order remains unaltered. With this organization, answers are now
loaded by following the pointer in the node’s token and then by traversing the
corresponding GT’s nodes bottom-up.

On completion of a subgoal, a strategy exists that avoids answer recovery
using bottom-up unification and performs instead what is called a completed
table optimization [4]. This optimization implements answer recovery by top-
down traversing the completed answer trie and by executing specific WAM-like
code from the answer trie nodes. With our new design, the nodes in the GT can
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answer trie
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global
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Fig. 2. YapTab’s new table design

belong to several different subgoal/answer tries, and thus this optimization is no
longer possible.

Figure 2 uses again the example from Figure 1 to illustrate how the GT’s
design works. Initially, the subgoal trie and the GT are empty. Then, the first
subgoal t(a(1),X) is called and three nodes are inserted on the GT: one to
represent the functor a/1, another for the constant 1 and a last one for variable
X. Next, a node representing the path inserted on the GT is stored in the subgoal
trie (node labeled call1). The token field for the call1 node is made to point
to the leaf node of the GT’s inserted path and the child field is made to point to
a new subgoal frame. For the second subgoal call, t(a(2),X), we start again by
inserting the call in the GT and then we store a node in the subgoal trie (node
labeled call2) to represent the path inserted on the GT.

As we saw in the previous example, for each subgoal call we have two answers:
the terms a(1) and a(2). However, as these terms are already represented on
the GT, we need to store only two nodes, in each answer trie, to represent them
(nodes labeled answer1 and answer2). The token field for these answer trie
nodes are made to point to the corresponding term representation on the GT.
With this example we can see that terms in the GT can end at any internal trie
node (and not necessarily at a leaf trie node) and that a common path on the
GT can simultaneously represent different subgoal and answer terms.
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4 Implementation Details

We then describe in more detail the data structures and algorithms for YapTab’s
new table design based on the GT. We start with Figure 3 showing in more detail
the table organization previously presented in Figure 2.

subgoal trie

answer trieanswer trie

root
node

a/1

global trie

VAR0 VAR0

2 1

root
node

root
node

root
node

call2 call1

answer2 answer1 answer1answer2

table entry for t/2

subgoal_trie_root_node

subgoal frame for t(a(2),VAR0)

answer_trie_root_node

subgoal frame for t(a(1),VAR0)

answer_trie_root_node

GT_ROOT_NODE

Fig. 3. Implementation details for YapTab’s new table design

Internally, tries are represented by a top root node, acting as the entry
point for the corresponding subgoal, answer or global trie data structure. For
the subgoal tries, the root node is stored in the corresponding table entry’s
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subgoal trie root node data field. For the answer tries, the root node is stored
in the corresponding subgoal frame’s answer trie root node data field. For the
global trie, the root node is stored in the GT ROOT NODE global variable.

Regarding the trie nodes, remember that they are internally implemented as
4-field data structures. The first field (token) stores the token for the node and
the second (child), third (parent) and fourth (sibling) fields store pointers,
respectively, to the first child node, to the parent node, and to the sibling node.

Traversing a trie to check/insert for new calls or for new answers is imple-
mented by repeatedly invoking a trie node check insert() procedure for each
token that represents the call/answer being checked. Given a trie node parent
and a token t, the trie node check insert() procedure returns the child node
of parent that represents the given token t. Figure 4 shows the pseudo-code for
this procedure.

trie_node_check_insert(TRIE_NODE parent, TOKEN t) {
child = parent->child
if (child == NULL) { // the list of sibling nodes is empty
child = new_trie_node(t, NULL, parent, NULL)
parent->child = child

} if (is_not_a_hash_table(child)) { // sibling nodes without hashing
sibling_nodes = 0 // to count the number of sibling nodes
do { // check if token t is already in the list of siblings
if (child->token == t)
return child

sibling_nodes++
child = child->sibling

} while (child)
child = new_trie_node(t, NULL, parent, parent->child)
if (sibling_nodes > MAX_SIBLING_NODES_PER_LEVEL) { // alloc new hash
hash = new_hash_table(child)
parent->child = hash

} else
parent->child = child

} else { // sibling nodes with hashing
hash = child
bucket = hash_function(hash, t) // get the hash bucket for token t
child = bucket
sibling_nodes = 0
while (child) { // check if token t is already in the hash bucket
if (child->token == t)
return child

sibling_nodes++
child = child->sibling

}
child = new_trie_node(t, NULL, parent, bucket)
if (sibling_nodes > MAX_SIBLING_NODES_PER_BUCKET) // expand hash
expand_hash_table(hash)

}
return child

}

Fig. 4. Pseudo-code for the trie node check insert() procedure
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Initially, the procedure checks if the list of sibling nodes is empty. If this is
the case, a new trie node representing the given token t is initialized and inserted
as the first child of the given parent node. To initialize new trie nodes, we use a
new trie node() procedure with four arguments, each one corresponding to the
initial values to be stored respectively in the token, child, parent and sibling
fields of the new trie node.

Otherwise, if the list of sibling nodes is not empty, the procedure checks
if they are being indexed through a hash table. Searching through a list of
sibling nodes is initially done sequentially. This could be too expensive if we
have hundreds of siblings. A threshold value (MAX SIBLING NODES PER LEVEL)
controls whether to dynamically index the nodes through a hash table, hence
providing direct node access and optimizing search. Further hash collisions are
reduced by dynamically expanding the hash tables when a second threshold value
(MAX SIBLING NODES PER BUCKET) is reached for a particular hash bucket.

If not using hashing, the procedure then traverses sequentially the list of
sibling nodes and checks for one representing the given token t. If such a node
is found then execution is stopped and the node returned. Otherwise, a new
trie node is initialized and inserted in the beginning of the list. If reaching the
threshold value MAX SIBLING NODES PER LEVEL, a new hash table is initialized
and inserted as the first child of the given parent node.

If using hashing, the procedure first calculates the hash bucket for the given
token t and then, it traverses sequentially the list of sibling nodes in the bucket
checking for one representing t. Again, if such a node is found then execu-
tion is stopped and the node returned. Otherwise, a new trie node is initialized
and inserted in the beginning of the bucket list. If reaching the threshold value
MAX SIBLING NODES PER BUCKET, the current hash table is expanded.

To manipulate tries we use two interface procedures. For traversing a trie to
check/insert for new calls or for new answers we use the

trie_check_insert(TRIE_NODE root, TERM term)

procedure, where root is the root node of the trie to be used and term is the
call/answer term to be inserted. The trie check insert() procedure invokes
repeatedly the previous trie node check insert() procedure for each token
that represents the given term and returns the reference to the leaf node repre-
senting its path. Note that inserting a term requires in the worst case allocating
as many nodes as necessary to represent its complete path. On the other hand,
inserting repeated terms requires traversing the trie structure until reaching the
corresponding leaf node, without allocating any new node.

To load a term from a trie back to the Prolog engine we use the

trie_load(TRIE_NODE leaf)

procedure, where leaf is the reference to the leaf node of the term to be returned.
When loading a term, the trie nodes are traversed in bottom-up order.

When inserting terms in the table space we need to distinguish two situ-
ations: (i) inserting tabled calls in a subgoal trie structure; and (ii) inserting
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answers in a particular answer trie structure. The former situation is handled
by the subgoal check insert() procedure as shown in Figure 5 and the lat-
ter situation is handled by the answer check insert() procedure as shown in
Figure 6.

subgoal_check_insert(TABLE_ENTRY te, SUBGOAL_CALL call) {
st_root_node = te->subgoal_trie_root_node
if (GT_ROOT_NODE) { // new table design
leaf_gt_node = trie_check_insert(GT_ROOT_NODE, call)
leaf_st_node = trie_node_check_insert(st_root_node, leaf_gt_node)

} else { // original table design
leaf_st_node = trie_check_insert(st_root_node, call)

}
return leaf_st_node

}

Fig. 5. Pseudo-code for the subgoal check insert() procedure

In the original table design, the subgoal check insert() procedure simply
uses the trie check insert() procedure to check/insert the given call in the
subgoal trie corresponding to the given table entry te. In the new design based
on the GT, the subgoal check insert() procedure now first checks/inserts
the given call in the GT. Then, it uses the reference to the GT’s leaf node
representing call (leaf gt node in Figure 5) as the token to be checked/inserted
in the subgoal trie corresponding to the given table entry te. Note that this
is done by calling the trie node check insert() procedure, thus if the list
of sibling nodes in the subgoal trie exceeds the MAX SIBLING NODES PER LEVEL
threshold value, then a new hash table is initialized as described before.

answer_check_insert(SUBGOAL_FRAME sf, ANSWER answer) {
at_root_node = sf->answer_trie_root_node
if (GT_ROOT_NODE) { // new table design
leaf_gt_node = trie_check_insert(GT_ROOT_NODE, answer)
leaf_at_node = trie_node_check_insert(at_root_node, leaf_gt_node)

} else { // original table design
leaf_at_node = trie_check_insert(at_root_node, answer)

}
return leaf_at_node

}

Fig. 6. Pseudo-code for the answer check insert() procedure

The answer check insert() procedure works similarly. In the original ta-
ble design, it checks/inserts the given answer in the answer trie corresponding
to the given subgoal frame sf. In the new design based on the GT, it first
checks/inserts the given answer in the GT and, then, it uses the reference to
the GT’s leaf node representing answer (leaf at node in Figure 6) as the to-
ken to be checked/inserted in the answer trie corresponding to the given sub-



Tabling Logic Programs in a Common Global Trie 57

goal frame sf. Again, if the list of sibling nodes in the answer trie exceeds the
MAX SIBLING NODES PER LEVEL threshold value, a new hash table is initialized.

Finally, the answer load() procedure is used to consume answers. Figure 7
shows the pseudo-code for it. In the original table design, it simply uses the
trie load() procedure to load from the answer trie the answer given by the
trie node leaf at node. In the new design based on the GT, the answer load()
procedure first accesses the GT’s leaf node represented in the token field of
the given trie node leaf at node (leaf gt node in Figure 7). Then, it uses
the trie load() procedure to load from the GT back to the Prolog engine the
answer represented by the obtained GT’s leaf node.

answer_load(ANSWER_TRIE_NODE leaf_at_node) {
if (GT_ROOT_NODE) { // new table design
leaf_gt_node = leaf_at_node->token
answer = trie_load(leaf_gt_node)

} else { // original table design
answer = trie_load(leaf_at_node)

}
return answer

}

Fig. 7. Pseudo-code for the answer load() procedure

5 Preliminary Experimental Results

We next present some preliminary experimental results comparing YapTab with
and without support for the common global trie data structure. The environment
for our experiments was an AMD Athlon XP 2800+ with 1 GByte of main
memory and running the Linux kernel 2.6.24-19.

To evaluate the impact of our proposal, we have defined a tabled predicate
t/5 that simply stores in the table space terms defined by term/1 facts, and then
we used a top query goal test/0 to recursively call t/5 with all combinations
of one and two free variables in the arguments. An example of such code for
functor terms of arity 1 (500 terms in total) is shown next.

:- table t/5.
t(A,B,C,D,E) :- term(A), term(B), term(C), term(D), term(E).

test :- t(A,f(1),f(1),f(1),f(1)), fail. term(f(1)).
... term(f(2)).
test :- t(f(1),f(1),f(1),f(1),A), fail. ...
test :- t(A,B,f(1),f(1),f(1)), fail. term(f(499)).
... term(f(500)).
test :- t(f(1),f(1),f(1),A,B), fail.
test.

We experimented the test/0 predicate with 7 different kinds of 500 term/1
facts: integers, atoms and functor terms of arity 1 to 5. Table 1 shows the memory
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usage, in KBytes, and the running times, in milliseconds, to store to the tables
(first execution) and to load from the tables (second execution) the complete
set of subgoals/answers for YapTab with (column YapTab+GT ) and without
(column YapTab) support for the common global trie data structure.

Terms
YapTab (a) YapTab+GT (b) Ratio (b)/(a)

Mem Store Load Mem Store Load Mem Store Load

500 int 49074 490 155 52803 738 164 1.08 1.51 1.06
500 atom 49074 508 158 52803 770 167 1.08 1.52 1.06
500 f/1 49172 693 242 52811 1029 243 1.07 1.48 1.00
500 f/2 98147 842 314 56725 1298 310 0.58 1.54 0.99
500 f/3 147122 1098 377 60640 1562 378 0.41 1.42 1.00
500 f/4 196097 1258 512 64554 1794 435 0.33 1.43 0.85
500 f/5 245072 1418 691 68469 2051 619 0.28 1.45 0.90

Table 1. Memory usage (in KBytes) and store/load times (in milliseconds) for YapTab
with and without support for the common global trie data structure

The results show that GT support can reduce memory usage proportionally
to the depth and redundancy of the terms stored in the GT. In particular, for
functor terms of arity 2 to 5, the results show an increasing and very significant
reduction on memory usage. The results for integer and atoms terms are also
very interesting as they show that the cost of representing only atomic terms
in the GT (between 7% and 8% in these experiments) can be manageable when
we increase redundancy. Note that integers and atoms terms are represented by
a single node in the original YapTab design, and by an extra node (therefore
requiring two nodes) if using the GT approach.

On the other hand, these results seem to indicate that memory reduction
comes at a price in execution time. With GT support, we need to navigate in
two tries when checking/inserting a term. Moreover, in some situations, the cost
of inserting a new term in an empty/small trie can be less than the cost of
navigating in the GT, even when the term is already stored in the GT. However,
our results seem to suggest that this cost decreases also proportionally to the
depth and redundancy of the terms stored in the GT.

The results obtained for loading terms do not suggest significant differences.
However and surprisingly, the GT approach showed to outperform the original
YapTab design in some experiments.

6 Conclusions and Further Work

We have presented a new design for the table space organization that uses a
common global trie to store terms in tabled subgoal calls and answers. Our
goal is to reduce redundancy in term representation, thus saving memory by
sharing data that is structurally equal. Our preliminary experiments showed
very significant reductions on memory usage.
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Further work will include exploring the impact of applying our proposal to
real-world applications that pose many subgoal queries, possibly with a large
number of redundant answers, such as ILP applications, seeking real-world ex-
perimental results allowing us to improve and expand our current implementa-
tion. In particular, we intend to study how alternative designs for the table space
organization can further reduce redundancy in term representation.
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Abstract. The execution model in which most tabling engines are based
allocates a choice point whenever a new tabled subgoal is called. This
happens even when the call is deterministic. However, some of the infor-
mation from the choice point is never used when evaluating deterministic
tabled calls with batched scheduling. Thus, if tabling is applied to a long
deterministic computation, the system may end up consuming a huge
amount of memory inadvertently. In this paper, we propose a solution
that reduces this memory overhead to a minimum. Our results show that,
for deterministic tabled calls with batched scheduling, it is possible not
only to reduce the memory usage overhead, but also the running time of
the evaluation.

Keywords: Tabling, Deterministic Calls, Implementation.

1 Introduction

Tabling [1, 2] is an implementation technique that overcomes some limitations of
traditional Prolog systems in dealing with redundant sub-computations and re-
cursion. Implementations of tabling are now widely available in systems like XSB
Prolog [3], Yap Prolog [4], B-Prolog [5], ALS-Prolog [6], Mercury [7] and more re-
cently Ciao Prolog [8]. Actual implementations differ in the execution rule, in the
data structures used to implement tabling, and in the changes to the underlying
Prolog engine. Arguably, the SLG-WAM [9] is the most popular execution rule,
but even here several issues require careful research, such as engine integration,
execution data structures, termination detection, and scheduling support.

The increasing interest in tabling technology led to further developments
and proposals that improve some practical deficiencies of current tabling exe-
cution models in key aspects of tabled evaluation like re-computation [10, 11],
scheduling [12] and memory recovery [13]. The discussion we address in this
work also results from practical deficiencies that we have found in the execution
data structures used to evaluate deterministic tabled calls if applying batched
scheduling [14].

The execution model in which most tabling engines are based allocates a
choice point whenever a new tabled subgoal is called. This happens even when the
call is deterministic, i.e., defined by a single matching clause. This is necessary
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since the information from the choice point is crucial to correctly implement
some tabling operations. However, some of this information is never used when
evaluating deterministic tabled calls with batched scheduling. Thus, if tabling is
applied to a long deterministic computation, the system may end up consuming
a huge amount of memory inadvertently. In this paper, we propose a solution
that reduces this memory overhead to a minimum. We will focus our discussion
on a concrete implementation, the YapTab system [4], an efficient suspension-
based tabling engine that extends the state-of-the-art Yap Prolog system [15]
to support tabled evaluation for definite programs, but our proposal can be
generalized and applied to other tabling engines.

The remainder of the paper is organized as follows. First, we briefly intro-
duce the main background concepts about tabled evaluation. Next, we discuss in
more detail how YapTab compiles and dynamically indexes deterministic tabled
calls. We then describe how we have extended YapTab to provide engine sup-
port to efficiently deal with deterministic tabled calls. At last, we present some
preliminary experimental results and we end by outlining some conclusions.

2 Basic Tabling Concepts

Tabling consists of storing intermediate answers for subgoals so that they can
be reused when a repeated subgoal appears1. Whenever a tabled subgoal is first
called, a new entry is allocated in an appropriated data space, the table space. Ta-
ble entries are used to collect the answers found for their corresponding subgoals.
Moreover, they are also used to verify whether calls to subgoals are repeated. Re-
peated calls to tabled subgoals are not re-evaluated against the program clauses,
instead they are resolved by consuming the answers already stored in their table
entries. During this process, as further new answers are found, they are stored
in their tables and later returned to all repeated calls. Within this model, the
nodes in the search space are classified as either: generator nodes, corresponding
to first calls to tabled subgoals; consumer nodes, corresponding to repeated calls
to tabled subgoals; or interior nodes, corresponding to non-tabled subgoals.

The YapTab design follows the seminal SLG-WAM design [9]: it extends
WAM’s execution model [16] with a new data area, the table space; a new set
of registers, the freeze registers; an extension of the standard trail, the forward
trail ; and four new operations for definite programs:

Tabled Subgoal Call: this operation is a call to a tabled subgoal. It checks if
the subgoal is in the table space. If so, it allocates a consumer node and starts
consuming the available answers. If not, it adds a new entry to the table
space, and allocates a new generator node. When the call is deterministic,
the tabled subgoal call operation is implemented by the table try single
WAM-like instruction.

1 We say that a subgoal repeats a previous subgoal if they are the same up to variable
renaming.
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New Answer: this operation verifies whether a newly found answer is already
in the table, and if not, inserts the answer. Otherwise, the operation fails.

Answer Resolution: this operation verifies whether extra answers are avail-
able for a particular consumer node and, if so, consumes the next one. If no
answers are available, it suspends the current computation and schedules a
possible resolution to continue the execution.

Completion: this operation determines whether a tabled subgoal is completely
evaluated. A subgoal is said to be complete when no more answers can be
generated, that is, when its set of stored answers represent all the conclusions
that can be inferred from the set of facts and rules in the program. If the
subgoal has been completely evaluated, the operation closes the subgoal’s
table entry and reclaims stack space. Otherwise, control moves to a consumer
with unconsumed answers.

During tabled evaluation, at several points, we can choose between continuing
forward execution, backtracking to interior nodes, returning answers to consumer
nodes, or performing completion. The decision on which operation to perform is
determined by the scheduling strategy. Different strategies may have a significant
impact on performance, and may lead to a different ordering of solutions to the
query goal. Arguably, the two most successful tabling scheduling strategies are
batched scheduling and local scheduling [14]. YabTab supports both batched
scheduling, local scheduling and the dynamic intermixing of batched and local
scheduling at the subgoal level [12]. Local scheduling does not have any relevance
for this work, so we will not consider it.

Batched scheduling schedules the program clauses in a depth-first manner as
does the WAM. It favors forward execution first, backtracking next, and consum-
ing answers or completion last. It thus tries to delay the need to move around
the search tree by batching the return of answers. When new answers are found
for a particular tabled subgoal, they are added to the table space and the evalua-
tion continues. For some situations, this results in creating dependencies to older
subgoals, therefore enlarging the current SCC (Strongly Connected Component)
and delaying the completion point to an older generator node. By default in
YapTab, tabled predicates are evaluated using batched scheduling [12].

3 Deterministic Tabled Calls in YapTab

In this section we discuss how tabled predicates are compiled in YapTab and,
in particular, we show how YapTab uses the Yap compiler to generate compiled
and indexed code for deterministic tabled calls.

3.1 Compilation of Tabled Predicates

Tabled predicates defined by several clauses are compiled using the table try me,
table retry me and table trust me WAM-like instructions in a similar manner
to the generic try me/retry me/trust me WAM sequence. The table try me



Efficient Evaluation of Deterministic Tabled Calls 63

instruction extends the WAM’s try me instruction to support the tabled subgoal
call operation. The table retry me and table trust me differ from the generic
WAM instructions in that they restore a generator choice point rather than a
standard WAM choice point. Tabled predicates defined by a single clause are
compiled using the table try single WAM-like instruction. This instruction
optimizes the table try me instruction for the case when the tabled predicate
is defined by a single clause. Figure 1 shows the YapTab’s compiled code for a
tabled predicate t/1 defined by a single clause and for a tabled predicate t/3
defined by several clauses.

% predicate definitions
:- table t/1.
t(X) :- ...

:- table t/3.
t(a1,b1,c1) :- ...
t(a2,b2,c2) :- ...
t(a2,b1,c3) :- ...
t(a2,b3,c1) :- ...
t(a3,b1,c2) :- ...

% compiled code generated by YapTab for predicate t/1
t1_1: table_try_single t1_1a
t1_1a: ‘WAM code for clause t(X) :- ...’

% compiled code generated by YapTab for predicate t/3
t3_1: table_try_me t3_2
t3_1a: ‘WAM code for clause t(a1,b1,c1) :- ...’
t3_2: table_retry_me t3_3
t3_2a: ‘WAM code for clause t(a2,b2,c2) :- ...’
t3_3: table_retry_me t3_4
t3_3a: ‘WAM code for clause t(a2,b1,c3) :- ...’
t3_4: table_retry_me t3_5
t3_4a: ‘WAM code for clause t(a2,b3,c1) :- ...’
t3_5: table_trust_me
t3_5a: ‘WAM code for clause t(a3,b1,c2) :- ...’

Fig. 1. Compilation of tabled predicates in YapTab

As t/1 is a deterministic tabled predicate, the table try single instruc-
tion will be executed for every call to this predicate. On the other hand, t/3 is
a non-deterministic tabled predicate, but some calls to this predicate can be de-
terministic, i.e., defined by a single matching clause. Consider, for example, the
previous definition of t/3 and the calls t(a3,X,Y) and t(X,Y,c3). These two
calls are deterministic as they only match with a single t/3 clause, respectively,
the 5th and 3rd clause. We next show how YapTab uses the demand-driven
indexing mechanism of Yap to dynamically generate table try single instruc-
tions for this kind of deterministic calls.
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3.2 Demand-Driven Indexing

Yap implements demand-driven indexing (or just-in-time indexing) [17] since
version 5. The idea behind it is to generate flexible multi-argument indexing of
Prolog clauses during program execution based on actual demand. This feature
is implemented for static code, dynamic code and the internal database. All
indexing code is generated on demand for all and only for the indices required.
This is done by building an indexing tree using similar building blocks to the
WAM but it generates indices based on the instantiation on the current goal,
and expands indices given different instantiations for the same goal.

This powerful optimization provides that YapTab can execute calls to non-
deterministic tabled predicates like deterministic tabled predicates. This happens
when Yap’s indexing scheme finds that for a particular call to a non-deterministic
tabled predicate, there is only a single clause that matches the call. Figure 2
shows an example illustrating the indexed code generated for a non-deterministic
call and two deterministic calls to the previous t/3 tabled predicate.

% indexed code generated by YapTab for call t(a2,X,Y)
table_try t3_2a
table_retry t3_3a
table_trust t3_4a

% indexed code generated by YapTab for call t(a3,X,Y)
table_try_single t3_5a

% indexed code generated by YapTab for call t(X,Y,c3)
table_try_single t3_3a

Fig. 2. Demand-driven indexing of tabled predicates in YapTab

The call t(a2,X,Y) is non-deterministic as it matches the 2nd, 3rd and 4th
clauses of t/3, so a table try/table retry/table trust sequence is gener-
ated. The other two calls, t(a3,X,Y) and t(X,Y,c3), are both deterministic as
they only match a single t/3 clause, so a table try single instruction can be
generated. Note however, that there are situations where a call can be deter-
ministic, but Yap’s indexing scheme cannot detect it as deterministic in order
to generate the appropriate table try single instruction. In such cases, we
cannot benefit directly from our approach, but we can take advantage of the
similarities between the table try single instruction and the last matching
clause of a non-deterministic tabled call to apply our approach later.

3.3 Last Matching Clause

When evaluating a tabled predicate, the last matching clause of a call to the
predicate is implemented either by the table trust me instruction or by the
table trust instruction. The former situation occurs when we have a generic
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call to the predicate (all the arguments of the call are unbound variables) and the
latter situation occurs when we have a more specific call (some of the arguments
are at least partially instantiated) optimized by indexing code.

In a WAM-based implementation [16], the last matching clause of a call is
implemented by first restoring all the necessary information from the current
choice point (usually pointed to by the WAM’s B register) and then, by dis-
carding the current choice point by updating B to its predecessor. In a tabled
implementation, the table trust me and table trust instructions also restore
all the necessary information from the current choice point B, but instead of
updating B to its predecessor, they update the next clause field of B to the
completion instruction. By doing that, they force completion detection when
the computation backtracks again to B, i.e., whether the clauses for the subgoal
call at hand are all exploited.

Hence, the computation state that we have when executing a table trust me
or table trust instruction is similar to that one of a table try single instruc-
tion, that is, in both cases the current clause can be seen as deterministic as it
is the last (or single) matching clause for the subgoal call at hand. Thus, we
can view the table trust me and table trust instructions as a special case of
the table try single instruction. This means that the approach used for the
table try single instruction to efficiently deal with deterministic tabled calls
can be applied to the table trust me and table trust instructions. We discuss
the implementation details for these instructions in the next section.

4 Implementation Details

In this section, we describe in detail how we have extended YapTab to provide
engine support to efficiently deal with deterministic tabled calls.

4.1 Generator Nodes

In YapTab, a generator node is implemented as a WAM choice point extended
with some extra fields. The format of a generic generator choice point of YapTab
is depicted in Figure 3. Fields that are not found in standard WAM choice points
are coloured gray. A generator choice point is divided in three sections. The top
section contains the usual WAM fields needed to restore the computation on
backtracking plus two extra fields [12]: cp dep fr is a pointer to the correspond-
ing dependency frame, used by local scheduling for fixpoint check, and cp sg fr
is a pointer to the associated subgoal frame where answers should be stored. The
middle section contains the argument registers of the subgoal and the bottom
section contains the substitution factor, i.e., the set of free variables which exist
in the terms in the argument registers. The substitution factor is an optimiza-
tion that allows the new answer operation to store in the table space only the
substitutions for the free variables in the subgoal call [18].

If we now turn our attention to how generator choice points are handled dur-
ing evaluation, we find that some of this information is never used when eval-
uating deterministic tabled calls with batched scheduling. This happens mainly
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cp_b Failure continuation CP

Fig. 3. Format of a generic generator choice point in YapTab

because, with batched scheduling, the computation is never resumed in a deter-
ministic generator choice point. This allow us to remove the argument registers
and the standard cp cp, cp h and cp env fields. The cp dep fr field can also be
removed because it is only necessary with local scheduling [12], which is never
the case. Figure 4 shows the new format of YapTab’s deterministic generator
choice point with the strictly necessary fields.

The cp b field is needed for failure continuation; the cp ap and cp tr are
required when backtracking to the choice point; the cp sg fr is required by
the new answer and completion operations; and the substitution factor fields
are required by the new answer operation. In order to avoid extra overheads
when manipulating the different kinds of choice points that can coexist in an
evaluation, we have rearranged all kinds of choice points in such a way that the
top three fields are now the same as the ones for a deterministic generator choice
point: the cp b, cp ap and cp tr fields.

The memory reduction obtained with the new representation for determinis-
tic generator choice points increases when the number of argument registers (the
arity of the predicate being called) and the number of substitution variables are,
respectively, bigger and smaller. Considering that A is the number of arguments
registers and that S is the number of substitution variables, the percentage of
memory saved with the new representation can be expressed as follows:
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Fig. 4. Format of a deterministic generator choice point in YapTab

1− 4 + 1 + S

8 + A + 1 + S

4.2 Tabling Operations

In order to deal with the new representation for deterministic generator choice
points, this required small changes to the tabled subgoal call, new answer and
completion operations. Figures 5, 6, 7 and 8 show in more detail the changes
(blocks of code marked with comment ‘// new’) made to the table try single,
table trust me2, new answer and completion instructions. Figure 9 shows the
pseudo-code for the auxiliary procedure is deterministic generator cp().
We assume that memory addresses grow downwards and that the choice point
stack grows upwards.

table_try_single(TABLED_CALL tc) {
sg_fr = subgoal_check_insert(tc) // sg_fr is the subgoal frame for tc
if (new_tabled_subgoal_call(sg_fr)) {
if (evaluation_mode(tc) == batched_scheduling) // new
store_deterministic_generator_node(sg_fr)

else // local scheduling
store_generic_generator_node(sg_fr)

...
goto next_instruction()

}
...

}

Fig. 5. Pseudo-code for the table try single instruction

2 The changes made to the table trust instruction are identical to the ones made to
the table trust me instruction.
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The table try single instruction now tests whenever the subgoal being
called is to be evaluated using batched or local scheduling. If batched, it allocates
a deterministic generator choice point. If local, it proceeds as before and allocates
a generic generator choice point.

table_trust_me(TABLED_CALL tc) {
// the B register points to the current choice point
restore_generic_generator_node(B, COMPLETION)
if (evaluation_mode(tc) == batched_scheduling &&

not_in_a_frozen_segment(B) { // new
subs_factor = B + sizeof(generic_generator_cp) + arity(tc)
gen_cp = subs_factor - sizeof(deterministic_generator_cp)
gen_cp->cp_sg_fr = B->cp_sg_fr
gen_cp->cp_tr = B->cp_tr
gen_cp->cp_ap = B->cp_ap
gen_cp->cp_b = B->cp_b
B = gen_cp

}
...

}

Fig. 6. Pseudo-code for the table trust me instruction

The table trust me instruction now tests if the current tabled call is being
evaluated using batched scheduling and if the current choice point is not in
a frozen segment3. If these two conditions hold, we can recover some memory
space by transforming the current generator choice point into a deterministic
generator choice point. To do that, we need to copy the cp sg fr, cp tr, cp ap
and cp b fields in the current choice point to their new position, just above the
substitution factor variables.

new_answer(TABLED_CALL tc, ANSWER ans) {
if (is_deterministic_generator_cp(B)) { // new
gen_cp = deterministic_generator_cp(B)
sg_fr = gen_cp->cp_sg_fr
subs_factor = gen_cp + sizeof(deterministic_generator_cp)

} else { // generic generator choice point
gen_cp = generic_generator_cp(B)
sg_fr = gen_cp->cp_sg_fr
subs_factor = gen_cp + sizeof(generic_generator_cp) + arity(tc)

}
...

}

Fig. 7. Pseudo-code for the new answer instruction

3 The YapTab system uses frozen segments to protect the stacks of suspended com-
putations [4]. Thus, if the current choice point is trapped in a frozen segment it is
worthless to try to recover memory from it using our approach.
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completion() {
... // fixpoint check loop
// subgoal completely evaluated
if (is_deterministic_generator_cp(B)) { // new
gen_cp = deterministic_generator_cp(B)
sg_fr = gen_cp->cp_sg_fr

} else {
gen_cp = generic_generator_cp(B)
sg_fr = gen_cp->cp_sg_fr

}
complete_subgoal(sg_fr)
...

}

Fig. 8. Pseudo-code for the completion instruction

For the new answer and completion operations, since both generator types
have different sizes, we need a way to correctly identify which is the type of
the generator in order to correctly access the required fields on each structure.
To do that, we use the is deterministic generator cp() auxiliary procedure
to test if a generator choice point is deterministic or not. Figure 9 shows the
pseudo-code for it.

The is deterministic generator cp() procedure assumes that, by default,
we have a generic generator choice point and we check if the cp h field (which
is aligned with the field representing the number of substitution variables in
a deterministic generator choice point) is less than the maximum number of
allowed substitution variables (MAX SUBSTITUTION VARS). If this is case, then we
know that we have a deterministic generator choice point.

is_deterministic_generator_cp(CHOICE_POINT cp) {
gen_cp = generic_generator_cp(cp)
if (gen_cp->cp_h <= MAX_SUBSTITUTION_VARS)
return TRUE

else
return FALSE

}

Fig. 9. Pseudo-code for the is deterministic generator cp() procedure

5 Preliminary Experimental Results

We next present some preliminary experimental results comparing YapTab with
and without support for deterministic tabled calls. The environment for our
experiments was a AMD Athlon(tm) 64 Processor 3200+ processor with 2 GByte
of main memory and running the Linux kernel 2.6.24-19 with YapTab 5.1.3.

To evaluate the impact of our proposal, first we have defined three determin-
istic tabled predicates, respectively with arities 5, 11 and 17, that simply call
themselves recursively:
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:- table t/5, t/11, t/17.

t(N,A2,A3,A4,A5) :-
N > 0, N1 is N - 1,
t(N1,A2,A3,A4,A5).

t(N,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11) :-
N > 0, N1 is N - 1,
t(N1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11).

t(N,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17) :-
N > 0, N1 is N - 1,
t(N1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17).

The first argument N controls the number of times the predicate is executed.
It thus defines the number of generator choice points to be allocated (we used a
value of 100,000 in our experiments). In order to have specific combinations of
argument registers and substitution variables, we have ran each predicate with
three different sets of free variables in the arguments:

:- t(100000,A2,A3,A4,A5).
:- t(100000,A2,A3,0,0).
:- t(100000,0,0,0,0).

:- t(100000,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11).
:- t(100000,A2,A3,A4,A5,A6,0,0,0,0,0).
:- t(100000,0,0,0,0,0,0,0,0,0,0).

:- t(100000,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17).
:- t(100000,A2,A3,A4,A5,A6,A7,A8,A9,0,0,0,0,0,0,0,0).
:- t(100000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0).

These experiments are a kind of best-case scenario as they only allocate gen-
erator choice points and they do not store permanent variables for environment
frames [16]. Table 1 shows the memory usage, in KBytes, for the local stack4 and
the running time, in milliseconds, for YapTab without (column YapTab) and
with (column YapTab+Det) the new support for deterministic tabled calls. A
third column Ratio (1–b/a) shows the memory and running time ratio between
both approaches. For the memory ratio, we show in parentheses the percentage
of memory saved if using the formula presented at the end of section 4.1.

The results in Table 1 indicate that YapTab with support for deterministic
tabled calls can decrease, on average, memory usage by 48% and running time
by 23%. These results also confirm that memory reduction increases when the
number of argument registers is bigger and the number of substitution variables
is smaller. This is coherent with the formula presented in section 4.1. The small
difference between our experiments and the values obtained when using the
formula came from the fact that, in the formula, we are considering a local stack
without environment frames.

4 In YapTab, the local stack contains both choice points and environment frames.
Other systems, like XSB Prolog, have separate choice point and environment stacks.
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Args Subs
YapTab (a) YapTab+Det (b) Ratio (1–b/a)

Memory Time Memory Time Memory Time

5 4 9,376 82 5,860 70 0.37 (0.50) 0.15
5 2 8,594 78 5,079 66 0.41 (0.57) 0.15
5 0 7,813 80 4,297 65 0.45 (0.64) 0.19
11 10 14,063 137 8,204 96 0.42 (0.50) 0.30
11 5 12,110 136 6,251 89 0.48 (0.60) 0.35
11 0 10,157 124 4,297 108 0.58 (0.75) 0.13
17 16 18,751 173 10,547 129 0.44 (0.50) 0.25
17 8 15,626 164 7,422 109 0.53 (0.62) 0.34
17 0 12,501 153 4,297 114 0.66 (0.81) 0.25

Average 0.48 (0.61) 0.23

Table 1. Memory usage (in KBytes) and running times (in milliseconds) for YapTab
without and with the new support for deterministic tabled calls

Next, we tested our approach with the sequence comparisons problem [19].
In this problem, we have two sequences A and B, and we want to determine the
minimal number of operations needed to turn A into B. We used the original
tabled program from [19] and a transformed tabled program that forces all calls
to use the table try single instruction. We experimented these two versions
with sequences of length 500, 1000, 1500 and 2000. Table 2 shows the memory
usage, in KBytes, for the local stack and the running time, in milliseconds, for
YapTab without (column YapTab) and with (column YapTab+Det) the new
support for deterministic tabled calls. A third column Ratio (1–b/a) shows
the memory and running time ratio between both approaches.

Version Length
YapTab (a) YapTab+Det (b) Ratio (1–b/a)

Memory Time Memory Time Memory Time

Original

500 51,774 1,548 44,938 1,264 0.13 0.18
1000 207,063 13,548 179,719 11,212 0.13 0.17
1500 465,868 60,475 404,344 50,631 0.13 0.16
2000 828,188 189,647 718,813 157,213 0.13 0.17

Transformed

500 45,915 1,172 39,051 848 0.15 0.28
1000 183,625 10,024 156,227 8,460 0.15 0.16
1500 413,133 45,874 351,528 36,106 0.15 0.21
2000 734,438 140,068 624,953 113,011 0.15 0.19

Average 0.14 0.19

Table 2. Memory usage (in KBytes) and running times (in milliseconds) for YapTab
without and with the new support for deterministic tabled calls

In general, for memory usage, the results in Table 2 are slightly different
from the previous results obtained in Table 1. For both version of the sequence
comparisons program, YapTab with support for deterministic tabled calls can
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decrease, on average, memory usage by 14%. This reduction on memory saving,
compared with the results on Table 1, happens mainly because of the existence
of permanent variables in the body of the clauses in the sequence comparisons
program. On the other hand, for the running times, the results in Table 2 confirm
the previous results obtained in Table 1.

The results in Table 2 also show very similar memory and running time ratios
for both versions of the sequence comparisons program. This suggests that we can
take advantage of our approach by using the last matching clause optimization
and not only when a program contains deterministic tabled predicates.

Finally, we tested our approach with a path program that computes the
transitive closure of a NxN grid using a right recursive algorithm:

:- table path/2.

path(X,Z) :- edge(X,Z).
path(X,Z) :- edge(X,Y), path(Y,Z).

Regarding the edge/2 facts, we used four grid configuration with 30x30,
40x40, 50x50 and 60x60 nodes. Table 3 shows the memory usage, in KBytes,
for the local stack and the running time, in milliseconds, for YapTab without
(column YapTab) and with (column YapTab+Det) the new support for deter-
ministic tabled calls. Again, a third column Ratio (1–b/a) shows the memory
and running time ratio between both approaches.

Grid
YapTab (a) YapTab+Det (b) Ratio (1–b/a)

Memory Time Memory Time Memory Time

30x30 119 1,304 98 1,464 0.18 -0.12
40x40 211 4,400 175 4,024 0.17 0.09
50x50 330 11,208 273 10,996 0.17 0.02
60x60 476 28,509 393 28,213 0.17 0.01

Average 0.17 0.00

Table 3. Memory usage (in KBytes) and running times (in milliseconds) for YapTab
without and with the new support for deterministic tabled calls

The path program confirms tendency to memory reduction, this case in 17%,
on average. Running time gets sightly worse, thought comparison between both
approaches remains in positive territory in three cases. Note however, that our
approach was mainly designed to achieve a reduction on memory usage by paying
a small cost on running time due to the extra code needed to deal with the new
data structures and algorithms. Despite of this fact, on average, our approach
showed a very good performance in all experiments.
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6 Conclusions and Further Work

We have presented a proposal for the efficient evaluation of deterministic tabled
calls with batched scheduling. A well-known aspect of tabling is the overhead
in terms of memory usage compared with standard Prolog. This raised us the
question of whether it was possible to minimize this overhead when evaluating
deterministic tabled computations. Our preliminary results are quite promising,
they suggest that, for deterministic tabled calls with batched scheduling, it is
possible not only to reduce the memory usage overhead, but also the running
time of the evaluation for certain class of applications.

Further work will include exploring the impact of applying our proposal to
more complex problems, seeking real-world experimental results allowing us to
improve and expand our current implementation.
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Abstract. The advantages of tabled evaluation regarding program ter-
mination and reduction of complexity are well known —as are the sig-
nificant implementation, portability, and maintenance efforts that some
proposals (especially those based on suspension) require. This implemen-
tation effort is reduced by program transformation-based continuation
call techniques, at some efficiency cost. However, the traditional formu-
lation of this proposal by Ramesh and Cheng limits the interleaving of
tabled and non-tabled predicates and thus cannot be used as-is for ar-
bitrary programs. In this paper we present a complete translation for
the continuation call technique which, using the runtime support needed
for the traditional proposal, solves these problems and makes it possible
to execute arbitrary tabled programs. We present performance results
which show that CCall offers a useful tradeoff that can be competitive
with state-of-the-art implementations.
Keywords: Tabled logic programming, Continuation-call tabling, Im-
plementation, Performance, Program transformation.

1 Introduction

Tabling [18, 19, 4] is a strategy for executing logic programs which uses memoiza-
tion of already processed calls and their answers to improve several of the limi-
tations of SLD resolution. It brings termination for bounded term-size programs
and improves efficiency in programs which perform repeated computations and
has been successfully applied to deductive databases [14], program analysis [20,
5], reasoning in the semantic Web [23], model checking [13], etc.

However, tabling also has certain drawbacks, including that predicates to be
tabled have to be selected carefully3 in order not to incur in undesired slow-
downs and, specially relevant to our discussion, that its efficient implementation
is generally complex. In suspension-based tabling the computation state of sus-
pended tabled subgoals has to be preserved to avoid backtracking over them.
This is done either by freezing the stacks, as in XSB [17], by copying to another

3 XSB includes an auto table declaration which triggers a conservative analysis to
detect which predicates are to be tabled in order to ensure termination. However,
more predicates than needed can be selected.



76 P. Chico de Guzmán, M. Carro, M. Hermenegildo

area, as in CAT [8], or by using an intermediate solution as in CHAT [9]. Linear
tabling maintains instead a single execution tree without requiring suspension
and resumption of sub-computations. The computation of the (local) fixpoint is
performed by making subgoals “loop” in their alternatives until no more solu-
tions are found. This may make some computations to be repeated. Examples of
this method are the linear tabling of B-Prolog [22, 21] and the DRA scheme [10].
Suspension-based mechanisms achieve very good performance but, in general,
require deeper changes to the underlying implementation. Linear mechanisms,
on the other hand, can usually be implemented on top of existing sequential
engines without major modifications.

The Continuation Call (CCall) approach to tabling [15, 16] tries to combine
the best of both worlds: it is a reasonably efficient suspension-based mechanism
which requires relatively simple additions to the Prolog implementation / com-
piler,4 thus making maintenance and porting much easier. In [6] we proposed a
number of optimizations to the CCall approach and showed that with such op-
timizations performance could be competitive with traditional implementations.
However, this was only partially satisfactory since the CCall tabling approach
is restricted to programs with a certain interleaving of tabled and non-tabled
predicate calls (see Figure 3 and Section 3.1), and thus cannot execute general
tabled programs.

In this paper we present an extension of the CCall translation which, using
the same runtime support of the traditional proposal, overcomes the problems
pointed out above. In Section 5 we present a complexity comparison of the
proposed approach with CHAT. Finally, we present performance results from our
implementation. These results show that our approach offers a useful tradeoff
which can be competitive with state of the art implementations, while keeping
implementation efforts relatively low.

2 The Continuation Call Technique

We sketch now how tabled evaluation [4, 17] works from a user point of view and
we briefly describe the Continuation Call technique, on which we base our work.

2.1 Tabling Basics

We will use as example the program in Figure 1, whose purpose is to determine
the reachability of nodes in a graph. If the graph contains cycles, there will
be queries which will make the program loop forever under the standard SLD
resolution strategy, regardless of the order of the clauses. Tabling changes the
operational semantics for predicates marked with the :- table declaration,
which forces the compiler and runtime system to distinguish the first occurrence
of a tabled goal (the generator) and subsequent calls which are identical up to
variable renaming (the consumers). The generator applies resolution using the

4 As an example, no modification to the underlying engine is needed.
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program clauses to derive answers for the goal. Consumers suspend the current
execution path (using implementation-dependent means) and start execution
on a different branch corresponding to another clause of the predicate within
which the execution was suspended. When such an alternative branch finally
succeeds, the answer generated for the initial query (the generator) is inserted
in a table associated with that generator. This makes it possible to reactivate
consumers and to continue execution at the point where they were stopped.
Thus, consumers do not use SLD resolution, but obtain instead the answers
from the table where they were previously inserted by the generator. Predicates
not marked as tabled are executed according to SLD resolution, hopefully with
minimal overhead due to the availability of tabling. This can be graphically seen
as the ability to suspend execution in a part of the tree which cannot progress
(because it enters a loop) and continue it somewhere else, where a solution for
the looping goal can be produced.

2.2 CCall by Example

CCall implements tabling by a combination of program transformation and side
effects in the form of insertions into and retrievals from a table which relates
calls, answers, and the continuation code to be executed after consumers read
answers from the table. We will now sketch how the mechanism works using the
path/2 example (Figure 1). The original code is transformed into the program
in Figure 2 which is the one actually executed.

Roughly speaking, the transformation for tabling is as follows: an auxiliary
predicate (slg path/2) for path/2 is introduced so that calls to path/2 made
from regular (SLD) Prolog execution do not need to be aware of the fact that
path/2 is being tabled. The primitive slg/1 will make sure that its argument is
executed to completion and will return, on backtracking, all the solutions found
for the tabled predicate. To this end, slg/1 checks if the call has already been
executed. If so, all its answers are returned by backtracking. Otherwise, control
is passed to a new predicate (slg path/2 in this case).5 slg path/2 receives in
its first argument the original call to path/2 and in the second argument the
identifier of its generator, which is used to relate operations on the table with
this initial call. Each clause of slg path/2 is derived from a clause of the original
path/2 predicate by:

– Adding an answer/2 primitive at the end of each clause of the original
tabled predicate. answer/2 is responsible for inserting answers in the table
after checking for redundancy.

– Instrumenting calls to tabled predicates using the slgcall/1 primitive. If
this tabled call is a consumer, path cont/3, along with its arguments, is
recorded as (one of) the continuation(s) of its generator. If the tabled call
is a generator, it is associated with a new call identifier and execution fol-
lows using the slg path/2 program clauses to derive new answers (as done

5 The unique name has been created for simplicity by prepending slg to the predicate
name –any safe means of constructing a unique predicate symbol can be used.
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:- table path/2.

path(X, Z):-
edge(X, Y),
path(Y, Z).

path(X, Z):-
edge(X, Z).

Fig. 1. A sample program.

path(X, Y):- slg (path(X, Y)).
slg path (path(X, Y), Id):-

edge(X, Y),
slgcall (path cont(Id , [X], path(Y, Z))).

slg path (path(X, Y), Id):-
edge(X, Y),
answer(Id , path(X, Y)).

path cont(Id , [X], path(Y, Z)):-
answer(Id , path(X, Z)).

Fig. 2. The program in Figure 1 after being trans-
formed for tabled execution.

by slg/1). Besides, path cont/3 will be recorded as a continuation of the
generator identified by Id if the tabled call cannot be completed (there were
dependencies on previous generators). The path cont/3 continuation will be
called consuming found answers or erased upon completion of its generator.

– Encoding the remaining of the clause body of path/2 after the recursive call
by using path cont/3. It is constructed similarly to slg path/2, i.e., apply-
ing the same transformation as for the initial clauses and calling slgcall/1.

The second argument of path cont/3 is a list of bindings needed to recover
the environment of the continuation call. Note that, in the program in Figure 1,
an answer to a query such as ?- path(X, Y) may need to bind variable X. This
variable does not appear in the recursive call to path/2, and hence it does not
appear in the path/2 term passed on to slgcall/1 either. In order for the body
of path cont/3 to insert in the table the answer corresponding to the initial
query, variable X (and, in general, any other necessary variable) has to be passed
down to answer/2. This is done with the list [X], which is inserted in the table
as well and completes the environment needed for the continuation path cont/3
to resume the previously suspended call.

A safe approximation of the variables which should appear in this list is the
set of variables which appear in the clause before the tabled goal and which are
used in the continuation, including the answer/2 primitive. Variables appearing
in the tabled call itself do not need to be included, as they will be passed along
anyway. This list of bindings corresponds to the frame of the parent call if the
answer/2 primitive is added to the end of the body being translated. More
details about CCall approach and their primitives can be found at [15].

Key Contribution of CCall: a new predicate name is created for all points
where suspension can happen. Suspension is performed by saving this predicate
name, a list of bindings, and a generator identifier. Resumption is performed by
constructing a Prolog goal with the information saved on suspension plus the
answer which raised the resumption. It is clear that this is significantly simpler
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:- table t/1.

t(A):-
p(B),
A is B + 1.

t (0).

p(B):- t(B), B < 1.

Fig. 3. A program for which the origi-
nal CCall transformation fails.

t(A):- slg (t(A)).
slg t (t(A), Id):-

p(B), A is B + 1,
answer(Id , t(A)).

slg t (t (0), Id):-
answer(Id , t (0)).

p(B):- t(B), B < 1.

Fig. 4. The program in Figure 3 after being
transformed for tabled execution.

to implement than other approaches as XSB or CHAT, where changes in the ab-
stract machine have to be introduced. Consequently, porting and maintainability
are simpler too, since CCall is independent of the compiler and how to create a
Prolog term on the heap is the only one low level operation to implement.

3 Mixing Tabled and Non-Tabled Predicates

A continuation is the way CCall tabling preserves both the environment and the
code of a consumer to be resumed. The list of bindings contains the same vari-
ables as the frame of the predicate where the slgcall/1 primitive is executed,
taking into account the answer/2 primitive added at the end of the clause. How-
ever, the CCall approach to tabling, as originally proposed, has a problem when
Prolog predicates appear between generators and consumers: the environments
created by the non-tabled predicates are not taken into account, and they may
be needed to correctly suspend and resume tabled predicates, as the example in
the following section shows.

3.1 An Ill-Behaved Transformation

Figure 3 shows an example of a tabled program, where tabled and non-tabled
execution (t/1 and p/1) are mixed. The translation of the program is shown in
Figure 4, taking into account the rules in Section 2.2.

The execution of the program with the query t(A) is shown in Figure 5. The
execution is correct until slg/1 is called again by p/1. At that point execution
should suspend (and later resume), but slg/1 does not have any associated
continuation, and it does not have any pointer to the code to be executed on
resumption (partially in p/1 and partially in slg t/2): B < 1, A is B + 1,
answer(Id,t(A)) is lost on backtracking and it is not reachable when resuming.
Consequently, the second answer to the query, t(1), is lost.

The call to t(B) made by p(B) could have been translated as if it were in
the body of a tabled clause, but in that case the piece of code A is B + 1 in
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3. p(B), A is B + 1, answer(id, t (A)).

1. slg(t (A)).

? t (A).

4. t(B), B < 1, A is B + 1, answer(id, t (A)).

5. slg(t(B)), B < 1, A is B + 1, answer(id,t(A). 

6. Suspension.

2. slg_t(t (A), id).

7. answer(id, t(0)).

10. .A = 0.

9. Complete.

8.− fail.

Fig. 5. Tabling execution of example of Figure 1.

the first clause of t/1 would be lost anyway. This is an example of why all the
frames between a consumer and its nearest generator have to be saved when
suspending, and it is not enough to save just the last one, as in the original
CCall proposal [15], which does work, however, when all the calls to the tabled
predicates appear in the body of the clause of a tabled predicate. In that case, it
is enough to save the last frame with the associated continuation code. Note that
all the suspension-based tabling approaches preserve the frames / environments
from the consumer until the corresponding generator.

To solve this problem, we have extended the translation to take into account
a new kind of predicates, named bridges. A bridge predicate is a non-tabled
Prolog predicate whose clauses generate frames which have to be saved in the
continuation of a consumer. In the example of Figure 3, p/1 is a bridge predicate.

3.2 Marking Predicates as Bridges

Bridge predicates are all the non-tabled predicates which can appear in the
execution tree of a query between a generator and each of its consumers, i.e., the
predicates whose environments are in the local stack between the environment
of the generator and the environment of each of its consumers. Note that tabled
predicates do not need to be included as bridge predicates as their environment
will be already saved by the translation. Additionally, only recursive calls which
can lead to infinite loops under SLD resolution have to actually be taken into
account, because these are the only ones which can suspend and later be resumed.
Programs for which tabling merely speeds up already terminating computations
are not subject to the problem outlined above, and therefore do not benefit from
the improved translation shown herein.

Thus, in order to determine a minimal set of bridge predicates, Bmin, we need
to determine before the minimum set of tabled predicates, Tmin, which ensures
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Make a graph G with an edge (p1/n1, p2/n2) ⇔ p2/n2 is called from p1/n1
Bridges = ∅
FOR each predicate T in TABLED PREDICATES
Forward = All predicates reached from T in G
Backward = All predicates from which T is reached in G
Bridges = Bridges ∪ (Forward ∩ Backward)

Bridges = Bridges − TABLED PREDICATES

Fig. 6. Safe approximation to look for bridge predicates.

termination. When Tmin is found, Bmin is the set of non-tabled predicates which
are “in the middle” of two calls to predicates belonging to Tmin. Since looking
for Tmin is undecidable (because it implies detecting infinite failures), looking for
Bmin is also undecidable and a safe approximation, which may mark as bridge
some predicates which do not need to be, is needed.

As we will see in Section 4.2, the only disadvantage of such an over-approximation
is that some code will be duplicated (to accept a new argument for the case where
a bridge predicate is called from a tabled execution), and that bridge predicates,
having an extra argument, can be called when this is not needed. The algorithm
we have implemented (Figure 6) only looks for tabled predicates which can re-
cursively call themselves. For the examples used for performance evaluation in
Section 6, using the safe approximation algorithm produces an average slowdown
of only 3% with respect to a perfect characterization of bridge predicates.

4 A General Translation for Tabled Programs

In this section we present program transformation rules which take into account
bridge predicates. This transformation assumes that the safe approximation al-
gorithm for bridge predicates has already been run, and all the bridge predicates
have been marked by adding a :- bridge P/N declaration in the program.

As seen in Section 2.2, a continuation is the way to save an environment,
because the predicate name is the same as the PC counter of the environment
and the list of bindings is the same as the variables that a environment saves.
Consequently, the goal of the new translation is to associate a continuation
with each of the bridge predicates to save their associated environment. These
continuations receive a new argument (the continuation to be executed) which
is used to push a pointer (i.e., the name of a predicate) to the code to continue
with, in a way similar to environments in local stacks.

4.1 Translation Rules

The rules for the original translation have three different goals: to maintain the
interface with the rest of the code, to manage tabled calls which appear in the
body of the clauses of a tabled predicate, and to insert answers at the end of
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trans(C, C) :− \+ table(C), \+ bridge(C).
trans (( :− table P/N ), ( P(X1..Xn) :− slg(P(X1..Xn)) )).
trans (( Head :− Body ), LC) :−

table (Head),
Head tr =.. [ ’ slg ’ ◦ Head, Head, Id],
End = answer(Id, Head),
transBody(Head tr, Body, Id, [], End, LC).

trans (( Head :− Body ), ( Head :− Body ) ◦ LC) :−
bridge(Head),
Head tr =.. [Head ◦ ’ bridge’, Head, Id , Cont],
End = call(Cont),
transBody(Head tr, Body, Id, Cont, End, LC).

transBody ([], [], , , [], []).
transBody(Head, Body, Id, ContPrev, End, ( Head :− Body tr ) ◦ RestBody tr) :−

following (Body, Pref, Pred, Suff ),
getLBinds(Pref, Suff , LBinds),
updateBody(Pred, End, Id, Pref , LBinds, ContPrev, Cont, Body tr),
transBody(Cont, Suff , Id , ContPrev, End, RestBody tr).

following (Body, Pref, Pred, Suff) :−
member(Body, Pred),
( table (Pred); bridge(Pred)), !,
Body = Pref ◦ Pred ◦ Suff.

updateBody([], End, Id , Pref , LBinds, ContPrev, [], Pref ◦ End).
updateBody(Pred, End, Id, Pref , LBinds, ContPrev, Cont, Pref ◦ slgcall (Cont)) :−

table (Pred),
getNameCont(NameCont),
Cont = NameCont(Id, LBinds, Pred, ContPrev).

updateBody(Pred, End, Id, Pref , LBinds, ContPrev, Cont, Pref ◦ Bridge call) :−
bridge(Pred),
getNameCont(NameCont),
Cont = NameCont(Id, LBinds, Pred, ContPrev),
Bridge call =.. [Pred ◦ ’ bridge’ , Pred, Id , Cont] .

Fig. 7. The Prolog code of the translation rules.

the evaluation of each clause. The same points have to be addressed for bridge
clauses, taking into account that a tabled or bridge call has to be translated if
it appears in the body of a tabled predicate or a bridge predicate.

The rules for the new translation, which uses the same primitives as the orig-
inal CCall proposal, are shown in Figure 7, where for conciseness we have used
a sugared Prolog-like language. For example, a functional syntax is implicitly
assumed where needed, and infix ’◦’ is a general append function which joins
either (linear) structures or, when applied to atoms, concatenates them. It may
appear in an output head position with the expected semantics.
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The trans/2 predicate receives a clause to be translated and returns the list
of clauses resulting from the translation. Its first clause ensures that predicates
which are non-tabled and non-bridge are not transformed.6 The second one is to
generate the interface of table predicates with the rest of the code: if there is a
tabled declaration, the interface is generated. The third clause translates clauses
of tabled predicates, and the fourth one translates clauses of bridge predicates,
where the original one is maintained in case it is called outside a tabled call (this
is in order to preserve the interface with non-tabled code). They generate the
new head of the clause, Head tr, and the code which has to be appended at the
end of the body, End, before calling transBody/6 with these arguments. End can
be the answers/2 primitive for tabled clauses or call(Cont), which invokes the
following pushed continuation, stored in the fourth argument.

transBody/6 generates, in its last argument, the translation of the body of
a clause by taking care, in each iteration, of the code until the next tabled or
bridge call, or until the end the clause, and appending the translation of the rest
of the clause to this partial translation. In other words, it calls updateBody/8 to
translate tabled or bridge calls and continues translating the rest of the body.

The following/4 splits a clause body in three parts: a prefix, until the first
time a tabled or bridge call appears, the tabled or bridge call itself, and a suffix
from this call until the end of the clause. getLBinds/3 obtains the list of variables
which have to be saved to recover the environment of the consumer, based on
the ideas of Section 2.2.

The updateBody/8 predicate completes the body prefix until the next tabled
or bridge call. Its first six arguments are inputs, the seventh one is the head of
the continuation for the suffix of the body, and the last argument is the new
translation for the prefix. The first clause takes care of the base case, when there
are no calls to bridge or tabled predicates left, the second clause generates code
for a call to a tabled predicate, and the last one does the same with a bridge
predicate. That getNameCont/1 generates a unique name for the continuation.

We will now use the example in Figure 3, adding a :- bridge p/1 declara-
tion, to exemplify how a translation would take place.

4.2 The Previous Example with the Correct Transformation

The translation of the first clause of t/1 is done by the third clause of trans/2,
which makes the head of the translated clause to be slg t(t(A), Id) and states
that the final call of that clause has to be answer(Id, t(A)) —i.e., when the
clause successfully finishes, it adds the answer to the table.

transBody/6 takes care then of the rest of the body, which identifies which
environment variables (A, in this case) have to be saved and matches Pref,
Pred, and Suff with the goals before the call to the bridge predicate (none —

6 The predicates table/1 and bridge/1 are dynamically generated by the compiler
from the corresponding declaration. They check if their argument is a clause of a
tabled or bridge predicate, or if their argument is a functor corresponding to a tabled
or bridge predicate, respectively.
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t(A) :− slg(t(A)).
slg t (t(A), Id) :−

p bridge (p(B), Id , slg t0 (Id , [A], p(B), [])).

slg t (t (0), Id) :− answer(Id, t (0)).

slg t0 (Id , [A], p(B), []) :−
A is B + 1,
answer(Id , t(A)).

p(B) :− t(B), B < 1.

p bridge (p(B), Id , Cont) :−
slgcall (p bridge0(Id , [], t(B), Cont)).

p bridge0(Id , [], t(B), Cont) :−
B < 1,
call (Cont).

Fig. 8. The program in Figure 3 after being transformed for tabled execution.

and empty conjunction), the call to the bridge predicate (p(B)), and the goals
after this call (A is B + 1). The third clause of updateBody/8 generates the
body of Head tr, to give the first clause of slg t/2. A continuation is generated
for the rest of the body; the code of the continuation is a predicate whose head
is slg t0/3 and its body is generated by the first clause of updateBody/8.

The translation of the second clause of t/1 is simpler, as it only has to add
answer(Id, t(0)) at the end of the body of the new predicate.

The clause for p/1 is kept to maintain its interface when it is not called from
inside a another tabled execution. The translation for the clause of p/1 is made
by the fourth clause of trans/2 where Head tr is unified with p bridge(p(B),
Id, Cont). End is unified with call(Cont) — a call to the continuation code to
be resumed by the following pushed continuation. transBody/6 finds an empty
list of environment variables and unifies Pref, Pred and Suff with [], t(B)
and B < 1, respectively. The second clause of updateBody/8 generates the body
for the new predicate p bridge/3. A continuation is generated to execute the
rest of the body, whose head is p bridge0/3 and whose body is generated by
the first clause of updateBody/8. As we can see, bridge predicates are pushing
continuations which are sequentially called when consumers are resumed.

4.3 Execution of the Transformed Program

The execution tree of the transformed program is shown in Figure 9. It is similar
to that in Figure 5, but a continuation slg t0(id, [A], p(B), []) is passed
to the transformed clause of p/1. This continuation contains the code to be
executed after the execution of p(B) and the list [A] needed to recover its
environment. Consequently, there are two continuations associated with the sus-
pension: one continuation to execute the rest of the code of p(B) and another
one to execute the rest of the code of t(A).

After the first answer is found, this double continuation is resumed. It is
executed as a normal Prolog and the second answer, t(1), is found.
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? t (A).

1. slg(t (A)).

5. Suspension

10. 0 < 1, call(slg_t0(id, [A], p(0), [])).

12. A is 0 + 1, answer(id, t(A)).

11. call(slg_t0(id, [A], p(0), []).

13. answer(id, t(1)).

15. p_bridge0(id [A], t(1), slg_t0(id, [A], p(1), [])).9. p_bridge0(id, [], t(0), slg_t0(id, [A], p(0), [])).

16. 1 < 1, call(slg_t0(id, [A], p(1), [])).

17. fail

3. p_bridge(p(B), id, slg_t0(id, [A], p(B), [])).

2. slg_t(t (A), id).

18. Complete

19. A = 0.

20. A = 1.

14.− fail.

7. answer(id, t(0)).

8.− fail.4. slgcall(p_bridge0(id, [], t(B), slg_t0(id, [A], p(B), []))).

Fig. 9. New CCall tabling execution.

5 Θ(CHAT) is not comparable with Θ(CCall)

In this section we present a comparative analysis of the complexity of CCall
and CHAT, which is an efficient implementation of tabling with a compara-
tively simple machinery. Since it is known that Θ(CHAT) is Θ(SLG-WAM) [7], the
comparative analysis applies to the SLG-WAM as well.

The complexity analysis focuses on the operations of suspension and resump-
tion. The environment of a consumer has to be protected when suspending to
reinstall it when resuming. CCall achieves that by copying the continuation
associated with the consumer in a special memory area to be protected on back-
tracking. In the original implementation [15] this continuation is copied from
the heap to a separate table (when suspending) and back (when resuming). As
proposed in [6], continuations can be saved in a special memory area with the
same data format as the heap. This makes it possible to use WAM instructions
and additional machinery on them and, when resuming, they can be used as
normal Prolog data and code, without being recopied each time a consumer is
resumed.

On the other hand, CHAT freezes the heap and the frame stack when re-
suming. The heap and frame stack are frozen by traversing the choice point
stack. For all the choice points between the consumer choice point and its gen-
erator, the pointer to the end of the heap and frame stack are changed to the
values of the consumer choice point values. By doing that, heap and frame stack
are protected on backtracking. However, the consumer choice point has to be
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copied to a special memory area as well as the segment trail (with its associated
values) between the consumer and the generator, to reinstall the values of the
bound variables at the time of suspension which backtracking will unbind. In
consequence, when resuming the trail values have to be reinstalled as well as the
consumer choice point.

Each consumer is suspended only once, and it can be resumed several times.
The rest of the operations, i.e., checking if a tabled call is a generator or a con-
sumer, are not analyzed, because they are common to both systems. In addition,
we will ignore the cost of working at the Prolog level, since this is an orthogonal
issue: CCall primitives could be compiled to WAM instructions and working at
Prolog level does not increase the system complexity.

Θ(CCall): when suspending, CCall has to copy all the environments until the
last generator and the structures in the heap which hang from them. If we name
E the size of all the environments and H the size of the structures in the heap,
the time consumption when suspending is: Θ(E + H).

When resuming, CCall just has to perform pattern matching of the continu-
ation against its clause. The time taken by the pattern matching depends on the
size of the list of bindings, which is known to be Θ(E). Since each consumer can
be resumed N times, the time consumption of resuming consumers is Θ(N×E).

Θ(CHAT): when suspending, CHAT has to traverse the frame and choicepoint
stacks, but with the improvements presented in [7], the time this takes can be
neglected because a choice point is only traversed once for all the consumers.
The trail and the last choice point have to be copied. If we call T the size of the
trail and C the size of the choice point, which is bound by a constant for a given
program, the time consumption when suspending is: Θ(T).

When resuming, CHAT has to reinstall the values of the frame and the choice
point. Since each consumer can be resumed N times, the time consumption of
resuming is Θ(N×T).

Analyzing the worst cases of both systems: we can conclude E + H ≥ T,
because each variable can only be once in the trail, and then CCall is worse than
CHAT when suspending. On the other hand, in case that E < T, CCall is better
than CHAT when resuming. Consequently, for a plausible general case, the more
resumptions there are, the better CCall behaves in comparison with CHAT, and
conversely. In any case, the worst and best cases for each implementation are
different, which makes them difficult to compare. For example, if there is a very
large structure pointed to from the environments, and none of its elements are
pointed to from the trail, CCall is slower than CHAT, since it has to copy all the
structure in a different memory area when suspending and CHAT does nothing
both when suspending and when resuming.

On the other hand, if all the elements of the structure are pointed to from the
trail, CCall has to copy all the structure on suspension in a different memory area
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to protect it on backtracking, but it is ready to be resumed without any other
operation (just a unification with the pointer to the structure). CHAT has to
copy all the structure on suspension too, because all the structure is in the trail.
In addition, each time the consumer is resumed, all the elements of the structure
have to be reinstalled using the trail, and CHAT has to perform more operations
than CCall, and then, the more resumptions there are, the worse CHAT would
be in comparison with CCall. Anyway, as the trail is usually much smaller than
the heap, in general cases, CHAT will have an advantage over CCall.

6 Performance Evaluation

We have implemented the proposed technique as an extension of the Ciao sys-
tem [1]. Tabled evaluation is provided to the user as a loadable package that
implements the new directives and user-level predicates, performs the program
transformations, and links in the low-level support for tabling. We have imple-
mented CCall tabling with the efficiency improvements presented in [6] and the
new translation for general programs explained in this paper.

Table 1 aims at determining how the proposed implementation of tabling
compares with state-of-the-art systems —namely, the latest available versions
of XSB, YapTab, and B-Prolog, at the time of writing, using the typical bench-
marks which appear in other performance evaluations of tabling approaches.7

In this table we provide, for several benchmarks, the raw time (in milliseconds)
taken to execute them using tabling. Measurements have been made with Ciao-
1.13, using the standard, unoptimized bytecode-based compilation, and with the
CCall extensions loaded, as well as in XSB 3.0.1, YapTab 5.1.1, and B-Prolog
7.0. Note that we did not compare with CHAT, which was available as a configu-
ration option in the XSB system and which was removed in recent XSB versions.
CHAT can be expected to be at least as fast (if not slightly faster) than XSB.

All the executions were performed using local scheduling and disabling garbage
collection; in the end this did not impact execution times very much. We used
gcc 4.1.1 to compile all the systems, and we executed them on a machine with
Fedora Core Linux, kernel 2.6.9, and an Intel Xeon DESCHUTES processor.

The first benchmark is path, the same as Figure 1, which has been executed
with a chain-shaped graph. Since this is a tabling-intensive program with no con-
sumers in its execution, the difference with other systems is mainly due to having
large parts of the execution done at Prolog level. The following five benchmarks,
until atr2, are also tabling intensive. As their associated environments are very
small, CCall is far from its worst case (see Section 5), and the difference with
other systems is similar to that in path and for a similar reason. The worst case
in this set is tcn because there are two calls to slgcall/1 per generator, and
the overhead of working at the Prolog level is duplicated.

B-Prolog, which uses a linear tabling approach, suffers if costly predicates
have to be recomputed: this is what happens in benchmarks from pg until peep,
7 This is in contrast to [6] where, due to the limitations of the CCall approach the

benchmarks presented did not need the use of bridge predicates.
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Program CCall XSB YapTab BProlog # Bridges

path 517.92 231.4 151.12 206.26 0

tcl 96.93 59.91 39.16 51.60 0

tcr 315.44 106.91 90.13 96.21 0

tcn 485.77 123.21 85.87 117.70 0

sgm 3151.8 1733.1 1110.1 1474.0 0

atr2 689.86 602.03 262.44 320.07 0

pg 15.240 13.435 8.5482 36.448 6

kalah 23.152 19.187 13.156 28.333 20

gabriel 23.500 19.633 12.384 40.753 12

disj 18.095 15.762 9.2131 29.095 15

cs o 34.176 27.644 18.169 85.719 14

cs r 66.699 55.087 34.873 170.25 15

peep 68.757 58.161 37.124 150.14 10

Table 1. Comparing Ciao+CCall with XSB, YapTab, and B-Prolog.

where tabled and non-tabled execution is mixed. This is a well-known disad-
vantage of linear tabling techniques which does not affect suspension-based ap-
proaches. It has to be noted, however, that latest versions of B-Prolog implement
an optimized variant of its original linear tabling mechanism [21] which tries to
avoid reevaluation of looping subgoals.

In order to compare our implementation with XSB and YapTab, we must
take into account that the speeds of XSB, and YapTab8 are different, at least in
those cases where the program execution is large enough to be really significant
(between 1.8 and 2 times slower in the case of XSB and 1.5 times faster in the
case of YapTab).

In non-trivial benchmarks, from pg until peep, which at least in principle
should reflect more accurately what one might expect in larger applications
using tabling, execution times are in the end very competitive when comparing
with XSB or YapTab. This is probably due to the fact that the raw speed of the
basic engine in Ciao is higher than in XSB and closer to YapTab, rather than to
factors related to tabling execution, but it also implies that the overhead of the
approach to tabling used is reasonable after the proposed optimizations in [6].
In this context it should be noted that in these experiments we have used the
baseline, bytecode-based compilation and abstract machine. Turning on global
analysis and using optimizing compilers and abstract machines [11, 3, 12] can
further improve the speed of the SLD part of the computation.

8 Note that we are comparing the tabled-enabled version of Yap, which is somewhat
slower than the regular Yap.
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7 Conclusions

We have presented an extension of the continuation call technique which does not
have the limitations of the original continuation call approach regarding the in-
terleaving of tabled and non-tabled predicates. This approach has the advantage
of being easier to implement and maintain than other techniques which require
non-trivial modifications to low-level machinery. Although there is an overhead
imposed by executing at Prolog level, we expect the speed of the source (Prolog)
language to gradually improve by using global analysis, optimizing compilers,
and better abstract machines. Accordingly, we expect the performance of CCall
to improve in the future and thus gradually gain ground in the comparisons.

Although a non optimal tabled execution is obviously a disadvantage, it is
worth noting that, since our implementation introduces only minimal changes in
the WAM and none in the associated Prolog compiler, the speed at which regular
Prolog is executed remains unchanged. In addition to this, the modular design of
our approach gives better chances of making it easier to port to other systems. In
our case, executables which do not need tabling have very little tabling-related
code, as the data structures (for tries, etc.) are handled by dynamic libraries
loaded on demand, and only stubs are needed in the regular engine. The program
transformation is taken care of by a plugin for the Ciao compiler [2] (a “package,”
in Ciao’s terms) which is loaded and active only at compile time, and which does
not remain in the final executable.
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Abstract. Tabled Logic Programming (TLP) has proven a useful
paradigm for application areas such as natural language grammars,
program analysis, model checking, ontology management, collaborative
agents, and the semantic web. The benefits of TLP arise from the fact
that tabling factors out redundant subcomputations when evaluating a
goal, leading to powerful termination and complexity properties. While
the design and implementation of sequential TLP systems has been heav-
ily studied, multi-threaded TLP systems are much newer. Tabling can be
integrated with multi-threading in a variety of ways. Different threads
may use private tables to support their own computations, while shared
tables can be used as a basis of communication among threads to amor-
tize repeated queries and to exploit a measure of parallelism from a
computation. This paper discusses multi-threaded TLP in the context
of XSB, a leading open-source Prolog whose tabling engine has recently
been extended for multi-threading, including tabled negation, tabled con-
straints, and subsumptive tabling.

Tabled Logic Programming (TLP) has proven to be an important area of
Logic Programming (LP) over the last decade, with research and commercial use
in such areas as natural language grammars, program analysis, model checking,
ontology management, collaborative agents, and the semantic web. Following
the initial implementation of tabling in XSB, various forms of tabling have been
added to other open-source Prologs including B-Prolog, YAP, Mercury, ALS
and Ciao. There are a number of reasons for the adoption of tabling. TLP is
more declarative than LP: it ensures termination and polynomial complexity for
logic programs with negation that have the bounded term size property – i.e.
those for which the size of terms constructed during an evaluation is bounded.
Tabling can also evaluate negation according to the Well-Founded Semantics,
which among other advantages allows an integration of Prolog-style systems
with ASP systems that solve combinatorial problems. Finally, tabling can be
closely integrated with Prolog systems so that constraints, cuts, and exceptions
are supported, and implemented through extensions of Prolog’s virtual machine.

Multi-threaded Prolog has been developed as a research activity for many
years (cf. e.g [1]) and a draft ISO standard is available [2]. Many Prologs, in-
cluding Ciao, SWI, YAP, Qu-Prolog and XSB, support multi-threaded program-
ming, allowing programmers to benefit from parallelism by manually decompos-
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ing queries. They provide a sophisticated environment for a number of applica-
tions, but most of them do not support multi-threaded TLP (MT-TLP).

This paper presents the approach to MT-TLP taken by XSB Prolog, which
supports a wide variety of TLP features, including tabled negation, tabled con-
straints, call subsumption, answer subsumption, incremental recomputation of
tables, tabled dynamic code and garbage collection of abolished tables. When
multi-threading is added, tables may be private to a thread, or shared among
threads, leading to several design goals:

– Any tabling function should be available to any active thread using tables
that are private to a thread.

– Any tabling function should be available to any active thread using tables
that are shared among threads.

– Private tables should be highly scalable up to the number of cores available.
– For problems that support large amounts of parallelism, shared tables should

be able to provide speedup proportional to the number of cores available.

Although these goals are ambitious, many are already supported in Version
3.2 of XSB 3. We first review aspects of TLP in Section 1. We then describe
MT-TLP in XSB Version 3.2, including a high-level description of algorithms for
multi-threaded computations that share tables. In order to illustrate how MT-
TLP functions can be used in practice, Section 3 presents extended examples
of its application to various types of Petri-Net formalisms. Finally, Section 4
discusses performance of these and other examples.

1 Tabling

We review aspects of tabling relevant to our presentation. Due to space limita-
tions, the presentation is informal: references for formalisms of tabling and for
proofs of its complexity and termination properties can be found in e.g. [3].

Example 1. Figure 1 shows a program P1 along with the tabled evaluation of the
goal ?- p(c) represented as a forest of trees. In Figure 1, the number beside each
node indicates the order of its creation. Accordingly, the evaluation begins with
a tree for p(c) with root node labeled with the clause p(c):- |p(c). The head
of each node label represents the bindings, if any, to the subgoal made during
the course of evaluation. The body of a node label has two parts: the literals
on the right of the | symbol represent unresolved goals, which in this paper are
selected in a fixed left-to-right order; the literals on the left represent delayed
literals. program clause resolution is used to produce the children of the
root of a tree: this operation produces node 1, with selected literal not p(a).
The atom p(a) is new to the evaluation, so a new subgoal operation creates
a tree rooted at node 3 for p(a). program clause resolution creates node
4, and because the selected literal of node 4 t(a,Y,Z) is not tabled, program

3 Version 3.2 has not yet been released, but all features mentioned in this paper are
available in the CVS version of XSB available at xsb.sourceforge.net.
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clause resolution creates node 5 also. Since the selected literal of node 5,
p(c) has a tree in the forest, but has no answers, the evaluation backtracks to
node 4 and produces node 6. Once again, there are no answers to return so the
evaluation backtracks to the tree for p(c) and produces node 7. At this stage
none of the selected literals for nodes 1-7 have answers, nor unresolved program
clauses. However, SLG provides a delaying operation which allows a selected
negative literal to be moved to the left of the | symbol. This operation creates
node 8, which is considered to be an answer, since it has no unresolved goals; at
the same time, since node 8 has a delayed literal it is a conditional answer. This
conditional answer can be used to resolve against the selected literals of nodes
5 and 6, producing nodes 9 and 10. Note that using a conditional answer for
resolution causes the resolved goal to be delayed. The atom p(b) of the selected
literal of node 10 is new to the evaluation, so a new tree is created for p(b)
which produces an unconditional answer causing the derivation path from node
10 to be failed as indicated by the failure node 13. At this point, node 9 has not
p(a) as its selected goal. Another delaying operation is performed to produce
node 14, which again has not p(b) as its selected literal and produces a failure
node. At this point, all operations have been performed on the selected literals
of all nodes. The trees are completely evaluated and can be marked as complete.
Once they are completed and it is determined that p(a) has no (conditional
or unconditional) answers, a simplification operation removes not p(a) from
the delay list of node 8 to produce the unconditional answer in node 16.

p(X):− t(X,Y,Z),p(c),not p(Y),not p(Z).p(c):− not p(a).

:− table p/1.

p(b).

t(a,b,a). t(a,a,b).

13. fail

15. fail

10. p(a):− p(c)|not p(b), not p(a)

6. p(a):− | p(c),not p(b), not p(a)

3. p(a) :− | p(a)

2. p(c):− | not p(a) 7. p(c):− |t(c,Y,Z),p(c),not p(Y),not p(Z)
4. p(a):− | t(a,Y,Z),p(c),not p(Y), not p(Z)

p(c),not p(a),not p(b)5. p(a):− |

1. p(c) :− | p(c)

8. p(c) :− not p(a) |

9. p(a):− 

11. p(b) :− | p(b)

12. p(b) :− |

p(c)|not p(a),not p(b)

14. p(a):− p(c),not p(a)|not p(b)

16. p(c) :− |

Fig. 1. The program P1 and tabled evaluation of goal ?- p(c) to P1
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Example 1 illustrates a number of operational aspects of tabling. First, a
tabled evaluation needs to be able to suspend and later resume a computation
path, as when the path to node 5 is suspended and later resumed to produce
node 9. Next, since non-completed subgoals require execution stack space while
completed subgoals require only table space to store their answers, a practical
tabled evaluation must be able to incrementally complete tabled subgoals to
ensure space efficiency. For instance, the tree for p(b) can be completed imme-
diately after node 12 is produced.

However, there are aspects of tabled evaluation that Example 1 does not ex-
plicitly demonstrate. Example 1 implicitly uses call variance – a new subgoal
operation is performed on a tabled subgoal S if no variant of S has previously
been encountered. In some evaluations, it can be useful to restrict new subgoal
operations to occur only if no subsuming call for S had been encountered. Call
subsumption can be efficient for applications that can exploit it – for instance
computing a bottom-up fixed point for program analysis or for RDF inference.
However call subsumption introduces overheads when it is not used (about 20%
in XSB). Furthermore, there may be situations in which it is important to main-
tain the call patterns of an evaluation, as in tabling a meta-interpreter: such
patterns are preserved by call variance, but not by call subsumption. In addi-
tion, Example 1 does not make use of a tabling feature called answer subsump-
tion. Rather than returning every answer for a (perhaps completed) table, it
may be best to return answers that are optimal according to some partial order.
Similarly, answer subsumption may return an answer that is a function of other
answers. For instance, an answer may be resolved against a consuming subgoal
only if it is the join of other answers [4], or if the answer is the summation
of independently derived probabilities [5]. As shown by the Petri Net example
in Section 3 that uses ω-sequences, answer subsumption also can be useful for
ensuring termination by abstracting answers.

Example 1 also does not use dynamic code, which interacts with tabling
in two ways. First, dynamic predicates can be tabled in XSB, a handy feature
for applications that generate tabled code. Second, when a tabled evaluation
relies on a dynamic predicate Dp information in the table may become out of
date as clauses of Dp are asserted or retracted. By using suitable declarations,
incremental recomputation can automatically maintain the consistency of tables
with dynamic code. While in Version 3.2 of XSB incremental recomputation is
restricted to definite programs, it has proven useful in applications [6].

The ability to maintain constrained variables in the subgoals and answers of
tables is useful for the analysis of temporal systems (see for instance [7]). A final
critical, but often overlooked feature of tabling systems is the ability to abolish
tables and reclaim their space. Version 3.2 of XSB allows reclamation of table
space for abolished completed tables at the predicate and subgoal level. It may
not be safe to immediately reclaim the space of an abolished table, as choice
points may point into the table’s code. Thus, in a manner similar to reclaiming
retracted dynamic clauses, a pointer to the predicate or subgoal is put on a list
of elements to later garbage collect when it is safe to do so.
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Scheduling Strategies Two popular strategies for performing tabling oper-
ations are Local evaluation (the underlying strategy of Example 1) and Batched
evaluation. Local evaluation is based on a Subgoal Dependency Graph (SDG)
constructed from a forest of trees, F (cf. Figure 1). This graph has as its ver-
tices each non-completed tabled subgoal in the forest, and has a link (S1, S2) if
a node in the tree for subgoal S1 has subgoal S2 in its selected literal or in a
delayed literal. Since SDG(F) is a directed graph, a Strongly Connected Com-
ponent (SCC) can be defined; As terminology a maximal SCC is an SCC that
is contained in no other SCC, while an independent SCC S is an SCC such that
there is no edge from a vertex in S to a vertex not contained in S. In Local
evaluation, tabling operations are performed only in trees whose subgoals are
in an independent maximal SCC. Because of this restriction, Local evaluations
have a behavior similar to a depth-first search. As a result, a given state of a
Local evaluation generally has few uncompleted subgoals, and so is space effi-
cient. In addition, Local evaluation prevents the return of an answer to a node
in a tree that is not in an independent SCC. Along with other scheduling con-
straints, including ensuring that all simplification operations are performed
as early as possible, Local evaluation can guarantee that if a conditional answer
with head A is returned to a node N outside of an independent SCC, then no
unconditional answer with head A will ever be available to be returned to N .
In Example 1 this would mean that if p(a) were part of a larger evaluation, its
conditional answer (node 8) would never be returned outside of its SCC: only
the unconditional answer (node 16) would be thus returned. Local evaluation is
also advantageous for answer subsumption since it returns only the best answers
(according to a given ordering) outside of an SCC.

However Local evaluation, is not useful for applications that require a single
answer, or for applications where a table produces an answer that can be concur-
rently consumed by some other thread. For these purposes, Batched Evaluation
is superior. Batched evaluation treats bindings made by answer resolution in the
same way substitutions are treated in Prolog: the binding is propagated to all
ancestor environments, thus “returning” an answer to its calling environment
immediately. Answers are also returned to consuming nodes upon backtracking.
Upon backtracking to the oldest subgoal in an SCC S, S is either completed or a
backtracking chain is created to return unresolved answers to consuming nodes
for subgoals in S. In this manner, answers are scheduled for return a batch at a
time. For left recursion, Batched evaluation is about 10-20% faster than Local
evaluation. The decision of whether to use Batched or Local evaluation is thus
application dependent. XSB must be configured with one or the other strategy,
but YAP allows dynamic mixing of the strategies [8].

2 Multi-Threaded Tabling

A multi-threaded tabling engine [9] was first made available in Version 3.0 of
XSB, and has been substantially refined and extended since then. The simplest
execution model is based on private tables, where each thread keeps its own copy
of tabled information. This model has several advantages:
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– Private tables use sequential tabling algorithms. The main implementation
problems are to make the tabling engine reentrant with a low overhead, to
allow each thread to reclaim its own table space and to ensure that allocation
of table space does not affect scalability. Private tables in XSB support all
tabling features that were present at the time of implementation, including
tabled negation, tabled constraints, and call and answer subsumption.

– Private tables generally require no synchronization among threads above the
level of memory allocation.

– Private tables are suitable to ensure query completeness or to support a
particular semantics. Tables are automatically reclaimed when the thread
that computed them exits. This reclamation includes not only subgoal and
answer tries, but the delay lists and supporting structures used to compute
the Well-Founded Semantics.

Shared tables tables are also important:

– If different threads require the same tables, memory usage for shared tables
will be significantly lower than for private tables.

– Shared tables amortize execution time for (sub-)queries that are repeated by
more than one thread.

– Shared tables allow the decomposition of a program, so that a set of threads
computes a set of tables, partially supporting Table-Parallelism [10].

Execution Models for Shared Tables In [9] two models for shared tables,
Concurrent Local Evaluation and Concurrent Batched Evaluation were proposed
and implemented. In these models, the SLG forest is dynamically partitioned
among threads, each thread evaluating a set of subgoals. In Concurrent Local
Evaluation, which relies on Local Scheduling, when a thread T encounters a
tabled subgoal S that has not been encountered by any thread, T evaluates S.
Other threads are only allowed to use the table for S after T has completed
S. Concurrency control for tables mainly arises when more than one thread
evaluates different tabled subgoals in the same SCC at the same time. In this
case, a deadlock will occur, which the engine detects and resolves, so that a single
thread assumes computation of all tabled subgoals in the SCC. In Figure 1 such
as situation would occur if a thread T1 called p(a) and another called p(c)
before it was called by T1. Tabled subgoals that are computed by a new thread
must have their answers recomputed. It is shown in [9] that recomputation does
not add to the abstract complexity of the Well-Founded Semantics. Just as Local
evaluation is the default scheduling strategy for sequential XSB and for thread-
private tables, Concurrent Local Evaluation is the default scheduling strategy
for thread-shared tables.

Because it is a type of Local Evaluation, Concurrent Local Evaluation does
not allow a consuming node to use answers produced by a subgoal outside of
its SCC until the table for the answers is completed – a restriction that pre-
vents producer-consumer models of parallelism. This limitation is overcome by
Concurrent Batched Evaluation which allows several threads to compute (inter-
)dependent tabled subgoals in parallel. As with Concurrent Local Evaluation,
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each subgoal can be computed by only one thread. However, a given thread
may consume answers as they are produced by another thread. Within XSB,
the implementation of Concurrent Batched Evaluation extends the implementa-
tion of sequential Batched Evaluation. In sequential Batched Evaluation, when
the engine backtracks to the oldest subgoal in an SCC, it schedules the re-
turn of unconsumed answers for each consuming node in the SCC by creating a
chain of choice points, and then backtracks into the newly created chain. This
is extended to a multi-threaded context as follows. If different threads compute
different SCCs, they can work independently, and can consume answers from
other threads as they become available. However, let S be an SCC computed by
multiple threads. All threads concurrently consume answers and perform other
operations while they have work to do. Suppose a thread T1 computing subgoals
in S backtracks to the oldest subgoal that it “owns” in S. If any other thread
computing S is active, T1 will suspend and will be re-awakened when a thread
performs batch scheduling for S; otherwise if T1 is the last unsuspended thread
computing subgoals in S, T1 itself will perform a fixed point check and batched
scheduling and awaken the other threads computing S — either to return fur-
ther answers or to complete their tables. As implemented in XSB, Concurrent
Batched Evaluation thus allows parallel computation of subgoals, but has a se-
quential fixpoint check that synchronizes multiple threads when they compute
the same SCC.

Implementation Status The status of MT-TLP in XSB Version 3.2 is
shown in Table 1. Private tables support all features except for incremental re-
computation (cf. Section 1, which was introduced after the multi-threaded engine
was introduced into XSB. Concurrent Local Evaluation supports most features,
but does not yet support call subsumption. In addition, it only partially supports
space reclamation since shared tables can be abolished, but their space will not
be reclaimed until there is only a single active thread in the engine. Both private
tables and shared tables under Concurrent Local Evaluation have been heav-
ily tested. XSB can also be configured to use Concurrent Batched Evaluation,
however this model has been less thoroughly tested than Concurrent Local Eval-
uation and should be considered experimental. Nonetheless, Concurrent Batched
Completion supports a number of tabling features, but is currently restricted to
left-to-right dynamically stratified programs.

Related Work The approach to MT-TLP in XSB can be contrasted to
that of OptYap [11]. OptYap extends an Or-parallel Prolog system with tabling,
while XSB extends a Tabled Prolog system to allow multi-threading. The differ-
ent starting points lead to different strengths in the current implementation of
each system. In OptYap, different workers can collaborate to solve the same goal
– leading to impressive speedups even in programs using left recursion. As will
be shown in Section 4, shared tables in XSB can be used to speed up evaluations,
but only for problems that are easily decomposable. Thus for definite programs,
to which OptYap is currently restricted, OptYap can exploit much more paral-
lelism than can XSB. On the other hand, XSB’s implementation supports more
tabling features within multi-threading, and integrates multi-threaded tabling
more thoroughly with other system features, such as dynamic code and space
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Feature Private Tables Shared Tables (Local) Shared Tables (Batched-β)

Tabled constraints Supported Supported Supported

Answer subsumption Supported Supported Supported

Tabled Dynamic Code Supported Supported Supported

Tabled negation Supported Supported Partially Supported

Space reclamation Supported Partially Supported Partially Supported

Call subsumption Supported Not supported Not Supported

Incremental recomputation Not supported Not supported Not Supported

Table 1. Multi-threaded functionality in XSB v. 3.2

reclamation. As a result, XSB can multi-thread computations that OptYap can-
not (currently) evaluate, including several examples from Section 3.

3 Analysis of Petri Nets and Workflow Nets

The analysis of process logics in the style of Petri Nets illustrates a use of various
tabled evaluations can exploit multi-threading. Reachability is a central problem
for Petri Net analysis, to which problems such as liveness, deadlock-freedom, and
the existence of homes states can be reduced. While we have taken care that
the programs shown are correct and motivated by use cases, we stress that the
methods described in this section are intended primarily to illustrate MT-TLP
and to support the performance studies of Section 4, but do not represent fully
developed analysis systems for Petri or Workflow Nets 4.

p1

t4
t2

c2

 b2

p2

t3t1

b1

c1

Fig. 2. A Simple Producer-Consumer Net

Using Tabling for Elementary Petri Nets Elementary Petri Nets
(EPNs) or 1-safe Petri Nets (cf. [12]) are particularly simple to analyze. Consider
the EPN shown in Figure 2, which depicts a simple producer consumer system.
An EPN allows a place to contain at most 1 token; thus a finite EPN will have

4 All programs can be obtained via http://xsb.cvs.sourceforge.net/xsb/mttests/benches.
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only a finite number of configurations so that determining reachability of an EPN
configuration is decidable. Our encoding represents the configuration of an EPN
by a list of its marked places: thus the configuration in Figure 2 is represented
as the list [b1,c1,p1]. Next, a transition T is represented by a list of places
with input arcs to T (•T ) and output arcs from T (T•). Predicate trans/3 in
Figure 3 shows each transition of Figure 2 represented as a Prolog fact, and that
the transitions use XSB’s trie indexing to obtain full indexing on list elements.
Figure 3 shows a program for determining reachability in an EPN; so that solu-
tions to the goal reachable([b1,c1,p1],X) are configurations reachable from
the EPN in Figure 2. For efficiency the reachability program assumes that the
lists in all transitions and configurations are sorted. For a transition T to have
concession in a configuration C of an EPN, every place in •T must be marked,
and no place in T• can be marked. These conditions are checked by the predicate
hasTransition/2 in Figure 3 which recurses through the places in the current
configuration (Conf) to find sets of transitions that might have concession. This
recursion (in get trans for conf 1/3) allows indexed calls to transitions to
be made based on each place in the input configuration. Each set of possible
transitions is then filtered to include only those transitions that actually have
concession in Conf, using operations on ordered sets (via check concession/2).
hasTransition/2 succeeds when the first of these transitions is applied; further
transitions are applied upon backtracking.

Based on hasTransition/2, a tabled reachability predicate can be written
as a simple left-recursion. Tabling reachable/2 is useful in two ways: it prevents
looping when a given configuration is reachable from itself; and it also filters out
redundant paths to a reachable configuration. By using the left recursive form
of reachable/2, a typical call such as reachable([b1,c1,p1],X) with first
argument bound and second free, would require a single tabled subgoal, and
would have as answers all configurations reachable from [b1,c1,p1]. XSB’s use
of tries to represent tabled subgoals and their answers, allows efficient checking
of answers and efficient use of memory, since the trie data structure factors
out common list prefixes. If reachable/2 is made thread-shared, then various
threads can access the table to determine useful transitions, isolated places,
and other information. Reachability analysis can exploit multi-threading if there
is more than one initial configuration of interest or if a Petri Net is coarsely
decomposable.

Using Petri Nets to Model Workflows The analysis and verification
workflows is a promising direction for MT-TLP. Petri net-based formalisms,
called Workflow Nets, are suitable to represent control and data flows, such
as loops, I/O preconditions, if/then clauses and other synchronization depen-
dencies between workflow units. To model reachability in a Workflow Net, the
EPN is first extended to allow multiple tokens in a given place, and to change
the representation of marked place from a constant such as p1 to a Prolog
term that is marked with a given instance and perhaps other information, e.g.
p1(instance(7)). Transitions are then extended with functionality to dynami-
cally evaluate guard conditions, to create sub-instances, to check for the absence
of tokens in given places (which allows merging of dynamically created paths
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% Prolog representation of the Producer-Consumer Net

:- index(trans/2,trie).

trans([p1],[p2],t1). trans([b2,p2],[p1,b1],t2).

trans([b1,c1],[b2,c2],t3). trans([c2],[c1],t4).

% Program to determine reachability of an elementary net

:- table reachable/2.

reachable(InConf,NewConf):-

reachable(InConf,Conf),

hasTransition(Conf,NewConf).

reachable(InConf,NewConf):-

hasTransition(InConf,NewConf).

hasTransition(Conf,NewConf):-

get_trans_for_conf(Conf,AllTrans),

member(Trans,AllTrans),

apply_trans_to_conf(Trans,Conf,NewConf).

get_trans_for_conf(Conf,Flattrans):-

get_trans_for_conf_1(Conf,Conf,Trans),

flatten(Trans,Flattrans).

get_trans_for_conf_1([],_Conf,[]).

get_trans_for_conf_1([H|T],Conf,[Trans1|RT]):-

findall(trans([H|In],Out,Tran),trans([H|In],Out,Tran),Trans),

check_concession(Trans,Conf,Trans1),

get_trans_for_conf_1(T,Conf,RT).

check_concession([],_,[]).

check_concession([trans(In,Out,Name)|T],Input,[trans(In,Out,Name)|T1]):-

ord_subset(In,Input),

ord_disjoint(Out,Input),!,

check_concession(T,Input,T1).

check_concession([_Trans|T],Input,T1):-

check_concession(T,Input,T1).

apply_trans_to_conf(trans(In,Out_Name),Conf,NewConf):-

ord_subtract(Conf,In,Diff),

flatten([Out|Diff],Temp),

sort(Temp,NewConf).

Fig. 3. TLP Program for analyzing Elementary Petri Nets
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through the net), and to delete tokens from places if a transition is taken (which
allows cancellation). Transitions for Workflow Net have the abstract form

trans(InConf,OutConf,dyn(Conditions,Effects))

where the last argument contains dynamic conditions that must be satisfied
before the transition can be taken, and dynamic effects to be applied upon
taking the transition (e.g. cancellation). The Workflow Net evaluator based on
this syntax is approximately twice the size of that of Figure 3, and can emulate
nearly all common workflow control patterns [13]. In fact, the emulator has been
used with MT-TLP to analyze health workflows based on clinical care guidelines.

Using Answer Subsumption for ω Sequences Workflow nets are an ex-
tension of Place/Transition Petri Nets, which do not distinguish between tokens,
but do allow a place to hold more than one token. Reachability is decidable in
Place/Transition Nets, and can be determined using a method called ω-sequences
(see e.g. [14]). The main idea in determining ω sequences is to define a partial
order ≥ω as follows. If configurations C1 and C2 are both reachable, C1 and
C2 have tokens in the same set Pl of places, and there exists a non-empty
PLsub ⊆ PL, such that for each pl ∈ Plsub C1 has strictly more tokens than C2,
then C1 >ω C2. When evaluating reachability, if C2 is reached first, and then
C1 was subsequently reached, C1 is abstracted by marking each place in PLsub

with the special token ω which is taken to be greater than any integer. If C1 was
reached first and then C2, C2 is treated as having already been seen.

From the viewpoint of TLP, ω-abstractions form an example of answer sub-
sumption. To compute reachability with ω abstractions, when each solution S to
reachable/2 is obtained, the solution S is compared to answers in the table. If
some answer in the table is greater than or equal to S in ≥ω then S is not added
to the table; however if S is greater than some set SA of answers, the answers
SA are removed from the table and the ω abstraction of S with respect to SA is
added. The main top-level change to Figure 3 needed for implementation is the
use of the XSB library predicate filterPOA/5 as the top-level call and in the
first clause of reachable/2.

reachable(InConf,NewConf):-

filterPOA(reachable(InConf),Conf,gte omega,omega abstr,call abstr),

hasTransition(Conf,NewConf).

filterPOA/5 takes the call and argument to which answer subsumption is to be
applied as its first two arguments, while the third argument, gte omega is the
name of the partial order itself. The forth argument is the name of the predicate
to use to perform ω-abstraction of answers. Finally, the fifth argument, is the
name of the predicate to compare a candidate solution Sol to answers in the
table. The predicate, call abstr/2 abstracts Sol to form a call to the table so
that only a small set of answers will be compared with Sol to determine if Sol
should be added to the table and possibly ω-abstracted 5. In other words, upon
derivation of Sol, a term CallSol is created using call abs/2 and all answers in

5 filterPOA/5 is itself tabled and uses thread-private tables; for shared tables
shared filterPOA/5 is used.
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the current table that unify with CallSol are collected. Each of these is compared
to Sol using gte omega/2. If one of the answers >ω than Sol, the predicate fails;
otherwise the set A of answers that Sol is >ω than is collected, and if non-
empty, the abstraction of Sol with respect to A, Solabs is taken; the answers in
A deleted from the table, and Solabs added.

Extending nets with Constraint-based Reasoning A variety of for-
malisms extend Place/Transition Nets to add conditions that must be evaluated
for a transition to fire and effects that must occur upon its firing. In the Workflow
nets described above conditions and effects were Prolog predicates, but there is
no reason why a condition could not be the entailment of a formula in a given
constraint domain, and the effect the propagation of new constraints to variables
associated with given places in the net. Using such an approach, constraint-based
reasoning can be incorporated into workflow or other process specifications. The
top-level change required to implement constraint nets occurs when actually
applying a transition to a configuration, in apply trans to conf/3:

apply trans to conf(trans(In,Entailment,Out),Conf,NewConf):-

unify for entailment(In,Conf,MidConf),

entailed(Entailment),

call new constraints(Out,OutPlaces),

flatsort([OutPlaces|MidConf],NewConf).

First, variables in the transition are unified with those of the configuration to
produce a new constraint store. If the formula Entailment is entailed by the
constraint store, new constraints from the transition are placed on the output
variables via calling the constraints in the list Out. Note that this extension is
not specific to a given constraint domain, but its use for reachability does depend
on tabled constraints.

Using Tabled Negation for Preferences on Nets Preferences can be
combined with Workflow nets so that if more than one transition is possible for
a given configuration C of a workflow instance, only preferred transitions from
C are taken. This has two practical uses. First, the preferences may check run-
time information from a database or other store to determine what transitions
to avoid: in fact, since the preference relation is simply a (tabled) Prolog pred-
icate the preference relation may perform sophisticated run-time look-aheads.
Second, since preferences can be dynamic, they may be used to fine-tune a
general workflow to local policies – for instance adjusting a clinical workflow
system to policies of a given hospital, medical department, or ward. Adapting
the methodology of [15], the top-level change to the code of Figure 3 is to the
hasTransition/2 predicate

hasTransition(Conf,NewConf):-

get trans for conf(Conf,AllTrans),

member(Trans,AllTrans),

sk not(unpreferred(Trans,AllTrans,Conf)),

apply trans to conf(Trans,Conf,NewConf).

sk not/1 is an XSB predicate that soundly evaluates non-ground tabled negation
by skolemizing variables, ensuring here that only preferred transitions are taken.
Since the basis for preferences is the well-founded semantics, if a transition is
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preferred to itself at a given configuration, hasTransition/2 will produce an
answer that is neither true nor false.

Summary: Tabling for Petri Nets Tabling provides a concise means for
coding reachablility (and other analysis problems) for a variety of Petri-net for-
malisms. At the same time, tabling may not be the best approach for all such
problems. Reachability in EPNs is in PSPACE [16], while in the worst case,
tabling requires 2N states for an EPN with N places. At the same time, algo-
rithms for reachability that stay in PSPACE (e.g. by using loop-checking) will in
the worst case require time proportional to the number of traces (paths) rather
than to the number of states, as required by tabling.

4 Performance Results

Table 2 shows the performance results for benchmarks on a machine with a 4 core
AMD 64 processor running Debian Linux. All times were taken as the best of
three runs and are presented in seconds. The programs Elementary, Workflow,
Omega, Constraint, and Preferences were all discussed in the previous sec-
tion. Dynamic Elementary is the same as Elementary except that it uses tabled
dynamic code for reachable/2. The nets tested vary with each type of bench-
mark. For (Dynamic) Elementary, the underlying nets are designed to capture
the effects of repeatedly locking and unlocking mutexes, while in Workflow the
net is designed to use a number of standard workflow control patterns from [13].
The net for Omega was synthesized to have a relatively small number of places
in which ω-abstractions were necessary, although the check for whether an ω-
abstraction was needed was necessary in all places. For Constraints, the net-
work was designed so that places compete for a shared resource represented by a
term with variables constrained using CLP(R). Once a place obtains a resource,
various transitions fire to constrain the variables of a resource until they entail
the guard of a transition that moves the term to another place along a path, and
eventually back to the initial configuration. The net for Preferences extends a
workflow net to prefer those transitions from a given configuration that cannot
lead to proscribed configurations: the preferences thus model look-ahead within
a workflow state. Due to differingzd limitations on the sizes of shared and of
multiple copies of private tables, the sizes of the nets differ between private and
shared versions of each benchmark, resulting in different performance numbers.

The benchmark Call Subsumption does not use a Petri Net formalism, but
rather evaluates the goal ?- ranc(A,B) to the tabled predicate

ranc(X,Y):- edge(X,Y). ranc(X,Y):- edge(X,Z),ranc(Z,Y).

where ranc/2 uses call subsumption and edge/2 is a chain of 2048 vertices.
Table 2 presents the results of the benchmarks; however two other features

of the benchmarks must be be explained before evaluating the results. First, the
sizes of the underlying nets vary greatly from test to test, as do the number of
reachable states – thus the absolute times should not be used to compare the
benchmark of one kind of net to another. Second, shared table benchmarks test
the time for N threads to each traverse 4/N identical nets. Thus, the shared
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Programs Using Private Tables (Local Evaluation)

N. threads 1 2 Overhead 4 Overhead

Private Elementary 5.94 6.23 4.8% 6.25 5.2%

Private Dynamic Elementary 6.03 6.03 0% 6.03 0%

Private Workflow 19.21 19.68 2.4% 19.95 3.8%

Private Omega 7.18 8.33 16.0% 10.3 46.0%

Private Omega Specialized 6.37 6.37 0% 6.37 0.0%

Private Constraint 2.75 2.84 3.2% 2.85 3.6%

Private Preferences 3.74 3.77 0.8% 3.82 2.1%

Call Subsumption .86 1.04 20.0% 1 43%

Programs Using Shared Tables (Local Evaluation)

N. threads 1 2 Speedup 4 Speedup

Shared Elementary 25.12 13.00 1.93 6.55 3.83

Shared Dynamic Elemtary 24.8 13.02 1.90 6.59 3.76

Shared Workflow 41.25 20.78 1.98 10.58 3.89

Shared Omega 19.58 10.38 1.88 5.57 3.51

Shared Constraint 11.13 5.56 2.00 2.83 3.93

Shared Preferences 3.73 1.86 1.99 0.95 3.92

Table 2. Scalability Results for Private and Shared Tables (Local Evaluation)

benchmarks test a “best case” situation for exploiting parallelism by shared ta-
bles. In Table 2 the scalability for both private and shared tables is usually linear
to 4 cores, and the times for Dynamic Elementary are nearly the same as for
Elementary. The first exception is the Omega benchmark using private tables.
The slowdown in Omega was determined to arise from the use of call/[2,3] in
the library predicate filterPOA/5 (See Section 3). This use caused contention
for the mutex protecting XSB’s predicate table. When filterPOA/5 was spe-
cialized to avoid call/[2,3] in Omega Specialized, the contention disappears,
and the benchmark becomes scalable. The second exception to scalability is
Call Subsumption. Executing Call Subsumption requires a large amount of
space to be allocated for 2049 tabled calls and over 2k ∗ 1k answers. While other
benchmarks, such as Elementary also have a large number of answers, Call
Subsumption spends nearly all of its time doing tabling operations — and mem-
ory management. Although XSB manages memory for private tables within a
thread and so reduces contention for process-level memory managers, it can-
not eliminate this contention. As a result, the high proportion of time spent on
memory management in Call Subsumption reduces its scalability on ranc/2.

5 Discussion

We have described the approach to MT-TLP in XSB and shown how it can
be used to evaluate sophisticated process and workflow formalisms in a simple
and direct manner. The goals stated in Section 1 are ambitious: still, they are
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largely met. Except for incremental recomputation, all the features in Table 1
are supported by private tables, while and nearly all except incremental recom-
putation and call subsumption are at least partially supported by shared tables.
When supported, the tabled features can be almost always be made to scale
linearly to the number of cores available for our benchmarking. Several existing
XSB applications will benefit from the MT-TLP model as described in this pa-
per. These include the ontology management system CDF [17], the object-logic
system Flora-2 [18] and the model-checking system XMC [19]. The first two of
these applications rely on tabled negation, while applications of XMC to real-
time systems and security protocols rely on tabled constraints. For these and
other applications, the MT-TLP model can increase availability and speed.

Acknowledgements The authors thank David S. Warren for help in im-
plementing private tables and tabled dynamic code. Performance results we ob-
tained on hardware supported with CITI FCTMCTES Plurianual Funding.
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Abstract. This paper is an exploration in a logic programming frame-
work of isomorphisms between elementary data types (natural numbers,
sets, finite functions, graphs, hypergraphs) and their extension to hered-
itarily finite universes through hylomorphisms derived from ranking/un-
ranking and pairing/unpairing operations.
An embedded higher order combinator language provides any-to-any en-
codings automatically.
A few examples of “free algorithms” obtained by transferring operations
between data types are shown. Other applications range from stream
iterators on combinatorial objects to succinct data representations and
generation of random instances.
The self-contained source code of the paper, as generated from a liter-
ate Prolog program, is available at http://logic.csci.unt.edu/tarau/
research/2008/pISO.zip
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1 Introduction

Data structures in imperative languages have traditionally been designed with
mutability in mind and therefore with space saving strategies based on in-place
updates. On the contrary, the dominance of immutable data structures in declar-
ative languages suggests sharing “equivalent” immutable components as an ef-
fective space saving alternative.

Moreover, in the presence of higher order constructs, function sharing among
heterogeneous data objects, is also appealing, as a way to borrow or lend “free
algorithms”.

The closest analogy to this, drawn from everyday thinking, is . . . analogy.
Analogical/metaphoric thinking routinely shifts entities and operations from a
field to another hoping to uncover similarities in representation or use.

However, this rises the question: what guaranties do we have that doing this
between data types is useful and safe?

Also sharing heterogeneous data objects faces two problems:
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– some form of equivalence needs to be proven between two objects A and
B before A can replace B in a data structure, a possibly tedious and error
prone task

– the fast growing diversity of data types makes harder and harder to recognize
sharing opportunities.

The techniques introduced in this paper provide a generic solution to these
problems, through isomorphic mappings between heterogeneous data types, such
that unified internal representations make equivalence checking and sharing pos-
sible. The added benefit of these “shapeshifting” data types is that the functors
transporting their data content will also transport their operations, resulting in
shortcuts that provide, for free, implementations of interesting algorithms. The
simplest instance is the case of isomorphisms – reversible mappings that also
transport operations. In their simplest form such isomorphisms show up as en-
codings – to some simpler and easier to manipulate representation – for instance
natural numbers.

Such encodings can be traced back to Gödel numberings [1, 2] associated to
formulae, but a wide diversity of common computer operations, ranging from
wireless data transmissions to cryptographic codes qualify.

Encodings between data types provide a variety of services ranging from free
iterators and random objects to data compression and succinct representations.
Tasks like serialization and persistence are facilitated by simplification of reading
or writing operations without the need of special purpose parsers. Sensitivity
to internal data representation format or size limitations can be circumvented
without extra programming effort.

2 An Embedded Data Transformation Language

It is important to organize such encodings as a flexible embedded language to
accommodate any-to-any conversions without the need to write one-to-one con-
verters. Toward this end we will organize our encodings as a group of isomor-
phisms within a (mildly) category theory-inspired design.

We will start by designing an embedded transformation language as a set
of operations on this group of isomorphisms. We will then extend it with a set
of higher order combinators mediating the composition of encodings and the
transfer of operations between data types.

2.1 The Group of Isomorphisms

We implement an isomorphism between two objects X and Y as a Prolog data
type (a term with functor iso/2) iso(F,G), encapsulating a bijection F and its
inverse G.

X Y
................................................................................................................................................................................................................................................................................... ............

f = g−1

...............................................................................................................................................................................................................................................................................................

g = f−1
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As a well-known mechanism to embed higher order functions in Prolog [3],
we will use iso/2 as a closure (higher order predicate) to be applied to an
input argument and an output argument. We assume the presence of Prolog’s
call/N predicate that applies a closure to N-1 extra arguments and maplist/N
that applies a closure to N-1 extra list arguments. We can organize the group of
isomorphisms as follows.

First we define the group structure as a set of isomorphism transformers:

compose(iso(F,G),iso(F1,G1),iso(fcompose(F1,F),fcompose(G,G1))).

itself(iso(id,id)).

invert(iso(F,G),iso(G,F)).

Then, we provide evaluators for isomorphisms, that apply their left or right
functions to actual arguments. Note that like iso/2, compose/3 is a closure to
be applied to 2 extra arguments with call/2 or maplist/2.

fcompose(G,F,X,Y):-call(F,X,Z),call(G,Z,Y).

id(X,X).

from(iso(F,_),X,Y):-call(F,X,Y).

to(iso(_,G),X,Y):-call(G,X,Y).

The from function extracts the first component (a section in category theory par-
lance) and the to function extracts the second component (a retraction) defining
the isomorphism. We can now formulate laws about isomorphisms that can be
used to test correctness of implementations.

Proposition 1 The data type iso/2 specifies a group structure, i.e. the compose
operation is associative, itself acts as an identity element and invert computes
the inverse of an isomorphism.

It is convenient to give a name to each isomorphism as a unary predicate

<name>(iso(From,To)).

We can transport operations from an object to another with borrow and lend
combinators defined as follows:

borrow(IsoName,H,X,Y):-call(IsoName,iso(F,G)),

fcompose(F,fcompose(H,G),X,Y).

lend(IsoName,H,X,Y):-call(IsoName,Iso),

invert(Iso,iso(F,G)),

fcompose(F,fcompose(H,G),X,Y).

The combinators fit and retrofit just transport an object x through an
isomorphism and apply to it an operation op available on the other side:

fit(Op,IsoName,X,Y):-

call(IsoName,Iso),fit_iso(Op,Iso,X,Y).

fit_iso(Op,Iso,X,Y):-

from(Iso,X,Z),call(Op,Z,Y).
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retrofit(Op,IsoName,X,Y):-call(IsoName,Iso),

retrofit_iso(Op,Iso,X,Y).

retrofit_iso(Op,Iso,X,Y):-

to(Iso,X,Z),call(Op,Z,Y).

We can see the combinators from, to, compose, itself, invert, borrow,
lend, fit etc. as part of an embedded data transformation language. Various
examples for their use will be given as soon as we populate our universe with
interesting isomorphisms.

2.2 Choosing a Root

To avoid defining n(n− 1)/2 isomorphisms between n objects, we choose a Root
object to/from which we will actually implement isomorphisms. We will extend
our embedded combinator language using the group structure of the isomor-
phisms to connect any two objects through isomorphisms to/from the Root.

Choosing a Root object is somewhat arbitrary, but it makes sense to pick
a representation that is relatively easy convertible to various others, efficiently
implementable and, last but not least, scalable to accommodate large objects up
to the runtime system’s actual memory limits.

We will choose as our Root object Finite Sequences of Natural Numbers. They
can be seen as as finite functions from an initial segment of Nat, say [0..n], to
Nat. We will represent them as lists i.e. their Prolog type is [Nat]. Alternatively,
an array representation can be chosen. Note that in the case of a Prolog not
supporting arbitrary precision integers or rationals, such lists could be used,
in principle, to emulate them at source level, through the use of isomorphisms
mapping them to natural numbers, signed integers and then rational numbers,
following the techniques described in [4, 5].

We can now define an Encoder as an isomorphism connecting an object to
Root together with the combinators with and as providing an embedded trans-
formation language for routing isomorphisms through two Encoders.

with(Iso1,Iso2,Iso):-invert(Iso2,Inv2),

compose(Iso1,Inv2,Iso).

as(That,This,X,Y):-

call(That,ThatF),call(This,ThisF),

with(ThatF,ThisF,Iso),

to(Iso,X,Y).

The combinator with turns two Encoders into an arbitrary isomorphism, i.e.
acts as a connection hub between their domains. The combinator as adds a more
convenient syntax such that converters between “a” and “b” can be designed as:

’a2b’(X,Y) :- as(’a’,’b’,X,Y).

’b2a’(X,Y) :- as(’b’,’a’,X,Y).
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Root

A B

.............
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.............
.............
.............
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.............
.............
.............
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............

b

............
............

............
............

............
............

............
............

............
............

............
............

..........................

a−1

......................................................................................................................................................................
..
............

b−1

.............................................................................................................................................................. .........
...

a

................................................................................................................................................................................................................................................................................... ............a2b

...............................................................................................................................................................................................................................................................................................
b2a

We will provide extensive use cases for these combinators as we populate our
group of isomorphisms. Given that [Nat] has been chosen as the root, we will
define our finite function data type fun simply as the identity isomorphism on
sequences in [Nat].

fun(Iso) :-itself(Iso).

3 Extending the Group of Isomorphisms

We will now populate our group of isomorphisms with combinators based on a
few primitive converters.

3.1 An Isomorphism to Finite Sets of Natural Numbers

The isomorphism is specified with two bijections set2fun and fun2set.

set(iso(set2fun,fun2set)).

While finite sets and sequences share a common representation [Nat], sets are
subject to the implicit constraint that all their elements are distinct1. This
suggest that a set like {7, 1, 4, 3} could be represented by first ordering it as
{1, 3, 4, 7} and then compute the differences between consecutive elements. This
gives [1, 2, 1, 3], with the first element 1 followed by the increments [2, 1, 3]. To
turn it into a bijection, including 0 as a possible member of a sequence, another
adjustment is needed: elements in the sequence of increments should be replaced
by their predecessors. This gives [1, 1, 0, 2] as implemented by set2fun:

set2fun([],[]).

set2fun([X |Xs],[X |Fs]):-
sort([X |Xs],[_ |Ys]),
set2fun(Ys,X,Fs).

set2fun([],_,[]).

set2fun([X |Xs],Y,[A |As]):-A is (X-Y)-1,set2fun(Xs,X,As).

It can now be verified easily that incremental sums of the successors of numbers
in such a sequence, return the original set in sorted form, as implemented by
fun2set:
1 Such constraints can be regarded as laws/assertions that we assume holding for

a given data type, when needed, restricting it to the appropriate domain of the
underlying mathematical concept.
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fun2set([],[]).

fun2set([A |As],Xs):-findall(X,prefix_sum(A,As,X),Xs).

prefix_sum(A,As,R):-append(Ps,_,As),length(Ps,L),

sumlist(Ps,S),R is A+S+L.

The resulting Encoder (set) is now ready to interoperate with another Encoder:

?- as(set,fun,[0, 1, 0, 0, 4],S).

S = [0, 2, 3, 4, 9].

?- as(fun,set,[0, 2, 3, 4, 9],F).

F = [0, 1, 0, 0, 4].

As the example shows, this encoding maps arbitrary lists of natural numbers
representing finite functions to strictly increasing sequences of natural numbers
representing sets.

3.2 Folding Sets into Natural Numbers

We can fold a set, represented as a list of distinct natural numbers into a sin-
gle natural number, reversibly, by observing that it can be seen as the list of
exponents of 2 in the number’s base 2 representation.

nat_set(iso(nat2set,set2nat)).

nat2set(N,Xs):-nat2elements(N,Xs,0).

nat2elements(0,[],_K).

nat2elements(N,NewEs,K1):-N>0,
B is /\(N,1),N1 is N>>1,K2 is K1+1,
add_el(B,K1,Es,NewEs),

nat2elements(N1,Es,K2).

add_el(0,_,Es,Es).

add_el(1,K,Es,[K |Es]).

set2nat(Xs,N):-set2nat(Xs,0,N).

set2nat([],R,R).

set2nat([X |Xs],R1,Rn):-R2 is R1+(1<<X),set2nat(Xs,R2,Rn).

We will standardize this pair of operations as an Encoder for a natural number
using our Root as a mediator:

nat(Iso):-nat_set(NatSet),set(Set),compose(NatSet,Set,Iso).

The resulting Encoder (nat) is now ready to interoperate with any other En-
coder:

?- as(fun,nat,42,F).

F = [1, 1, 1]
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?- as(set,nat,42,F).

F = [1, 3, 5]

?- as(fun,nat,2008,F).

F = [3, 0, 1, 0, 0, 0, 0]

?- as(set,nat,2008,S).

S = [3, 4, 6, 7, 8, 9, 10]

?- lend(nat,reverse,2008,R).

R = 1135 % different, sequence depends on order

?- lend(nat_set,reverse,2008,R).

R = 2008 % same, set is order independent

?- as(set,nat,42,S).

S = [1, 3, 5]

?- fit(length,nat,42,L).

L = 3

?- retrofit(succ,nat_set,[1,3,5],N).

N = 43

The reader might notice at this point that we have already made full circle
- as finite sets can be seen as instances of finite sequences. Injective functions
that are not surjections with wider and wider gaps can be generated using the
fact that one of the representations is information theoretically “denser” than
the other, for a given range:

?- as(set,fun,[0,1,2,3],S1).

S1 = [0, 2, 5, 9].

?- as(set,fun,[0,2,5,9],S2).

S2 = [0, 3, 9, 19].

?- as(set,fun,[0,3,9,19],S3).

S3 = [0, 4, 14, 34].

4 Generic Unranking and Ranking Hylomorphisms

The ranking problem for a family of combinatorial objects is finding a unique
natural number associated to it, called its rank. The inverse unranking problem
consists of generating a unique combinatorial object associated to each natural
number.
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4.1 Pure Hereditarily Finite Data Types

The unranking operation is seen here as an instance of a generic anamorphism
mechanism (an unfold operation), while the ranking operation is seen as an
instance of the corresponding catamorphism (a fold operation) [6, 7]. Together
they form a mixed transformation called hylomorphism.

We will use such hylomorphisms to lift isomorphisms between lists and nat-
ural numbers to isomorphisms between a derived “self-similar” tree data type
and natural numbers. In particular we will derive Ackermann’s encoding from
Hereditarily Finite Sets to Natural Numbers.

The data type T representing hereditarily finite structures will be a generic
multiway tree with a single leaf type [].

The two sides of our hylomorphism are parameterized by two transformations
f and g forming an isomorphism Iso f g:

unrank(F,N,R):-call(F,N,Y),unranks(F,Y,R).

unranks(F,Ns,Rs):-maplist(unrank(F),Ns,Rs).

rank(G,Ts,Rs):-ranks(G,Ts,Xs),call(G,Xs,Rs).

ranks(G,Ts,Rs):-maplist(rank(G),Ts,Rs).

Both combinators can be seen as a form of “structured recursion” that prop-
agate a simpler operation guided by the structure of the data type. For instance,
the size of a tree of type T is obtained as:

tsize1(Xs,N):-sumlist(Xs,S),N is S+1.

tsize(T,N) :- rank(tsize1,T,N).

Note also that unrank and rank work on trees in cooperation with unranks and
ranks working on lists of trees.

We can now combine an anamorphism+catamorphism pair into an isomor-
phism hylo defined with rank and unrank on the corresponding hereditarily
finite data types:

hylo(IsoName,iso(rank(G),unrank(F))):-call(IsoName,iso(F,G)).

hylos(IsoName,iso(ranks(G),unranks(F))):-call(IsoName,iso(F,G)).

Hereditarily Finite Sets Hereditarily Finite Sets will be represented as an
Encoder for the tree type T:

hfs(Iso):-hylo(nat_set,Hylo),nat(Nat),

compose(Hylo,Nat,Iso).

The hfs Encoder can now borrow operations from sets or natural numbers as
follows:

hfs_succ(H,R):-borrow(nat_hfs,succ,H,R).

nat_hfs(Iso):-nat(Nat),hfs(HFS),with(Nat,HFS,Iso).
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?- hfs_succ([],R).

R = [[]] ;

Otherwise, hylomorphism induced isomorphisms work as usual with our em-
bedded transformation language:

?- as(hfs,nat,42,H).

H = [[[]], [[], [[]]], [[], [[[]]]]]

One can notice that we have just derived as a “free algorithm” Ackermann’s
encoding [8, 9], from Hereditarily Finite Sets to Natural Numbers:

f(x) = if x = {} then 0 else
∑

a∈x 2f(a)

together with its inverse:

ackermann(N,H):-as(nat,hfs,N,H).

inverse_ackermann(H,N):-as(hfs,nat,H,N).

Hereditarily Finite Functions The same tree data type can host a hylomor-
phism derived from finite functions instead of finite sets:

hff(Iso) :-

hylo(nat,Hylo),nat(Nat),

compose(Hylo,Nat,Iso).

The hff Encoder can be seen as another “free algorithm”, providing data com-
pression/succinct representation for Hereditarily Finite Sets. Note, for instance,
the significantly smaller tree size in:

?- as(hff,nat,42,H).

H = [[[]], [[]], [[]]]

As the cognoscenti might observe this is explained by the fact that hff provides
higher information density than hfs, by incorporating order information that
matters in the case of sequence and is ignored in the case of a set.

5 Pairing/Unpairing

A pairing function is an isomorphism f : Nat×Nat→ Nat. Its inverse is called
unpairing.

We will introduce here an unusually simple pairing function (also mentioned
in [10], p.142).

The function bitpair works by splitting a number’s big endian bitstring
representation into odd and even bits.

bitpair(p(I,J),P):-

evens(I,Es),odds(J,Os),

append(Es,Os,Ps),set2nat(Ps,P).

evens(X,Es):-nat2set(X,Ns),maplist(double,Ns,Es).
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odds(X,Os):-evens(X,Es),maplist(succ,Es,Os).

double(N,D):-D is 2∗N.

The inverse function bitunpair blends the odd and even bits back together.

bitunpair(N,p(E,O)):-nat2set(N,Ns),

split_evens_odds(Ns,Es,Os),

set2nat(Es,E),set2nat(Os,O).

split_evens_odds([],[],[]).

split_evens_odds([X |Xs],[E |Es],Os):-
X mod 2 =:= 0,E is X // 2,

split_evens_odds(Xs,Es,Os).

split_evens_odds([X |Xs],Es,[O |Os]):-
X mod 2 =:= 1,O is X // 2,

split_evens_odds(Xs,Es,Os).

The transformation of the bitlists is shown in the following example with
bitstrings aligned:

?-bitunpair(2008,R)

R = p(60,26)

% 2008:[0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1]

% 60:[ 0, 1, 1, 1, 1]

% 26:[ 0, 1, 0, 1, 1 ]

We can derive the following Encoder:

nat2(Iso):-nat(Nat),

compose(iso(bitpair,bitunpair),Nat,Iso).

working as follows:

?- as(nat2,nat,2008,Pair).

Pair = p(60, 26)

?- as(nat,nat2,p(60,26),N).

N = 2008

6 Directed Graphs and Hypergraphs

We will now show that more complex data types like digraphs and hypergraphs
have extremely simple encoders. This shows once more the importance of com-
positionality in the design of our embedded transformation language.

6.1 Encoding Directed Graphs

We can find a bijection from directed graphs (with no isolated vertices, corre-
sponding to their view as binary relations), to finite sets by fusing their list of
ordered pair representation into finite sets with a pairing function:
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digraph2set(Ps,Ns) :- maplist(bitpair,Ps,Ns).

set2digraph(Ns,Ps) :- maplist(bitunpair,Ns,Ps).

The resulting Encoder is:

digraph(Iso):-set(Set),

compose(iso(digraph2set,set2digraph),Set,Iso).

working as follows:

?- as(digraph,nat,2008,D),as(nat,digraph,D,N).

D = [p(1, 1), p(2, 0), p(2, 1), p(3, 1), p(0, 2), p(1, 2), p(0, 3)],

N = 2008

6.2 Encoding Hypergraphs

Definition 1 A hypergraph (also called set system) is a pair H = (X, E) where
X is a set and E is a set of non-empty subsets of X.

We can easily derive a bijective encoding of hypergraphs, represented as sets of
sets:

set2hypergraph(S,G) :- maplist(nat2set,S,G).

hypergraph2set(G,S) :- maplist(set2nat,G,S).

The resulting Encoder is:

hypergraph(Iso):-set(Set),

compose(iso(hypergraph2set,set2hypergraph),Set,Iso).

working as follows

?- as(hypergraph,nat,2008,G),as(nat,hypergraph,G,N).

G = [[0, 1], [2], [1, 2], [0, 1, 2], [3], [0, 3], [1, 3]],

N = 2008

7 Applications

Besides their utility as a uniform basis for a general purpose data conversion
library, let us point out some specific applications of our isomorphisms.

7.1 Combinatorial Generation

A free combinatorial generation algorithm (providing a constructive proof of
recursive enumerability) for a given structure is obtained simply through an
isomorphism from nat:

nth(Thing,N,X) :- as(Thing,nat,N,X).

stream_of(Thing,X) :- nat_stream(N),nth(Thing,N,X).

nat_stream(0).

nat_stream(N):-nat_stream(N1),succ(N1,N).
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?- nth(set,42,S).

S = [1, 3, 5]

?- stream_of(hfs,H).

H = [] ;

H = [[]] ;

H = [[[]]] ;

H = [[], [[]]] ;

H = [[[[]]]] ;

H = [[], [[[]]]] ;

...

7.2 Random Generation

Combining nth with a random generator for nat provides free algorithms for
random generation of complex objects of customizable size:
random_gen(Thing,Max,Len,X):-

random_fun(Max,Len,Ns),

as(Thing,fun,Ns,X).

random_fun(Max,Len,Ns):-

length(Ns,Len),

maplist(random_nat(Max),Ns).

random_nat(Max,N):-random(X),N is integer(Max∗X).

?- random_gen(set,100,4,R).

R = [16, 39, 118, 168].

?- random_gen(fun,100,4,R).

R = [92, 60, 47, 76].

?- random_gen(nat,100,4,R).

R = 26959946667150641291244691713864218914210413126375567920582101041152.

?- random_gen(hfs,4,3,R).

R = [[[]], [[], [[[]]]], [[[]], [[], [[]]]]]

?- random_gen(hff,4,3,R).

R = [[], [], [[]]]

Besides providing arbitrary precision random numbers as a “free algorithm” on
top of a builtin limited precision floating point generator, one can see that this
technique can be used to implement elegantly random test generators in tools
like QuickCheck [11] without having to write data structure specific scripts.

7.3 Succinct Representations

Depending on the information theoretical density of various data representations
as well as on the constant factors involved in various data structures, significant



Declarative Combinatorics in Prolog. . . 119

data compression can be achieved by choosing an alternate isomorphic represen-
tation, as shown in the following examples:

?- as(hff,hfs,[[[]], [[], [[]]], [[], [[[]]]]],HFF).

HFF = [[[]], [[]], [[]]]

?- as(nat,hff,[[[]], [[]], [[]]],N).

N = 42

In particular, mapping to efficient arbitrary length integer implementations
(usually C-based libraries), can provide more compact representations or im-
proved performance for isomorphic higher level data representations. We can
compare representations sharing a common datatype to conjecture about their
asymptotic information density.

7.4 Experimental Mathematics

For instance, after defining:

length_as(Thing,X,Len) :-nat(Nat),

call(Thing,T),with(Nat,T,Iso),

fit_iso(length,Iso,X,Len).

sum_as(Thing,X,Len) :-nat(Nat),

call(Thing,T),with(Nat,T,Iso),

fit_iso(sumlist,Iso,X,Len).

size_as(Thing,X,Len) :-nat(Nat),

call(Thing,T),with(Nat,T,Iso),

fit_iso(tsize,Iso,X,Len).

one can conjecture that finite functions are more compact than sets asymptoti-
cally

?- length_as(fun,123456789012345678901234567890,L).

L = 54

?- length_as(set,123456789012345678901234567890,L).

L = 54

?- length_as(fun,123456789012345678901234567890,L).

L = 54

?- sum_as(set,123456789012345678901234567890,L).

L = 2690

?- sum_as(fun,123456789012345678901234567890,L).

L = 43

and then observe that the same trend applies also to their hereditarily finite
derivatives:
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?- size_as(hfs,123456789012345678901234567890,L).

L = 627

?- size_as(hff,123456789012345678901234567890,L).

L = 91

7.5 A surprising “free algorithm”: strange sort

A simple isomorphism like nat set can exhibit interesting properties as a build-
ing block of more intricate mappings like Ackermann’s encoding, but let’s also
note a (surprising to us) “free algorithm” – sorting a list of distinct elements
without explicit use of comparison operations:

strange_sort(Unsorted,Sorted):-

nat_set(Iso),

to(Iso,Unsorted,Ns),

from(Iso,Ns,Sorted).

?- strange_sort([2,9,3,1,5,0,7,4,8,6],Sorted).

Sorted = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

This algorithm emerges as a consequence of the commutativity of addition and
the unicity of the decomposition of a natural number as a sum of powers of 2.
The cognoscenti might notice that such surprises are not totally unexpected.
In a functional programming context, they go back as early as Wadler’s Free
Theorems [12].

7.6 Other Applications

A fairly large number of useful algorithms in fields ranging from data compres-
sion, coding theory and cryptography to compilers, circuit design and computa-
tional complexity involve bijective functions between heterogeneous data types.
Their systematic encapsulation in a generic API that coexists well with strong
typing can bring significant simplifications to various software modules with the
added benefits of reliability and easier maintenance. In a Genetic Programming
context [13] the use of isomorphisms between bitvectors/natural numbers on one
side, and trees/graphs representing HFSs, HFFs on the other side, looks like a
promising phenotype-genotype connection. Mutations and crossovers in a data
type close to the problem domain are transparently mapped to numerical do-
mains where evaluation functions can be computed easily. In the context of Soft-
ware Transaction Memory implementations (like Haskell’s STM [14]), encodings
through isomorphisms are subject to efficient shortcuts, as undo operations in
case of transaction failure can be performed by applying inverse transformations
without the need to save the intermediate chain of data structures involved.



Declarative Combinatorics in Prolog. . . 121

8 Related work

This work can be seen as part of a larger effort to cover in a declarative program-
ming paradigm some fundamental combinatorial generation algorithms along the
lines of Donald Knuth’s recent work [15].

The closest reference on encapsulating bijections as a data type is [16] and
Connan Eliot’s composable bijections Haskell module [17], where, in a more
complex setting, Arrows [18] are used as the underlying abstractions. While our
Iso data type is similar to the Bij data type in [17] and BiArrow concept of [16],
the techniques for using such isomorphisms as building blocks of an embedded
composition language centered around encodings as Natural Numbers are new.

Ranking functions can be traced back to Gödel numberings [1, 2] associated
to formulae. Together with their inverse unranking functions they are also used in
combinatorial generation algorithms [19, 15, 20, 21]. However the generic view of
such transformations as hylomorphisms obtained compositionally from simpler
isomorphisms, as described in this paper, is new.

Natural Number encodings of Hereditarily Finite Sets have triggered the
interest of researchers in fields ranging from Axiomatic Set Theory and Founda-
tions of Logic to Complexity Theory and Combinatorics [22–27]. Computational
and Data Representation aspects of Finite Set Theory have been described in
logic programming and theorem proving contexts in [9, 28].

Pairing functions have been used in work on decision problems as early as [29,
30]. A typical use in the foundations of mathematics is [31]. An extensive study
of various pairing functions and their computational properties is presented in
[32].

9 Conclusion

We have shown the expressiveness of Prolog as a metalanguage for executable
mathematics, by describing encodings for functions and finite sets in a uniform
framework as data type isomorphisms with a group structure. Prolog’s higher
order predicates and recursion patterns have helped the design of an embedded
data transformation language. Using higher order combinators a simplified ran-
dom testing mechanism has been implemented as an empirical correctness test.
The framework has been extended with hylomorphisms providing generic mech-
anisms for encoding Hereditarily Finite Sets and Hereditarily Finite Functions.
In the process, a few surprising “free algorithms” have emerged, including Ack-
ermann’s encoding from Hereditarily Finite Sets to natural numbers. We plan
to explore in depth in the near future, some of the results that are likely to be
of interest in fields ranging from combinatorics to data compression and arbi-
trary precision numerical computations. While we have not explicitly provided
a complexity analysis for various isomorphisms, it is clear from the actual code
that our transformations typically work in time and space proportional to the
overall size of the representation. In particular, when natural numbers are the
source or the target, complexity is O(log(N)), given that log(N) is the bitsize
of the representation of N .
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Abstract. In this paper we present a series of tiny programs that verify
that a Prolog heap garbage collector can find specific forms of garbage.
Only 2 out of our tested 7 Prolog systems pass all tests. Comparing
memory usage on realistic programs dealing with finite datastructures
using both poor and precise garbage collection shows only a small dif-
ference, providing a plausible explanation why many Prolog implemen-
tors did not pay much attention to this issue. Attributed variables allow
for creating infinite lazy datastructures. We prove that such datastruc-
tures have great practical value and their introduction requires ‘precise’
garbage collection. The Prolog community knows about three techniques
to reach at precise garbage collection. We summarise these techniques
and provide more details on scanning virtual machine instructions to
infer reachability in a case study.

1 Introduction

All modern Prolog systems come with a heap garbage collector, no longer limiting
the programmer to revert to failure driven loops or findall/3 to free unneeded
memory through backtracking. For this article, we define a ‘precise’ garbage
collector as a garbage collector that reclaims all data that can no longer be
reached considering all possible execution paths from the current state without
considering semantics. I.e. in 1==2, A=ok, A is unreachable due to the semantics
of ==/2, but we consider all parts of a conjunction reachable and therefore A is
considered reachable. Our survey of 7 popular Prolog systems (Sect. 3) reveals
that only two satisfy this definition. We compared the memory requirements
between the poorest and best performance of GC on 5 very different real-world
programs (Tab. 2). The comparison indicates that precise GC is unimportant
for many programs, which provides a plausible explanation why precise GC is
not widespread.

Precise GC becomes important for processing infinite datastructures, in this
case distinguished from cyclic structures. A truly infinite structure clearly never
fits into finite physical memory. We are concerned with datastructures that grow
due to further instantiation while (older) parts of the datastructure become
unreachable after processing and can be reclaimed by the garbage collector. A
typical example is processing input using a list: the list is expanded as new
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input becomes available, while the head of the list becomes unreachable after
being processed deterministically. This approach is used in [1], where infinite lists
are used for communication between concurrent processes. Similar consideration
motivated improvements in functional languages [2].

This article is organised as follows. First, in Sect. 2 we make a case for the
practical value of infinite lazy datastructures and the requirement of precise GC.
In Sect. 3 we identify possible leaks and test 7 Prolog implementations for them,
5 of which exhibit two or more leaks. This is followed by a survey of known
existing techniques to reach precise GC and the description and evaluation of a
case study adding precise GC to SWI-Prolog.3

2 A case for infinite lazy datastructures: pure input

Prolog DCG and other parsing techniques are based on processing lists. Unfortu-
nately, the data that needs to be parsed is often provided as a Prolog stream that
accesses data from the outside world. This problem has been identified long ago
and many implementations of DCG provide a hook ’C’/3 to read an input char-
acter. This hook is of little practical use, notably due to the poor combination
of non-determinism and side-effects. The current proposal for an ISO standard
on DCGs [3] no longer mentions ’C’/3. Fortunately, extended unification [4–7]
using attributed variables as found in many modern Prolog systems provides a
straightforward mechanism to remedy this problem.

Figure 1 presents the simple algorithm to apply a grammar rule on input from
a file as it appears in the SWI-Prolog library pure input.pl. Besides standard
ISO predicates, the implementation depends on freeze(Var, Goal), which delays
Goal until Var becomes instantiated (coroutining); call cleanup(Goal, Cleanup)
which allows for closing the input handle when Goal becomes inaccessible due to
deterministic termination, an exception or pruning of a choicepoint and finally
read pending input(Handle, Head, Tail) which reads a block of buffered in-
put into the difference-list Head\Tail. Freeze or a substitute is available in all
systems with attributed variables. Call cleanup is available in multiple Prolog
implementations and has been discussed for inclusion in the upcoming revision
of Part I of the ISO Prolog standard.4 A block-read operation is not defined by
the ISO standard but trivial to implement while it provides a very significant
speedup (12× in SWI-Prolog 5.6.59) because it only needs to validate and lock
the stream handle once.

The phrase from file(:DCG, +File) definition in Fig. 1 allows for applying
an arbitrary non-deterministic DCG completely transparently on the content of
a file while, given precise GC, the memory usage is independent from the size
of this file. We compared the use of a DCG on a file with a carefully hand-
crafted program to count words in a text-file. We summarise the key results in
the table below and conclude that the DCG version is much easier to read and
very comparable in performance.
3 http://www.swi-prolog.org
4 Inclusion is stalled because the precise semantics prove hard to describe.
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read_to_input_stream(Handle, Pos1, Stream0) :-

set_stream_position(Handle, Pos1),

( at_end_of_stream(Handle)

-> Stream0 = []

; read_pending_input(Handle, Stream0, Stream1),

stream_property(Handle, position(Pos2)),

freeze(Stream1, read_to_input_stream(Handle, Pos2, Stream1))

).

phrase_from_file(Phrase, File) :-

open(File, read, Handle),

stream_property(Handle, position(Pos)),

freeze(Stream, read_to_input_stream(Handle, Pos, Stream)),

call_cleanup(phrase(Phrase, Stream), close(Handle)).

Fig. 1. Implementation of input streams.

traditional DCG on file
Code size (lines) 31 22
Time (sec., 25MB file) 16.1 17.1
GC time (sec.) 0.9 1.4

From the above, we conclude that infinite (lazy) terms have great practical value
and it is therefore desirable that garbage collection is capable of reclaiming the
no-longer-accessible part of the term.

3 State of the art

Can pure input as described above be used in current Prolog systems with corou-
tining? We reviewed 7 Prolog implementations. The first obvious requirement
is that there is no memory leak after a deterministic wakeup of a delayed goal
(Sect. 3.1). The other requirements are about reclaiming unneeded parts of the
input list within and-control and or-control. I.e. we must be able to create a list
of arbitrary size if there are no references to the entire list. The simplest form is
the test below. Predicate f/1 builds a list, but as nobody uses it, GC reclaims
it and run/0 runs forever in constant space.

run :- f(_).

f([f|X]) :- f(X).

This is the simplest case, where the initial list is created through a singleton
variable. In WAM-based systems with registers, the list resides in a register
that is overwritten in each recursion. On virtual machines such as the ZIP [8,
9] and ATOAM [10] that pass arguments over the stack, last-call optimization
overwrites the arguments, making the head inaccessible.
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We will now go systematically through requirements to deal with infinite
(lazy) datastructures. The first property validates that deterministic instantia-
tion of an attributed variable does not leak. The remaining properties validate
that various scenarios where the head of the list becomes inaccessible are de-
tected by the garbage collector. Each test case considers a situation that requires
special attention in one or more virtual machines, based on our understanding
of, notably, the WAM and ZIP. As the number of possible virtual machines is
unbounded, it is not possible to be sure that these cases cover all cases in all
possible virtual machines. Each property is accompanied by a program that must
run forever in constant space. A test is considered ‘failed’ if the system aborts
or memory usage exceeds 1Gb. The given programs are very simple, using a fact
dummy/1 to pretend access to a variable. We assume that dummy/1 cannot
be optimized away by the compiler, otherwise a more complex replacement is
needed.

3.1 Property 1: Permanent removal of attributes

Attributed variables that have been unified deterministically with a non-variable
term must be reclaimed completely. This property can be tested using the pro-
gram below. It creates delayed goals and executes them through determinis-
tic binding. Note that for most constraint solvers, complete reclamation of at-
tributed variables is not strictly necessary. Most CLP(FD) programs are con-
cerned with finding solutions nondeterministically via a labeling procedure, thus
most volatility stems from backtracking and not from forward recursion.

run :- run(_).

run(X) :- freeze(X, dummy(X)), X = 1, run(T).

dummy(_).

3.2 Property 2: And-control (head variables)

Variables appearing in the head of a rule and in the body must be discarded as
soon as possible. We test this using the following which, like the previous test,
must run forever in bounded memory. The call to dummy/2 ensures L0 is not
made inaccessible due to last call optimization.

run :- run(_,_).

run(L0, L) :- f(L0, L1), dummy(L1, L).

f([g|X], Y) :- f(X, Y).

dummy(Xs, Xs).

3.3 Property 3: And-control (existential variables)

Existential variables that occur in several goals, but not the last one. Ideally
such variables should be covered by environment trimming [11] in the WAM.
Careful environment trimming avoids more complex treatment.
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run :- run(_,_).

run(L0, L) :- dummy(L0, L1), f(L1, L2), dummy(L2, L).

f([f|X], Y) :- f(X, Y).

dummy(Xs, Xs).

3.4 Property 4: Or-control

Or-control covers the case where a variable is only accessible from a choicepoint.
A well behaved garbage collector will reset such variables and discard their cur-
rent value (early-reset, [12]). This situation arises in disjunctions in grammars.
E.g. (...,"a"|...,"b"), where ...//0 is defined to match an unbounded string.

run :- run(_).

run(X) :- f(X).

run(X) :- X == [].

f([f|X]) :- f(X).

3.5 Property 5: Branching inside a clause

Branching (A;B and If ->Then;Else) using different ordering of the variables in
both branches cannot be handled optimally with the WAM environment trim-
ming as the branches require different environment layout. This test is only of
interest for systems that open code disjunctions, avoiding an auxiliary internal
definition.

run(Z) :- p(_,_,Z).

p(X,Y,Z) :- (Z > 0 -> f(X), g(Y), dummy ; g(Y), f(X), dummy).

f([f|X]) :- f(X).

g([g|X]) :- g(X).

dummy.

3.6 Conclusion from our survey

1 2 3 4 50 51 VM

SICStus 3.12.5 ok ok ok ok ok ok WAM

Ciao 1.10p8 ok ok ok ok ok ok WAM

YAP 5.0.1 n ok ok ok ok n WAM

ECLiPSe 5.10 ok ok n ok n n WAM

SWI 5.6.54 n n n n n n ZIP

BProlog 7.1 n ok n n n n ATOAM

XSB 3.1 n ok n n n n WAM

Table 1. Evaluation of GC in some popular Prolog systems with coroutining. The
numbers correspond to the properties. Property 5 is tested for both branches.
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In the above sections we have provided tests for the main properties of Prolog
coroutining and garbage collection needed to be able deal with infinite lazy
datastructures. The results are shown in Tab. 1. As detailed descriptions of GC
in these systems is either not in the literature or the description is likely to be
outdated and we do not have access to the source code of all these systems we
have not examined why tests succeed or fail. We merely conclude that precise
GC has not been given much attention by the respective developers. Table 2
justifies this behaviour in the absence of infinite datastructures.

To the best of our knowledge, SICStus5 and the derived Ciao system [1] reach
a precise result using WAM registers, environment trimming and the implemen-
tation of in-clause alternative execution paths using anonymous predicates. The
YAP VM uses virtual machine instructions for in-clause alternative execution
paths, which cannot be handled perfectly with only environment trimming as
explained in Sect. 4. It is hard to explain the behaviour of the other systems.

Our study started with providing a pure input library for SWI-Prolog. SWI-
Prolog design was ok for property 1, but the implementation was proven flawed.
As the SWI-Prolog virtual machine passes arguments over the stack and does
not use environment trimming, it failed on all test.

4 Related work on data reachability in Prolog

Prolog systems discard data during backtracking. During forwards execution,
discarding data is achieved by the heap garbage collector. The garbage collector
preserves all data that is accessible through a set of root pointers [13]. The precise
set of root pointers depends on the Virtual Machine (VM) architecture, where
we distinguish between VMs that pass arguments in registers (WAM) and VMs
that pass arguments using the stack (ZIP, ATOAM). The current stack frame
and choice point are always root pointers. Registers and global variables are
other examples. There are several mechanisms by which data becomes inacces-
sible from the set of root pointers that are part of the normal Prolog (forward)
execution:

– Temporary variables allocated in registers become inaccessible when they
are overwritten.

– Arguments (on machines passing arguments over the stack) and environment
slots become inaccessible if the frame is discarded due to last-call optimiza-
tion.

– Environment trimming (see below) shrinks the environment, discarding un-
needed parts as the execution of the clause progresses.

Environment trimming [11] allocates variables in the environments ordered
by the last subgoal that references the variable. Each call to a subgoal has
an additional numeric argument that states that the first N variables of the

5 www.sics.se/sicstus/ explained to one of the authors by Mats Carlsson.
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environment are still valid. Together with registers for argument passing and last-
call optimization, environment trimming reaches a precise result if there are no
alternative execution paths in the VM instructions. This implies that disjunction
(A;B) and If ->Then;Else must be translated into pure (anonymous) predicates
with some additional machinery to deal with proper scoping of the cut. This
technique is used by SICStus Prolog and Ciao (see Sect. 3.6.

Many virtual machines realise disjunction and if-then-else using branch in-
structions in the VM. As different subgoal ordering in the alternate execution
paths may require different ordering of variables in the environment (Sect. 3.5),
there is no longer a perfect order and garbage collection that scans the entire
environment will mark data that is no longer reachable because there is no in-
struction that refers to some variable. Table 1 suggests this is the status in
YAP 5.0.1.

Environment trimming cannot deal with arguments that are passed over the
stack as their order is determined by the calling convention and, analogous to in-
clause branching, different clauses of the predicate generally require a different
ordering.

VMs that pass arguments over the stack as well as VMs that use branching
instructions to code in-clause alternate execution paths need additional mea-
sures to regain precise GC. Two techniques to achieve this have been part of the
Prolog folklore for some time.6 One scans the VM instructions from the contin-
uation points to find the accessible variables. It was used by old versions of BIM
Prolog. With native code this became very hard to maintain. The other uses
compiler generated bitmaps for each possible continuation point that represent
all reachable variables. This is used by BIM Prolog and hProlog.

In systems based on ‘Binary Prolog’ [14], continuations take the place of en-
vironments. They are represented by ordinary Prolog terms and therefore profit
from the same data representations [15]. Garbage collection in such systems [16]
do not require any special treatment. On the other hand, Binary Prolog requires
more space for representing variables within continuations than traditional im-
plementations. Every occurrence of a variable is now represented separately,
while traditional environments represent each variable only once.

5 Our case study: SWI-Prolog

SWI-Prolog is based on the ZIP VM which passes arguments over the stack and
uses branching instructions inside a clause. Like most today’s Prolog systems,
the VM is emulated. We briefly examine these properties under the assumption
that the optimal choice depends on the specific setting: desired performance,
portability, transparency for debugging, simplicity and speed of the compiler.

– Argument passing
The use of registers for argument passing as the WAM has some clear advan-
tages. It keeps the environment small and simplifies last-call optimization.

6 according to Bart Demoen
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This comes at a price: the compiler is more complicated and it is harder
to provide a (graphical) debugger that provides access to variables in the
parent frames.

– Branching instructions
Using branching instructions to code disjunction and if-then-else prohibits
precise trimming of the environment as we have seen in Sect. 4. On the other
hand, execution is generally faster as no environment needs to be created for
the anonymous predicates that otherwise replace different in-clause execution
paths. We have no information on the implementation effort associated with
these approaches.

– Emulated VM vs. native code
An emulated VM is clearly easier to implement and if the VM is written in
a portable language, portability of the system comes for free. In addition, it
allows for simple decompilation [17] and simplifies two tasks in GC: identify
not-yet-initialized variables in the environment and identify variables that
can still be accessed from a given program counter (PC) location. SICStus
has dropped native code in release 47

The above observations make it clear that scanning VM instructions to rem-
edy the reachability problem is the most obvious approach for SWI-Prolog. Be-
cause most todays Prolog implementation use an emulated VM and Tab. 1 proves
that several systems still need to realise precise GC we believe a description of
our case study will help persuading other implementors to implement precise
GC and will help them to take the correct decisions right away.

6 Implementation

The SWI-Prolog VM differs considerable from the much more widely adopted
WAM. SWI-Prolog’s garbage collector however closely follows the SICStus Pro-
log garbage collector, which is described excellently in [12]. The fact that our GC
closely follows a GC for a WAM-based system gives some confidence that our
findings are applicable to a wider range of Prolog implementations. This section
only concentrates on the modifications to the algorithm described in [12] and
cannot be understood without detailed understanding of this paper.

Our modifications only affect the marking phase of GC. The modified algo-
rithm is provided in pseudo code in Fig. 2 and discussed below. Added lines and
deleted lines are marked with +/- at the start of the line.

First, initialize and mark() marks all data that is accessible from the con-
tinuation PC and at the same time initialises variables for which it finds a
‘first-access’ instruction, finishing the initialization of the environment. All en-
vironments are marked as ‘seen’. This is the same as in [12], except

7 Mats Carlsson has confirmed that SICStus 4 uses VM code scan-
ning to deal with uninitialized variables in the environment. See also
http://www.sics.se/sicstus/docs/latest4/pdf/relnotes.pdf
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procedure mark_environments(env, PC)

while ( env )

if ( not_seen(env) )

set_seen(env)

- initialize(env, PC)

+ initialize_and_mark(env, PC)

PC = env->PC

env = env->parent

else

+ mark(env, PC)

return

procedure mark_choices(ch)

env = ch->environment

early_reset_trail()

while ( ch )

if ( pc_choice(ch) )

mark_environments(env, ch->PC)

else if ( alt_clause(ch) )

+ unmarked = count_unmarked_arguments(env)

+ while ( unmarked > 0 && clause )

+ mark_arguments(env, clause->code)

+ clause = next_visible(clause)

if ( not_seen(env) )

set_seen(env)

mark_environments(env->parent, env->PC),

+ else if ( foreign_choice(ch) )

+ mark_all_arguments(env);

procedure mark_stacks(env, ch, PC)

mark_environments(env, PC)

mark_choices(ch)

Fig. 2. Pseudo code for the marking algorithm
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– Mark variables in the environment that are referred to by instructions reach-
able from the PC instead of all variables in the environment.

– If we find a reference pointer to a parent environment, we mark the pointer
and continue marking the referenced destination. In the traditional algorithm
the variable in the parent is marked if we mark the parent environment. Now
we must cover the case where the corresponding variable is accessed in this
frame, but not in the parent frame.

– When called from mark choices(), that marking is normally aborted if the
frame has already been seen. Now we must continue to mark the first seen
environment as this continuation may have a different PC and thus access
to different variables. There is no need to continue with the parent frame as
that has already been marked using the same PC.

Marking choicepoints is also similar to [12]. It resets trail entries that point
to garbage cells (early reset, dealing with property 4) and then marks the as-
sociated environment. As SWI-Prolog passes arguments over the stack, if an
alternate clause is encountered we need to keep all arguments that are used
by the remainder of the clause list (possibly reduced due to indexing). Simply
scanning the code of each clause could scan a lot of code on, for example, pred-
icates with many facts. We avoid this by computing the number of unmarked
arguments and abort the scan if all arguments are marked. Note that a clause
without singleton variables in the head accesses all arguments and thus stops the
search. Ground facts are a common example. Finally, as we have no information
on how a foreign predicate accesses its arguments we must mark all arguments
as accessible.

Sweeping an environment has been changed slightly. In [12], all heap refer-
ences in the environment are inserted into relocation chains. Now, we first check
whether the heap reference is marked. If so, we put it into a relocation chain as
before, otherwise we assign the atom ’<garbage_collected>’ to the variable.
This ensures consistency of the environment variable after heap relocation and is
needed by the debugger if execution switches from normal mode to debug mode
after a user interrupt or explicit call to trace/0 inside code running in no-debug
mode. In such cases, the debugger may show arguments of parent goals that
were executed in normal mode as ’<garbage_collected>’ and the graphical
debugger may show variables from the environment this way.

Note that if the program was started in debug mode, all data remains ac-
cessible through extra ‘debug’ choicepoints that also facilitate ‘retry’ at goals
that were started deterministically. Figure 6 illustrates the problem using an
explicit call to garbage collect/0 and trace/0. Explicitly calling trace/0 is
common practice to start debugging in a very specific state. The explicit call to
garbage collect/0 is there only to illustrate what happens if GC was invoked
at that specific point, while the system still operates in no-debug mode.
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test :-

read_line_to_codes(user_input, List),

all_spaces(List).

all_spaces([]).

all_spaces([0’ |T]) :- !, all_spaces(T).

all_spaces(_) :- garbage_collect, trace, fail.

1 ?- test.

|: xx.

Call: (11) fail ? goals

[11] fail

[10] all_spaces(’<garbage_collected>’)

[1] ’$toplevel’

Call: (11) fail ?

Fig. 3. The debugger showing a garbage collected argument

7 Evaluation

Our evaluation considers four aspects: time, space, implementation effort and
maintenance. In the tradition of SWI-Prolog, we consider mainly real and large
applications. We selected the following applications because of diversity, size and
the amount of garbage collection involved: chat80 (Pereira & Warren, 1986)
running its test-suite in a forward chaining loop to force GC, Back52 (Thomas
Hoppe et all., 1993) running its test suite, CHR compiler (Tom Schrijvers) com-
piling itself, k123.pl (Peter Vanbroekhoven) and pgolf.pl (Mats Carlsson).

The results are shown in Tab. 2. The first set of columns describe the overall
timing, the last set describes characteristics of the code scanning version only
and is discussed in Sect. 7.3. All timings are executed on an AMD Athlon X2
5400+; 64-bit Linux 2.6 using the 64-bit development version of SWI-Prolog
based on 5.6.55. Reported time is in seconds. Frequency stepping was disabled
during the tests.

7.1 Time evaluation

Table 2 shows that the overall execution time is only slightly affected by our
changes. Note that the logic to trigger GC depends on the amount of memory
that is accessible after the previous GC and therefore different effectiveness of
GC leads to unpredictable overall behaviour of the program in terms of time
and number of garbage collections.

We obtained a detailed breakdown of the garbage collector using valgrind
[18] with the callgrind tool and kcachegrind to explore the results. The overhead
of analysing instructions is approximately 1% of the garbage collector marking
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Test Time #GC GCLeft GCTime AvgScan AvgCls AvgInstr

Without code scanning

k123 8.88 164 1,594,534 1.35
chat80 2.56 109 18,661 0.10
back52 2.31 406 5,589 0.17
pgolf 13.22 53 7,328,689 3.44
chr 6.41 36 3,466,387 1.17

With code scanning

k123 8.71 209 1,111,646 1.20 1.51 0.09 12.10
chat80 2.42 111 12,301 0.08 1.68 0.60 14.52
back52 2.21 420 3,360 0.15 1.56 0.12 11.19
pgolf 11.06 53 7,151,304 3.19 1.42 0.01 12.37
chr 6.29 38 3,265,471 1.15 1.91 0.32 14.52

Table 2. Effects of code scanning. Time is the total execution time (including GC
time); #GC the number of garbage collections; GCLeft the average amount of memory
(heap+trail) immediately after GC and GCTime the time spent on GC. AvgScan is
the average number of continuation points that must be explored for an environment;
AvgCls the average number of additional clauses scanned; AvgInstr the average number
of instructions scanned before reaching the end of the clause.

time. These timing are slightly distorted because gcc’s inline function optimiza-
tion needs to be disabled to analyse the breakdown of execution time over the
various functions.

7.2 Space evaluation

Our approach based on marking accessible data by scanning the VM instructions
obviously reaches the ‘precise’ result as defined in the introduction for the heap
and trail stack. It does not provide the optimal result for the environment stack.
Only the approach as taken by SICStus is optimal here in the sense that the stack
contains no variables that are not accessible, while using our marking approach
the variables remain in the environment, bound to ’<garbage_collected>’.
Environment stack usage is in practice rarely a bottleneck and our deficiency is
a constant amount rather than the difference between finite and infinite stack
usage.

Table 2 also explains why precise GC is not widespread. Except for mem-
ory usage of the k123.pl test, we find no noticeable differences in the memory
usage after GC. The k123 program is a small program (75 lines after cleanup
of unreachable code). The central predicate mmul/3 in Fig. 4 is deterministic.
Lacking temporary registers and environment trimming, the old SWI-Prolog,
could not dispose the intermediate matrices.

Implementation and maintenance Only the code for marking environments and
clearing uninitialised variables was extended from originally 150 lines (C), to 557
including comment and debugging statements. Total implementation effort was
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mmul(M, M6) :-

mmul(M, M, M1), mmul(M1, M1, M2), mmul(M2, M2, M3),

mmul(M3, M3, M4), mmul(M4, M4, M5), mmul(M5, M5, M6).

Fig. 4. Main routine of k123.pl

4 days. One of the problems associated with VM instruction interpretation is
maintenance that results from changing the instruction set. SWI-Prolog main-
tains information of the instruction format for each instruction. This is used to
list VM instructions, deal with saving and loading and simplifies VM instruction
scanning as it allows enumerating the instructions using a generic loop. Four
instructions have variable length data associated with them (packed string and
unbounded integer) and need (uniform) special attention.

In addition to the generic code walking, 36 out of 89 instructions require
special attention as described in table Tab. 3. The table states the number of
instructions the marking algorithm needs to understand, the number of groups
of instructions that require different treatment (especially the variable accessing
functions are often handled using the same code) and the number of lines of
C-code involved.

Description instructions groups lines

Identify flow control 6 5 44
Realise initialization of uninitialised variables 3 1 10
Identify variable access for marking (body) 14 6 30
Identify variable access for marking (head) 13 6 27

Table 3. Statistics on interpreting VM instructions

7.3 Discussion

Before we arrived at the current implementation we had two worries: prohibitive
costs of multiple scans of the same code from different continuations and pro-
hibitive scans of code from multiple clauses to identify the still-reachable argu-
ments. Column AvgCls of Tab. 2 (page 135) indicates that scanning alternative
clauses is cheap, while the value of equal GC behaviour between in-clauses dis-
junctions and alternative clauses is obvious.

Our first prototype avoided multiple scans of the same code from different
continuations. Not correctly dealing with early-reset, this code was flawed and
abandoned. Nevertheless, it executed the above programs correctly and we ob-
tained statistics on its effectiveness. On the above test cases, multiple scans
increase the number of scanned instructions by 0, 58%, 7%, 7% and 3% (same
order as Tab. 2). As the scanning itself is responsible for less than 1% of the
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time of the mark phase, it is considered neglectable. This conclusion can also be
drawn from column AvgScan and AvgInstr together with the 1% time spent on
code scanning.

8 Conclusions

We have defined a set of five properties, each of which accompanied with a very
simple test case, that must be satisfied to deal with infinite (lazy) datastructures
in Prolog. We have proven that such datastructures are of significant practical
value as they can be used to realise processing a repositionable input stream
using the full power of non-deterministic grammar rules (DCGs). The majority
of Prolog implementations that provide the required attributed variables to re-
alise a lazy datastructure does not provide the required precise garbage collector.
Precise GC can be realised using a VM that uses registers to pass arguments,
implements environment trimming and codes in-clauses disjunction using anony-
mous predicates. Our case study indicates that other virtual machines can be
remedied by scanning virtual machine instructions to identify reachable vari-
ables in the environment. This technique is viable for any Prolog system based
on emulating virtual machine instructions. Next to supporting infinite datas-
tructure, the approximately 1% extra cost in the marking phase is more than
compensated for in the compacting phase of the garbage collector.

The current version of SWI-Prolog is shipped with the described enhance-
ments to the garbage collector and a library to use DCGs on repositionable input
streams.
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Abstract. A “pairing function” J associates a unique natural number z
to any two natural numbers x,y such that for two “unpairing functions”
K and L, the equalities K(J(x,y))=x, L(J(x,y))=y and J(K(z),L(z))=z
hold. Using pairing functions on natural number representations of truth
tables, we derive an encoding for Binary Decision Diagrams with the
unique property that its boolean evaluation faithfully mimics its struc-
tural conversion to a a natural number through recursive application
of a matching pairing function. We then use this result to derive rank-
ing and unranking functions for BDDs and reduced BDDs. The paper
is organized as a self-contained literate Prolog program, available at
http://logic.csci.unt.edu/tarau/research/2008/pBDD.zip.
Keywords: logic programming and computational mathematics, pairing/un-
pairing functions, encodings of boolean functions, binary decision dia-
grams, natural number representations of truth tables

1 Introduction

This paper is an exploration with logic programming tools of ranking and un-
ranking problems on Binary Decision Diagrams. The practical expressiveness of
logic programming languages (in particular Prolog) are put at test in the pro-
cess. The paper is part of a larger effort to cover in a declarative programming
paradigm, arguably more elegantly, some fundamental combinatorial generation
algorithms along the lines of [1]. However, our main focus is by no means “yet an-
other implementation of BDDs in Prolog”. The paper is more about fundamental
isomorphisms between logic functions and their natural number representations,
in the tradition of [2], with the unusual twist that everything is expressed as a
literate Prolog program, and therefore automatically testable by the reader. One
could put such efforts under the generic umbrella of an emerging research field
that we would like to call executable theoretical computer science. Nevertheless,
we also hope that the more practically oriented reader will be able to benefit
from this approach by being able to experiment with, and reuse our Prolog code
in applications.

The paper is organized as follows: Sections 2 and 3 overview efficient eval-
uation of boolean formulae in Prolog using bitvectors represented as arbitrary
length integers and Binary Decision Diagrams (BDDs).
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Section 4 discusses classic pairing and unpairing operations and introduces
pairing/unpairing predicates acting directly on bitlists.

Section 5 introduces a novel BDD encoding (based on our unpairing func-
tions) and discusses the surprising equivalence between boolean evaluation of
BDDs and the inverse of our encoding, the main result of the paper.

Section 6 describes ranking and unranking functions for BDDs and reduced
BDDs.

Sections 7 and 8 discuss related work, future work and conclusions.
The code in the paper, embedded in a literate programming LaTeX file, is

entirely self contained and has been tested under SWI-Prolog.

2 Parallel Evaluation of Boolean Functions with
Bitvector Operations

Evaluation of a boolean function can be performed one value at a time as in the
predicate if then else/4

if_then_else(X,Y,Z,R):-

bit(X),bit(Y),bit(Z),

( X==1->R=Y
; R=Z
).

bit(0).

bit(1).

resulting in a truth table1

?- if_then_else(X,Y,Z,R),write([X,Y,Z]:R),nl,fail;nl.

[0, 0, 0]:0

[0, 0, 1]:1

[0, 1, 0]:0

[0, 1, 1]:1

[1, 0, 0]:0

[1, 0, 1]:0

[1, 1, 0]:1

[1, 1, 1]:1

Clearly, this does not take advantage of the ability of modern hardware to per-
form such operations one word a time - with the instant benefit of a speed-up
proportional to the word size. An alternate representation, adapted from [1] uses
integer encodings of 2n bits for each boolean variable X0, . . . , Xn−1. Bitvector
operations evaluate all value combinations at once.

1 One can see that if the number of variables is fixed, we can ignore the bitsrings
in the brackets. Thus, the truth table can be identified with the natural number,
represented in binary form by the last column.
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Proposition 1 Let xk be a variable for 0 ≤ k < n where n is the number of
distinct variables in a boolean expression. Then column k in the matrix represen-
tation of the inputs in the the truth table represents, as a bitstring, the natural
number:

xk = (22n

− 1)/(22n−k−1
+ 1) (1)

For instance, if n = 2, the formula computes x0 = 3 = [0, 0, 1, 1] and x1 = 5 =
[0, 1, 0, 1].

The following predicates, working with arbitrary length bitstrings are used
to evaluate variables xk with k ∈ [0..n−1] with formula 1 and map the constant
boolean function 1 to the bitstring of length 2n, 111..1, representing 22n − 1

% maps variable K in [0..NbOfBits-1] to Xk

var_to_bitstring_int(NbOfBits,K,Xk):-

all_ones_mask(NbOfBits,Mask),

var_to_bitstring_int(NbOfBits,Mask,K,Xk).

var_to_bitstring_int(NbOfBits,Mask,K,Xk):-

NK is NbOfBits-(K+1),
D is (1<<(1<<NK))+1,
Xk is Mask//D.

% represents constant 1 as 11...1 build with NbOfBits bits

all_ones_mask(NbOfBits,Mask):-Mask is (1<<(1<<NbOfBits))-1.

We have used in var to bitstring int an adaptation of the efficient bitstring-
integer encoding described in the Boolean Evaluation section of [1]. Intuitively, it
is based on the idea that one can look at n variables as bitstring representations
of the n columns of the truth table.

Variables representing such bitstring-truth tables (seen as projection func-
tions) can be combined with the usual bitwise integer operators, to obtain new
bitstring truth tables, encoding all possible value combinations of their argu-
ments. Note that the constant 0 is represented as 0 while the constant 1 is
represented as 22n − 1, corresponding to a column in the truth table containing
ones exclusively.

3 Binary Decision Diagrams

We have seen that Natural Numbers in [0..22n − 1] can be used as represen-
tations of truth tables defining n-variable boolean functions. A binary decision
diagram (BDD) [3] is an ordered binary tree obtained from a boolean function,
by assigning its variables, one at a time, to 0 (left branch) and 1 (right branch).
In virtually all practical applications BDDs are represented as DAGs after de-
tecting shared nodes. We safely ignore this here as they represent the same logic
function, which is all we care about at this point. Typically in the early litera-
ture, the acronym ROBDD is used to denote reduced ordered BDDs. Because
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this optimization is now so prevalent, the term BDD is frequently use to refer
to ROBDDs. Strictly speaking, BDD in this paper will stand for ordered BDD
with reduction of identical branches but without node sharing.

The construction deriving a BDD of a boolean function f is known as Shan-
non expansion [4], and is expressed as

f(x) = (x̄ ∧ f [x← 0]) ∨ (x ∧ f [x← 1]) (2)

where f [x ← a] is computed by uniformly substituting a for x in f . Note that
by using the more familiar boolean if-the-else function Shannon expansion can
also be expressed as:

f(x) = if x then f [x← 1] else f [x← 0] (3)

We represent a BDD in Prolog as a binary tree with constants 0 and 1 as
leaves, marked with the function symbol c/1. Internal if-then-else nodes marked
with ite/3 are controlled by variables, ordered identically in each branch, as
first arguments of ite/1. The two other arguments are subtrees representing
the Then and Else branches. Note that, in practice, reduced, canonical DAG
representations are used instead of binary tree representations.

Alternatively, we observe that the Shannon expansion can be directly derived
from a 2n size truth table, using bitstring operations on encodings of its n vari-
ables. Assuming that the first column of a truth table corresponds to variable
x, x = 0 and x = 1 mask out, respectively, the upper and lower half of the truth
table.

% splits a truth table of NV variables in 2 tables of NV-1 variables

shannon_split(NV,X, Hi,Lo):-

all_ones_mask(NV,M),

NV1 is NV-1,

all_ones_mask(NV1,LM),

HM is xor(M,LM),

Lo is /\(LM,X),

H is /\(HM,X),

Hi is H>>(1<<NV1).

Note that the operation shannon split can be reversed as follows:

% fuses 2 truth tables of NV-1 variables into one of NV variables

shannon_fuse(NV,Hi,Lo, X):-

NV1 is NV-1,

H is Hi<<(1<<NV1),
X is \/(H,Lo).

?- shannon_split(2, 7, X,Y),shannon_fuse(2, X,Y, Z).

X = 1,

Y = 3,

Z = 7.

?- shannon_split(3, 42, X,Y),shannon_fuse(3, X,Y, Z).
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X = 2,

Y = 10,

Z = 42.

Another way to look at these two operations (for a fixed value of NV), is
as bijections associating a pair of natural numbers to a natural number, i.e. as
pairing functions.

4 Pairing and Unpairing Functions

Definition 1 A pairing function is a bijection f : Nat × Nat → Nat. An
unpairing function is a bijection g : Nat→ Nat×Nat.

Following Julia Robinson’s notation [5], given a pairing function J , its left
and right inverses K and L are such that

J(K(z), L(z)) = z (4)

K(J(x, y)) = x (5)

L(J(x, y)) = y (6)

We refer to [6] for a typical use in the foundations of mathematics and to
[7] for an extensive study of various pairing functions and their computational
properties.

4.1 Cantor’s Pairing Function

Starting from Cantor’s pairing function

cantor_pair(K1,K2,P):-P is (((K1+K2)∗(K1+K2+1))//2)+K2.

bijections from Nat × Nat to Nat have been used for various proofs and con-
structions of mathematical objects [5, 6].

For X, Y ∈ {0, 1, 2, 3} the sequence of values of this pairing function is:

?- findall(R,(between(0,3,A),between(0,3,B),cantor_pair(A,B,R)),Rs).

Rs = [0, 2, 4, 6, 1, 5, 9, 13, 3, 11, 19, 27, 7, 23, 39, 55]

Note however, that the inverse of Cantor’s pairing function involves potentially
expensive floating point operations that are also likely to loose precision for
arbitrary length integers.
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4.2 The Pepis-Kalmar Pairing Function

Another pairing function that can be implemented using only elementary integer
operations is the following:

f(x, y) = 2x(2y + 1)− 1 (7)

The predicates pepis pair/3 and pepis unpair/3 are derived from the function
pepis J and its left and right unpairing companions pepis K and pepis L that
have been used, by Pepis, Kalmar and Robinson in some fundamental work on
recursion theory, decidability and Hilbert’s Tenth Problem in [8–10]:

pepis_pair(X,Y,Z):-pepis_J(X,Y,Z).

pepis_unpair(Z,X,Y):-pepis_K(Z,X),pepis_L(Z,Y).

pepis_J(X,Y, Z):-Z is ((1<<X)∗((Y<<1)+1))-1.
pepis_K(Z, X):-Z1 is Z+1,two_s(Z1,X).
pepis_L(Z, Y):-Z1 is Z+1,no_two_s(Z1,N),Y is (N-1)>>1.

two_s(N,R):-even(N),!,H is N>>1,two_s(H,T),R is T+1.
two_s(_,0).

no_two_s(N,R):-two_s(N,T),R is N // (1<<T).

even(X):- 0 =:= /\(1,X).

odd(X):- 1 =:= /\(1,X).

This pairing function is asymmetrically growing (faster growth on the first ar-
gument). It works as follows:

?- pepis_pair(1,10,R).

R = 41.

?- pepis_unpair(10,1,R).

R = 3071.

?- findall(R,(between(0,3,A),between(0,3,B),pepis_pair(A,B,R)),Rs).

Rs=[0, 2, 4, 6, 1, 5, 9, 13, 3, 11, 19, 27, 7, 23, 39, 55]

4.3 Pairing/Unpairing operations acting directly on bitlists

We will describe here pairing operations, that are expressed exclusively as bitlist
transformations of bitmerge unpair and its inverse bitmerge pair, and are
therefore likely to be easily hardware implementable. As we have found out
recently, they turn out to be the same as the functions defined in Steven Pigeon’s
PhD thesis on Data Compression [11], page 114).

The predicate bitmerge pair implements a bijection from Nat×Nat to Nat
that works by splitting a number’s big endian bitstring representation into odd
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and even bits, while its inverse to pair blends the odd and even bits back to-
gether. The helper predicates to rbits and from rbits, given in the Appendix,
convert to/from integers to bitlists.

bitmerge_pair(X,Y,P):-

to_rbits(X,Xs),

to_rbits(Y,Ys),

bitmix(Xs,Ys,Ps),!,

from_rbits(Ps,P).

bitmerge_unpair(P,X,Y):-

to_rbits(P,Ps),

bitmix(Xs,Ys,Ps),!,

from_rbits(Xs,X),

from_rbits(Ys,Y).

bitmix([X |Xs],Ys,[X |Ms]):-!,bitmix(Ys,Xs,Ms).
bitmix([],[X |Xs],[0 |Ms]):-!,bitmix([X |Xs],[],Ms).
bitmix([],[],[]).

The transformation of the bitlists, done by the bidirectional predicate bitmix is
shown in the following example with bitstrings aligned:

?- bitmerge_unpair(2008,X,Y),bitmerge_pair(X,Y,Z).

X = 60,

Y = 26,

Z = 2008

% 2008:[0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1]

% 60:[ 0, 1, 1, 1, 1]

% 26:[ 0, 1, 0, 1, 1 ]

Note that we represent numbers with bits in reverse order (least significant on
the left). Like in the case of Cantor’s pairing function, we can see similar growth
in both arguments:

?- between(0,15,N),bitmerge_unpair(N,A,B),

write(N:(A,B)),write(’ ’),fail;nl.

0: (0, 0) 1: (1, 0) 2: (0, 1) 3: (1, 1)

4: (2, 0) 5: (3, 0) 6: (2, 1) 7: (3, 1)

8: (0, 2) 9: (1, 2) 10: (0, 3) 11: (1, 3)

12: (2, 2) 13: (3, 2) 14: (2, 3) 15: (3, 3)

?- between(0,3,A),between(0,3,B),bitmerge_pair(A,B,N),

write(N:(A,B)),write(’ ’),fail;nl.

0: (0, 0) 2: (0, 1) 8: (0, 2) 10: (0, 3)

1: (1, 0) 3: (1, 1) 9: (1, 2) 11: (1, 3)

4: (2, 0) 6: (2, 1) 12: (2, 2) 14: (2, 3)

5: (3, 0) 7: (3, 1) 13: (3, 2) 15: (3, 3)

It is also convenient sometimes to see pairing/unpairing as one-to-one functions
from/to the underlying language’s ordered pairs, i.e. X-Y in Prolog :
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bitmerge_pair(X-Y,Z):-bitmerge_pair(X,Y,Z).

bitmerge_unpair(Z,X-Y):-bitmerge_unpair(Z,X,Y).

5 Encodings of Binary Decision Diagrams

We will build a BDD by applying bitmerge unpair recursively to a Natural
Number TT, seen as an N -variable 2N bit truth table. This results in a complete
binary tree of depth N . As we will show later, this binary tree represents a BDD
that returns TT when evaluated applying its boolean operations.

% NV=number of varibles, TT=a truth table, BDD the result

plain_bdd(NV,TT, bdd(NV,BDD)):-

Max is (1<<(1<<NV)),
TT<Max,
isplit(NV,TT, BDD).

% recurses to depth NV, splitting TT into pairs

isplit(0,TT,c(TT)).

isplit(NV,TT,R):-NV>0,
NV1 is NV-1,

bitmerge_unpair(TT,Hi,Lo),

isplit(NV1,Hi,H),

isplit(NV1,Lo,L),

ite(NV1,H,L)=R.

The following examples show the results returned by plain bdd for all 22k

truth
tables associated to k variables, with k = 2.

?- between(0,15,TT),plain_bdd(2,TT,BDD),write(TT:BDD),nl,fail;nl

0:bdd(2, ite(1, ite(0, c(0), c(0)), ite(0, c(0), c(0))))

1:bdd(2, ite(1, ite(0, c(1), c(0)), ite(0, c(0), c(0))))

2:bdd(2, ite(1, ite(0, c(0), c(0)), ite(0, c(1), c(0))))

...

13:bdd(2, ite(1, ite(0, c(1), c(1)), ite(0, c(0), c(1))))

14:bdd(2, ite(1, ite(0, c(0), c(1)), ite(0, c(1), c(1))))

15:bdd(2, ite(1, ite(0, c(1), c(1)), ite(0, c(1), c(1))))

5.1 Reducing the BDDs

The predicate bdd reduce reduces a BDD by trimming identical left and right
subtrees, and the predicate bdd associates this reduced form to N ∈ Nat.

bdd_reduce(BDD,bdd(NV,R)):-nonvar(BDD),BDD=bdd(NV,X),bdd_reduce1(X,R).

bdd_reduce1(c(TT),c(TT)).

bdd_reduce1(ite(_,A,B),R):-A==B,bdd_reduce1(A,R).
bdd_reduce1(ite(X,A,B),ite(X,RA,RB)):-A\==B,
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bdd_reduce1(A,RA),bdd_reduce1(B,RB).

bdd(NV,TT, ReducedBDD):-

plain_bdd(NV,TT, BDD),

bdd_reduce(BDD,ReducedBDD).

Note that we omit here the reduction step consisting in sharing common subtrees,
as it is obtained easily by replacing trees with DAGs. The process is facilitated
by the fact that our unique encoding provides a perfect hashing key for each
subtree. The following examples show the results returned by bdd for NV=2.

?- between(0,15,TT),bdd(2,TT,BDD),write(TT:BDD),nl,fail;nl

0:bdd(2, c(0))

1:bdd(2, ite(1, ite(0, c(1), c(0)), c(0)))

2:bdd(2, ite(1, c(0), ite(0, c(1), c(0))))

3:bdd(2, ite(0, c(1), c(0)))

...

13:bdd(2, ite(1, c(1), ite(0, c(0), c(1))))

14:bdd(2, ite(1, ite(0, c(0), c(1)), c(1)))

15:bdd(2, c(1))

5.2 From BDDs to Natural Numbers

One can “evaluate back” the binary tree representing the BDD, by using the
pairing function bitmerge pair. The inverse of plain bdd is implemented as
follows:

plain_inverse_bdd(bdd(_,X),TT):-plain_inverse_bdd1(X,TT).

plain_inverse_bdd1(c(TT),TT).

plain_inverse_bdd1(ite(_,L,R),TT):-

plain_inverse_bdd1(L,X),

plain_inverse_bdd1(R,Y),

bitmerge_pair(X,Y,TT).

?- plain_bdd(3,42, BDD),plain_inverse_bdd(BDD,N).

BDD = bdd(3,

ite(2,

ite(1,

ite(0, c(0), c(0)),

ite(0, c(0), c(0))),

ite(1,

ite(0, c(1), c(1)),

ite(0, c(1), c(0))))),

N = 42

Note however that plain inverse bdd/2 does not act as an inverse of bdd/3,
given that the structure of the BDD tree is changed by reduction.



148 Paul Tarau

5.3 Boolean Evaluation of BDDs

This raises the obvious question: how can we recover the original truth table from
a reduced BDD? The obvious answer is: by evaluating it as a boolean function!
The predicate ev/2 describes the BDD evaluator:

ev(bdd(NV,B),TT):-

all_ones_mask(NV,M),

eval_with_mask(NV,M,B,TT).

evc(0,_,0).

evc(1,M,M).

eval_with_mask(_,M,c(X),R):-evc(X,M,R).

eval_with_mask(NV,M,ite(X,T,E),R):-

eval_with_mask(NV,M,T,A),

eval_with_mask(NV,M,E,B),

var_to_bitstring_int(NV,M,X,V),

ite(V,A,B,R).

The predicate ite/4 used in eval with mask implements the boolean function
if X then T else E using arbitrary length bitvector operations:

ite(X,T,E, R):-R is xor(/\(X,xor(T,E)),E).

Note that this equivalent formula for ite is slightly more efficient than the
obvious one with ∧ and ∨ as it requires only 3 boolean operations. We will
use ite/4 as the basic building block for implementing a boolean evaluator for
BDDs.

5.4 The Equivalence

A surprising result is that boolean evaluation and structural transformation with
repeated application of pairing produce the same result, i.e. the predicate ev/2
also acts as an inverse of bdd/2 and plain bdd/2.
As the following example shows, boolean evaluation ev/2 faithfully emulates
plain inverse bdd/2, on both plain and reduced BDDs.

?- plain_bdd(3,42,BDD),ev(BDD,N).

BDD = bdd(3,

ite(2,

ite(1,

ite(0, c(0), c(0)),

ite(0, c(0), c(0))),

ite(1,

ite(0, c(1), c(1)),

ite(0, c(1), c(0))))),

N = 42

?- bdd(3,42,BDD),ev(BDD,N).

BDD = bdd(3,
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ite(2,

c(0),

ite(1,

c(1),

ite(0, c(1), c(0))))),

N = 42

The main result of this subsection can now be summarized as follows:

Proposition 2 Let B be the complete binary tree of depth N , obtained by re-
cursive applications of bitmerge unpair on a truth table T , as described by the
predicate plain bdd(N,T,B).

Then for any NV and any T , when B is interpreted as an (unreduced) BDD,
the result V of its boolean evaluation using the predicate ev(N, B, V ) and the
result R obtained by applying plain inverse bdd(N, B, R) are both identical to
T . Moreover, the operation ev(N, B, V ) reverses the effects of both plain bdd
and bdd with an identical result.

Proof: The predicate plain bdd builds a binary tree by splitting the bitstring
tt ∈ [0..2N − 1] up to depth N . Observe that this corresponds to the Shannon
expansion [4] of the formula associated to the truth table, using variable order
[n− 1, ..., 0]. Observe that the effect of bitstring unpair is the same as

– the effect of var to bitstring int(N,M,(N-1),R) acting as a mask select-
ing the left branch

– and the effect of its complement, acting as a mask selecting the right branch.

Given that 2N is the double of 2N−1, the same invariant holds at each step, as
the bitstring length of the truth table reduces to half. On the other hand, it
is clear that ev reverses the action of both plain bdd and bdd as BDDs and
reduced BDDs represent the same boolean function [3].

This result can be seen as a yet another intriguing isomorphism between
boolean, arithmetic and symbolic computations.

6 Ranking and Unranking of BDDs

One more step is needed to extend the mapping between BDDs with N variables
to a bijective mapping from/to Nat: we will have to “shift toward infinity” the
starting point of each new block of BDDs in Nat as BDDs of larger and larger
sizes are enumerated.

First, we need to know by how much - so we compute the sum of the counts
of boolean functions with up to N variables.

bsum(0,0).

bsum(N,S):-N>0,N1 is N-1,bsum1(N1,S).

bsum1(0,2).

bsum1(N,S):-N>0,N1 is N-1,bsum1(N1,S1),S is S1+(1<<(1<<N)).
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The stream of all such sums can now be generated as usual:

bsum(S):-nat(N),bsum(N,S).

nat(0).

nat(N):-nat(N1),N is N1+1.

What we are really interested in, is decomposing N into the distance to the last
bsum smaller than N, N M and the index of that generates the sum, K.

to_bsum(N, X,N_M):-

nat(X),bsum(X,S),S>N,!,
K is X-1,

bsum(K,M),

N_M is N-M.

Unranking of an arbitrary BDD is now easy - the index K determines the number
of variables and N M determines the rank. Together they select the right BDD
with plain bdd and bdd/3.

nat2plain_bdd(N,BDD):-to_bsum(N, K,N_M),plain_bdd(K,N_M,BDD).

nat2bdd(N,BDD):-to_bsum(N, K,N_M),bdd(K,N_M,BDD).

Ranking of a BDD is even easier: we first compute its NumberOfVars and its rank
Nth, then we shift the rank by the bsums up to NumberOfVars, enumerating the
ranks previously assigned.

plain_bdd2nat(bdd(NumberOfVars,BDD),N) :-

B=bdd(NumberOfVars,BDD),
plain_inverse_bdd(B,Nth),

K is NumberOfVars-1,

bsum(K,S),N is S+Nth.

bdd2nat(bdd(NumberOfVars,BDD),N) :-

B=bdd(NumberOfVars,BDD),
ev(B,Nth),

K is NumberOfVars-1,

bsum(K,S),N is S+Nth.

As the following example shows, nat2plain bdd/2 and plain bdd2nat/2 im-
plement inverse functions.

?- nat2plain_bdd(42,BDD),plain_bdd2nat(BDD,N).

BDD = bdd(4,

ite(3,

ite(2,

ite(1,

ite(0, c(0), c(0)),

ite(0, c(1), c(0))),

ite(1,

ite(0, c(1), c(0)),

ite(0, c(0), c(0)))),
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ite(2,

ite(1,

ite(0, c(0), c(0)),

ite(0, c(0), c(0))),

ite(1, ite(0, c(0), c(0)),

ite(0, c(0), c(0)))))),

N = 42

The same applies to nat2bdd/2 and its inverse bdd2nat/2.

?- nat2bdd(42,BDD),bdd2nat(BDD,N).

BDD = bdd(4,

ite(3,

ite(2,

ite(1, c(0),

ite(0, c(1), c(0))),

ite(1,

ite(0, c(1),c(0)), c(0))),

c(0))),

N = 42

We can now generate infinite streams of BDDs as follows:

plain_bdd(BDD):-nat(N),nat2plain_bdd(N,BDD).

bdd(BDD):-nat(N),nat2bdd(N,BDD).

?- plain_bdd(BDD).

BDD = bdd(1, ite(0, c(0), c(0))) ;

BDD = bdd(1, ite(0, c(1), c(0))) ;

BDD = bdd(2, ite(1, ite(0, c(0), c(0)), ite(0, c(0), c(0)))) ;

BDD = bdd(2, ite(1, ite(0, c(1), c(0)), ite(0, c(0), c(0)))) ;

...

?- bdd(BDD).

BDD = bdd(1, c(0)) ;

BDD = bdd(1, ite(0, c(1), c(0))) ;

BDD = bdd(2, c(0)) ;

BDD = bdd(2, ite(1, ite(0, c(1), c(0)), c(0))) ;

BDD = bdd(2, ite(1, c(0), ite(0, c(1), c(0)))) ;

BDD = bdd(2, ite(0, c(1), c(0))) ;

...

7 Related work

Pairing functions have been used in work on decision problems as early as [8, 9,
5]. Ranking functions can be traced back to Gödel numberings [2, 12] associated
to formulae. Together with their inverse unranking functions they are also used
in combinatorial generation algorithms [13, 1]. Binary Decision Diagrams are the
dominant boolean function representation in the field of circuit design automa-
tion [14]. BDDs have been used in a Genetic Programming context [15, 16] as
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a representation of evolving individuals subject to crossovers and mutations ex-
pressed as structural transformations and recently in a machine learning context
for compressing probabilistic Prolog programs [17] representing candidate the-
ories. Other interesting uses of BDDs in a logic and constraint programming
context are related to representations of finite domains. In [18] an algorithm for
finding minimal reasons for inferences is given.

8 Conclusion and Future Work

The surprising connection of pairing/unpairing functions and BDDs, is the in-
direct result of implementation work on a number of practical applications. Our
initial interest has been triggered by applications of the encodings to combina-
tional circuit synthesis in a logic programming framework [19, 20]. We have found
them also interesting as uniform blocks for Genetic Programming applications
of Logic Programming. In a Genetic Programming context [21], the bijections
between bitvectors/natural numbers on one side, and trees/graphs representing
BDDs on the other side, suggest exploring the mapping and its action on vari-
ous transformations as a phenotype-genotype connection. Given the connection
between BDDs to boolean and finite domain constraint solvers it would be inter-
esting to explore in that context, efficient succinct data representations derived
from our BDD encodings.
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Appendix

To make the code in the paper fully self contained, we list here some auxiliary
functions.

% converts an int to a list of bits, least significant first

to_rbits(0,[]).

to_rbits(N,[B |Bs]):-N>0,B is N mod 2, N1 is N//2,

to_rbits(N1,Bs).

% converts a list of bits (least significant first) into an int

from_rbits(Rs,N):-nonvar(Rs),from_rbits(Rs,0,0,N).

from_rbits([],_,N,N).

from_rbits([X |Xs],E,N1,N3):-NewE is E+1,N2 is X<<E+N1,
from_rbits(Xs,NewE,N2,N3).
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Abstract. In parallel constraint solving, work stealing not only allows
for dynamic load balancing, but also determines which parts of the search
tree are searched next. Thus the place from where work is stolen has a
dramatic effect on the efficiency of a parallel search algorithm. In this
paper we examine quantitatively how optimal work stealing can be per-
formed given an estimate of the relative solution densities of the sub-
trees at each node in the search tree and show how this is related to
the branching heuristic strength. We propose an adaptive work stealing
algorithm that automatically performs different work stealing strategies
based on the strength of the branching heuristic at each node. Many
parallel depth-first search patterns arise naturally from our algorithm.
Our algorithm is able to produce near perfect or super linear algorithmic
efficiencies on all problems tested. Real speedups using 8 threads ranges
from 4-5 times speedup to super linear speedup.

1 Introduction

In parallel constraint solving, work stealing has often been seen only as a mech-
anism for keeping processors occupied. Analysis of work stealing schemes often
assume that the amount of work to be done is fixed and independent of the work
stealing scheme, e.g. [1]. While this is true for certain kinds of problems, e.g.
finding all solutions, proving unsatisfiability, it is not true for others, e.g. finding
the first solution, finding the optimal solution. Such analyses fail to account for
the fact that the place from which work is stolen determines the search strategy
and can have a dramatic effect on the efficiency of the parallel algorithm. Many
systems choose to steal from as close to the root of the search tree as possible,
e.g. [2], as this tends to give the greatest granularity. However, this is not always
the best place to steal from in terms of the efficiency of the algorithm.

We illustrate how work stealing from different places can have different ef-
fects on efficiency with two examples. Let us consider a relatively simple frame-
work for parallel search. One thread begins with ownership of the entire search
tree. When a thread finishes searching the subtree it was responsible for, it will
pick an unexplored part of the search tree and steal that subtree off its current
owner. This continues until a solution is found, or the entire search tree has been
searched in the case of unsatisfiability or optimization.
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Example 1. The first problem we will consider is the Travelling Salesman Prob-
lem. In our experiments, with 8 threads, stealing left and low (as deep in the
tree as possible) requires visiting a number of nodes equal to the sequential al-
gorithm, while stealing high (near the root) requires visiting ∼30% more nodes
on average (see Table 1).

The explanation for this is simple. Let us examine the details of one particular
instance. In this instance, with the sequential algorithm, the optimal solution is
found after 47 seconds of CPU time, after which the algorithm spends another
∼300 seconds proving that no better solution exists. When work stealing is done
as left and low as possible in the parallel search, all of the threads are working
towards finding that leftmost optimal solution, and the optimal solution is found
in 47 seconds of total CPU time as before (wall clock time ∼6 seconds). After
this, the search takes another 300 seconds of CPU time to conclude. Thus we
have perfect linear speedup both in finding the optimal solution, and in proving
that no better solution exist.

If we steal high however, only 1 of the threads is actually exploring the left-
most part of the search tree and working towards that leftmost optimal solution.
The other 7 threads are off searching other parts of the search tree, unfruitfully in
this case. This time, the optimal solution is found in 47 seconds of wall clock time
(376 seconds of CPU time!). The algorithm then spends another 200 seconds of
CPU time proving that no better solution exists. What has happened is that we
got no speedup whatsoever for finding the optimal solution, but linear speedup
for proving that no better solution exists. Since we found the optimal solution
so much later in the search (376 seconds CPU time instead of 47 seconds), the
threads spent an enormous amount of CPU time searching without the pruning
benefits of the optimal solution, thus the total number of nodes searched in this
instance is dramatically increased, leading to a great loss of efficiency. Clearly,
this effect gets worse as a higher number of threads is used. �

It may appear from this example that stealing left and low would be efficient
for all problems. However, such a strategy can produce at best linear speedup.

Example 2. The second problem we will consider is the n-Queens problem. The
search tree is very deep and a top level mistake will not be recovered from for
hours. Stealing low in parallel search solves the instance within the time limit
if and only if the sequential depth first search solved it within the time limit.
This only occurred when a solution falls in the very leftmost part of the search
tree (only 4 instances out of 100 tested, see Table 2). Stealing high, in contrast,
allows many areas of the search tree to be explored, so a poor choice at the root
of the search tree is not as important. Stealing high results in solving 100 out of
100 instances tested. This is clearly far more robust than stealing low, producing
greatly super-linear speedup. �

Veron et al [3] claims that linear and super linear speedups can be expected
for branch and bound problems, but they fail to note that finding the optimal
solution does not parallelize trivially as shown by Example 1. Rao and Kumar [4]
(and others) show that super linear speedup ought to be consistently attainable
for finding the first or the optimal solution for certain types of problems. Their
analysis is valid if the search tree is random (i.e. we have no idea how the solutions
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are distributed), but is not valid in systems where the branching heuristic orders
the branches based on their likelihood of yielding a solution. The presence of
such a branching heuristic makes linear speedup in finding solutions non-trivial.
Gendron and Crainic [5] describe the issue and provide a description how the
issue is handled in several systems. In general, the solutions utilise some kind of
best-first criterion to guide how the problem is split up (see e.g. [6, 7]).

Our contributions in this paper are as follows. We perform a quantitative
analysis of how different work stealing strategies affect the total amount of work
performed and explain the relationship between branching heuristic strength and
the optimal search strategy. We propose an adaptive work stealing algorithm
that, when provided with a user given confidence, which is the estimated ratio
of solution densities between the left and right subtrees at each node, will work
steal in a near optimal manner. We show that confidence based work stealing
leads to very good algorithmic efficiencies, i.e. it does not visit many more nodes,
and sometimes much less, than sequential DFS (Depth First Search).

Although our analysis is done in the context of work stealing in parallel
constraint programming systems, the analysis is actually about the relation-
ship between branching heuristic strength and the optimal search order in the
search tree created by that branching heuristic. Thus the analysis actually ap-
plies to all complete tree search algorithms whether sequential or parallel. As
we will show later, when the assumptions about branching heuristic strength
that lie behind standard sequential algorithms such as DFS, Interleaved Depth
First Search (IDFS), Limited Discrepancy Search (LDS) or Depth-bounded Dis-
crepancy Search (DDS) is given to our algorithm as confidence estimates, our
algorithm automatically produces the exact same search patterns used in those
algorithms. Thus our analysis and algorithm provides a framework which ex-
plains/unifies/produces all those standard search strategies. In contrast to the
standard sequential algorithms which are based on rather simplistic assumptions
about how branching heuristic strength varies in different parts of the search
tree, our algorithm can adapt to branching heuristic strength on a node by node
basis, potentially producing search patterns that are vastly superior to the stan-
dard ones. Our algorithm is also fully parallel and thus we have automatically
parallelised DFS, IDFS, LDS and DDS as well.

The layout of the paper is as follows. In section 2 we perform a quantitative
analysis of optimal work stealing. In section 3 we describe our adaptive work
stealing algorithm. In section 4 we give examples of the behaviour of our algo-
rithm. In section 5 we present our experimental evaluation. Finally in section 6
we conclude.

2 Analysis of Work Allocation

In this section we show quantitatively that the strength of the branching heuristic
determines the optimal place to work steal from. We will concentrate on the case
of solving a satisfaction problem. The case for optimization is related since it is
basically a series of satisfaction problems.

Preliminary definitions. A constraint state (C,D) consists system of constraints
C over variables V with initial domain D assigning possible values D(v) to
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each variables v ∈ V . The propagation solver, solv repeatedly removes values
from the domains of variables that cannot take part in the solution of some
constraint c ∈ C, until it cannot detect any new values that can be removed. It
obtains a new domain solv(C,D) = D′. If D′ assigns a variable the empty set
the resulting state is a failure state. If D′ assigns each variable a single value
(|D(v)| = 1, v ∈ V ) then the resulting state is a solution state. Failure states and
solution states are final states.

Finite domain propagation interleaves propagation solving with search. Given
a current (non-final) state (C,D) where D = solv(C,D) the search process
chooses a search disjunction ∨ni=1ci which is consequence of the current state
C∧D. The child states of this state are calculated as (C∧ci, solv(C∧ci, D)), 1 ≤
i ≤ n. Given a root state (C,D), this defines a search tree of states, where each
non-final state is an internal node with children defined by the search disjunction
and final states are leaves.

The solution density of a search tree T with x nodes and y solution state
nodes is y/x. The solution density is the inverse of the mean nodes to solution
of T defined as x/y.

Optimal split for binary nodes For simplicity, assume that the cost of visiting
each node in the search tree is roughly equal. Intuitively, the optimal way to
perform a search is to assign all of our threads to the most promising parts of
the search tree at each stage. These places are the parts of the search tree where
the mean nodes to solution is lowest, or in other words where the solution den-
sity is highest. Assuming an oracle that could give us accurate solution density
information, work stealing from nodes whose subtrees have the highest solution
densities will be optimal. In practice however, the solution density estimates will
not be perfect, thus we have to take various other factors into account. Namely:

1. Any estimate of the solution density of a subtree will have a very high error,
with a substantial chance that the solution density is actually zero.

2. The real solution densities, and hence the errors in the estimate, are highly
correlated between subtrees that are close together, as they share decision
constraints from higher up in the tree, and these constraints may already
have made solutions impossible or plentiful.

3. The solution density estimate of a subtree should decrease as nodes in that
tree are examined without finding a solution. This is caused by two factors.
(a) As the most fruitful parts of the subtree are searched, the average solu-

tion density of the remaining nodes decrease.
(b) The correlation between solution densities between nearby subtrees mean

that the more nodes have failed in that subtree, the more likely the
remaining nodes are to fail as well.

We have to take these issues into account when utilizing solutions densities to
determine where to work steal.

Example 3. Let T be a search tree with a binary decision at the root. Let A = 0.6
and B = 0.4 be the solution density estimates for the left and right branches
of T . Assume also that the two subtrees have the same number of nodes. If we
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had 8 threads, what is the optimal division of threads between the two branches
such that the expected time to find a solution is lowest?

If the solution density estimate was perfect, we would simply send all 8
threads down the left branch. However, according to (1) the estimate has a very
large error. Further according to (2) the solution density of the subtrees down the
left branch are highly correlated. If we send all 8 threads down the left branch,
and it turns out that the real solution density is small or zero, then all 8 threads
end up stuck. Because of (1) and (2), it is actually better to send some of the
threads down the right branch as well as long as B is not far smaller than A, for
example, for values of A = 0.6, B = 0.4, we may wish to send 6 threads down
the left branch and 2 threads down the right branch. �

Given the actual solution density probability distribution for the two branches,
we can calculate the expected number of nodes searched to find a solution. We
derive the expression for a simple case. Suppose the solution density probability
distribution is uniform, i.e. has equal probability of being any value between 0
and S where S is the solution density estimate. Let A and B be the solution
density estimates for the left and right branch respectively, and assume a pro-
portion p and (1 − p) of the processing power is sent down the left and right
branch respectively. Then the expected number of nodes to be searched is given
by the hybrid function (see Appendix A for the details of the calculation):

f(A,B, p) =

{
1
pA (2 + ln( pA

(1−p)B )) for pA > (1− p)B
1

(1−p)B (2 + ln( (1−p)B
pA )) otherwise

(1)

The shape of this function does not depend on the absolute values of A and
B (which only serves to scale the function), but on their ratio, thus the shape
is fixed for any fixed value of r = A/(A + B). The value of p which minimizes
this function for a given value of r is shown in Figure 1. This graph tells us
the optimal way to divide up our processing power so that we have the lowest
expected number of nodes to search.

As can be seen, although not linear, the optimal values of p are well approx-
imated by the straight line p = r. In fact the value of the f function at p = r
is no more than 2% higher than the true minimum for any r over the range of
0.1 ≤ r < 0.9. For simplicity we will make this approximation from now on. This
means that it is near optimal to divide the amount of processing power according
to the ratio of the solution density estimate for the two branches. For example,
if r = 0.9, which means that A is 9 times as high as B, then it is near optimal to
send 0.9 of our processing power down the left branch and 0.1 of our processing
power down the right. Or if r = 0.5, which means that A = B, then it is near
optimal to send equal amounts of processing power down the two branches.

Define the confidence of a branching heuristic at each node as the ratio
r = A/(A+ B). The branching heuristic can be considered strong when r → 1,
that is the solution density estimate of the left branch is far greater than for
the right branch, or in other words, the heuristic is really good at shaping the
search tree so that solutions are near the left. In this case, our analysis shows that
since r is close to 1, we should allocate almost all our processing power to the left
branch everytime. This is equivalent to stealing as left and as low as possible. The
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Fig. 1. Optimal division of processing power based on solution density ratio

branching heuristic is weak when r ≈ 0.5, that is the solution density estimate
of the left branch and right branch are similar because the branching heuristic
has no clue where the solutions are. In this case, our analysis shows that since
r = 0.5, the processing power should be distributed evenly between left and right
branches at each node. This is equivalent to stealing as high as possible.3

3 Adaptive work stealing

Our analysis shows that the optimal work stealing strategy is dependant on the
strength of the branching heuristic. Since we have a quantitative understanding
of how optimal work stealing is related to branching heuristic strength, we can
design a search algorithm that can automatically adapt and produce “optimal”
search patterns when given some indication of the strength of the branching
heuristic by the problem model. In this section, we flesh out the theory and
discuss the implementation details of the algorithm in Gecode [8].

3.1 Dynamically updating solution density estimates

Now we examine how solution density estimates should be updated during search
as more information becomes available.

First we need to relate the solution density estimate of a subtree with root
(C,D) with the solution density estimate of its child subtrees (the subtrees
rooted at its child states (C∧ci, solv(C∧ci, D))). Consider an n-ary node. Let the
subtree have solution density estimate S. Let the child subtree at the ith branch
have solution density estimate Ai and have size (number of nodes) xi. If S and Ai
3 We ignore the possibility of an anti-heuristic where the right branch is preferable to

the left.
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are estimates of average solution density, then clearly: S =
∑n
i=1Aixi/

∑n
i=1 xi,

i.e. the average solution density of the subtree is the weighted average of the
solution densities of its child subtrees.

Assuming no correlation between the solution densities of subtrees, we have
that if the first k child subtrees have been searched unsuccessfully, then the
updated solution density estimate is S =

∑n
i=k+1Aixi/

∑n
i=k+1 xi. Assuming

that xi are all approximately equal, then the expression simplifies to: S =∑n
i=k+1Ai/(n − k). For example, suppose A1 = 0.3, A2 = 0.2, A3 = 0.1, then

initially, S = (0.3 + 0.2 + 0.1)/3 = 0.2. After branch 1 is searched, we have S =
(0.2 + 0.1)/2 = 0.15, and after branch 2 is searched, we have S = (0.1)/1 = 0.1.
This has the effect of reducing S as the branches with the highest values of Ai
are searched, as the average of the remaining branches will decrease.

Now we consider the case where there are correlations between the solution
density estimates of the child subtrees. The correlation is likely since all of the
nodes in a subtree share the constraint C of the root state. Since the correlation
is difficult to model we pick a simple generic model. Suppose the solution density
estimates for each child subtree is given by Ai = ρA′i, where ρ represents the
effect on the solution density due to the constraint added at the root node, and
A′i represents the effect on the solution density due to constraints added within
branch i. Then ρ is a common factor in the solution density estimates for each
branch and represents the correlation between them. We have that:

S =
∑n
i=1Aixi∑n
i=1 xi

= ρ

∑n
i=1A

′
ixi∑n

i=1 xi
.

Suppose that when k out of n of the branches have been searched without finding
a solution, the value of ρ is updated to ρn−kn . This models the idea that the more
branches have failed, the more likely it is that the constraint C added at the root
node has already made solutions unlikely or impossible. Then when k branches
have been searched, we have: S = ρn−kn

∑n
i=k+1A

′
ixi/

∑n
i=k+1 xi. Assuming

that xi are all approximately equal again, then the expression simplifies to:
S = ρn−kn

∑n
i=k+1A

′
i/(n− k) = ρ

n

∑n
i=k+1A

′
i =

∑n
i=k+1Ai/n. Equivalently, we

can write it as:

S =
∑n
i=1Ai
n

(2)

where we update Ai to 0 when branch i fails. The formula can be recursively
applied to update the solution density estimates of any node in the tree given a
change in solution density estimate in one of its subtrees.

In all of our results, the actual values of the solution densities are not required.
We can formulate everything using confidence, the ratio between the solution
densities of the different branches at each node. In terms of confidence, when a
subtree is searched and fails the confidence values should be updated as follows:

Let ri be the confidence value of the node i levels above the root of the failed
subtree and r′i be the updated confidence value. Let r̄i = ri, r̄

′
i = r′i if the failed

subtree is in the left branch of the node ith levels above the root of the failed
subtree and r̄i = 1− ri, r̄′i = 1− r′i otherwise. Then:
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r̄′i = (r̄i −
i∏

k=1

r̄i)/(1−
i∏

k=1

r̄i) (3)

3.2 Confidence model

Given a confidence at each node, we now know how to work steal “optimally”,
and how to update confidences as search proceeds. But how do we get an initial
confidence at each node. Ideally, the problem modeller, with expert knowledge
about the problem and the branching heuristic can develop a solution density
heuristic that gives us a confidence value at each node. However, this may not
always happen, perhaps due to a lack of time or expertise. We can simplify
things by using general confidence models. For example, we could assume that
the confidence takes on an equal value conf for all nodes. This is sufficient to
model general ideas like: the heuristic is strong or the heuristic is weak. Or we
could have a confidence model that assigns r = 0.5 to the top d levels and
r = 0.99 for the rest. This can model ideas like the heuristic is weak for the first
d levels, but very strong after that, much like the assumptions used in DDS.

3.3 The algorithm

Given that we have a confidence value at each node, our confidence based search
algorithm will work as follows. The number of threads down each branch of a
node is updated as the search progresses. When a job is finished, the confidence
values of all nodes above the finished subtree is updated as described in (3).

When work stealing is required, we start at the root of the tree, and use
the number of threads down each branch, the confidence value, and the optimal
division derived in Section 2 to work out whether the thread should be assigned
to the left branch or the right branch. We then move on to that node and
repeat. We continue until we find an unexplored node, at which point we steal
the subtree with that unexplored node as root.

There is an exception to this. Although we may sometimes want to steal as
low as possible, we cannot steal too low, as then the granularity would become
too small and communication costs will dominate the runtime. Thus we dynam-
ically determine a granularity bound under which threads are not allowed to
steal, e.g. 15 levels above the average fail depth. If the work stealing algorithm
guides the work stealing to the level of the granularity bound, then the last
unexplored node above the granularity bound is stolen instead. The granularity
bound is dynamically adjusted to maintain a minimum average job size so that
work stealing does not occur more often than a certain threshold.

Since the confidence values are constantly updated, the optimal places to
search next changes as search progresses. In order for our algorithm to adapt
quickly, we do not require a thread to finish the entire subtree it stole before
stealing again, as this could take exponential time [9]. Instead, after a given
restart time has passed, the thread returns the unexplored parts of its subtree
to the master and work steals again from the top. This is similar to the idea
used in interleaving DFS [10].
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Fig. 2. Example 1

4 Sample behaviour of adaptive work stealing algorithm

In this section, we go through some examples of how the work stealing and
confidence updating works in our algorithm. For the first example, suppose we
know that the branching heuristic is reasonably strong, but not perfect. We may
use conf = 0.8. Refer to Figure 2 in the explanation.

Let’s suppose we have 8 threads. Initially, all the confidence values are 0.8.
When the 8 threads attempt to work steal at the root, the first thread will go
down the left hand side. The second thread will go down the left hand side as
well. The 3rd thread will go down the right hand side. The fourth thread will go
down the left hand side, etc, until we end up with 6 threads down the left and
2 threads down the right. At node 2, we will have 5 threads down the left and
1 thread down the right. At node 3, we will have 2 threads down the left, and
so on. The work stealing has strongly favored sending threads towards the left
side of each node because of the reasonably high confidence values of 0.8.

Suppose as search progresses the subtree starting at node 4 finishes without
producing a solution. Then we need to update the confidence values. Using (3),
the confidence value at node 2 becomes 0, and the confidence value at node 1
becomes 0.44. Now when the threads work steal from the root, things are differ-
ent. Since one of the most fruitful parts of the left branch has been completely
searched without producing a solution, it has become much less likely that there
is a solution down the left branch. The updated confidence value reflects this.
Now the threads will be distributed such that 4 threads are down the left branch
and 4 threads are down the right branch. Next, perhaps the subtree starting at
node 10 finishes. The confidence value at node 5 then becomes 0, the confidence
value at node 2 remains 0 and the confidence value at node 1 becomes 0.14.
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Fig. 3. Example 2

The vast majority of the fruitful places in the left branch has been exhausted
without finding a solution, and the confidence value at the root has been up-
dated to strongly favor the right branch. The threads will now be distributed
such that 7 threads go down the right and 1 go down the left. Next, suppose
the subtree starting at node 6 finishes. The confidence value at node 3 becomes
0 and the confidence value at node 1 becomes 0.44. Since the most fruitful part
of the right branch has also failed, the confidence value now swings back to fa-
vor the left branch more. This kind of confidence updating and redistribution
of threads will continue on, distributing the threads according to the current
best solution density estimates. In our explanation here, for simplicity we only
updated the confidence values very infrequently. In the actual implementation,
confidence values are updated after every job is finished and thus occur much
more frequently and in much smaller sized chunks.

For the second example, suppose we knew that the heuristic was very bad and
was basically random. We may use conf = 0.5, i.e. the initial solution density
estimates down the left and right branch are equal. Refer to Figure 3 in the
explanation.

Let’s suppose we have 4 threads. Initially, all the confidence values are 0.5.
When the 4 threads attempt to work steal at the root, the first thread will go left,
then left, then left, etc. The second thread will go right, then left, then left, etc.
The third thread will go left, then right, then left, etc, and the fourth thread will
go right, then right, then left, etc. This distributes the threads as far away from
each other as possible which is exactly what we want. However, if the search tree
is deep, and the first few decisions that the threads made within its own subtree
are wrong, they may still all get stuck and never find a solution. This is where the
interleaving limit kicks in. After a certain time threshold is reached, the threads
abandon their current search and begin work stealing from the root again. Since
the confidence values are updated when they abandon their current job, they
take a different path when they next work steal. For example, if the thread down
node 5 abandons after having finished a subtree with root node at depth 10, then
the confidence at node 5 becomes 0.498, the confidence at node 2 become 0.499,
and the confidence at node 1 becomes 0.4995. Then when the thread work steals
from the root, it will again go left, then right. When it gets to node 5 however,
the confidence value is 0.498 and there are no threads down either branch, thus
it will go right at this node instead of left like last time. The updated confidence
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values has guided the thread to an unexplored part of the search tree that is as
different from those already searched as possible. This always happens because
solution density estimates are decremented whenever part of a subtree is found
to have failed, so the confidence will always be updated to favour the unexplored
parts of the search tree.

As some other examples, we briefly mention what confidence models leads to
some standard search patterns. DFS: conf = 1, restart = ∞. IDFS: conf = 1,
restart = 1000. LDS: conf = 1-ε, restart = 1 node. DDS: conf = 0.5 if depth <
d, 1-ε if depth ≥ d, restart = 1 node.

5 Experimental evaluation

The confidence based work stealing is implemented in Gecode 2.1.1 [8]. The
benchmarks are run on a Dell PowerEdge 6850 with 4x 3.0 Ghz Xeon Dual Core
Pro 7120 CPUs. 8 threads are used for the parallel search algorithm. We use
a time limit of 20 min CPU time (so 2.5 min wall clock time for 8 threads), a
restart time of 5 seconds, and a dynamic granularity bound that adjusts itself
to try to steal no more than once every 0.5 seconds. We collected the following
data: wall clock runtime, CPU utilization, communication overhead, number of
steals, total number of nodes searched and number of nodes explored to find the
optimal solution.

In our first set of experiments we examine the efficiency of our algorithm for
two optimization problems from Gecode’s example problems. The problems are:
Travelling Salesman Problem (TSP), Photo and Queens-Armies. A description
of these problems can be found at [8]. We use the given search heuristic (in
the Gecode example file) for each, except for TSP where we try both a strong
heuristic based on maximising cost reduction and a weak heuristic that just picks
variables and values in order. For both Photo and TSP, we randomly generated
many instances of an appropriate size for benchmarking. Only the size 9 and
size 10 instances of Queen-Armies are of an appropriate size for benchmarking.
We use the simple confidence model with conf = 1, 0.66 and 0.5. The results
are given in Table 1.

It is apparent from our experiments that the hardware/OS we experimented
on is highly non-ideal and does not in fact give us a linear increase in real pro-
cessing speed when more processors are used. We suspect this is due to issues
such as cache contention, memory contention, context switching, etc. The effect
causes threads to slow down by up to 40% at 8 threads. In view of this, the
primary statistics we will look at in our analysis of our algorithm will be al-
gorithmic efficiency and the communication cost. Algorithmic efficiency minus
the communication cost represents the theoretical efficiency on an ideal parallel
computer. The runtime efficiency represents what you may get on a real world,
non-ideal parallel computer.

It is clear that in all of our problems, runtime is essentially proportional to
the number of nodes searched, and it is highly correlated to the amount of time
taken to find the optimal solution. The quicker the optimal solution is found, the
fewer the nodes searched and the lower the total runtime. The communication
cost, which includes all work stealing and synchronisation overheads, is less than
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Table 1. Experimental results for optimization problems with simple confidence model.
The results show: number of problems solved in the time limit (Solved), wall clock run-
time in seconds (Runtime), speedup relative to the sequential version (Speedup), and
runtime efficiency (RunE) which is Speedup/8, CPU utilization (CPU%), communi-
cation overhead (Comm%), number of steals (Steals), total number of nodes explored
(Nodes), the algorithmic efficiency (AlgE) the total number of nodes explored in the
parallel version versus the sequential version, the number of nodes explored to find the
optimal solution (Onodes), and the solution finding efficiency (SFE) the total number of
nodes explored in the parallel version to find the optimal versus the sequential version.
Values for Runtime, CPU%, Comm%, Steals, Nodes, and Onodes are the geometric
mean of the instances solved by all 4 versions.

TSP with strong heuristic, 200 instances
conf Solved Runtime Speedup RunE CPU% Comm% Steals Nodes AlgE Onodes SFE
Seq 181 56.0 — — 99.8% 0.0% — 1240k — 180k —
1 172 11.3 4.95 0.62 94.7% 2.8% 447 1222k 1.01 218k 0.82
0.66 170 13.3 4.20 0.53 94.6% 0.5% 370 1517k 0.82 580k 0.31
0.5 160 16.2 3.45 0.43 94.2% 1.3% 533 1564k 0.80 658k 0.27

TSP with weak heuristic, 200 instances
conf Solved Runtime Speedup RunE CPU% Comm% Steals Nodes AlgE Onodes SFE
Seq 189 78.6 — — 99.8% 0.0% — 1.99M — 1.59M —
1 186 17.7 4.45 0.56 96.5% 4.0% 686 1.99M 1.00 1.59M 1.00
0.66 186 17.7 4.46 0.56 96.3% 0.4% 319 1.97M 1.01 1.60M 1.00
0.5 184 15.7 5.01 0.63 95.5% 0.8% 287 1.73M 1.15 1.39M 1.15

Photo, 200 instances
conf Solved Runtime Speedup RunE CPU% Comm% Steals Nodes AlgE Onodes SFE
Seq 173 63.9 — — 99.9% 0.0% — 5.01M — 622k —
1 152 15.5 4.12 0.52 98.0% 1.7% 636 4.93M 1.02 542k 1.15
0.66 153 15.5 4.12 0.52 97.5% 0.4% 388 4.91M 1.02 467k 1.33
0.5 152 15.4 4.15 0.52 97.7% 0.4% 253 4.90M 1.02 492k 1.26

Queen Armies, 2 instances
conf Solved Runtime Speedup RunE CPU% Comm% Steals Nodes AlgE Onodes SFE
Seq 2 1146 — — 99.7% 0.0% — 27.1M — 800k —
1 2 219 5.24 0.65 98.7% 1.1% 2519 28.8M 0.94 1669k 0.48
0.66 2 213 5.38 0.67 98.2% 0.5% 1924 28.4M 0.96 1781k 0.45
0.5 2 217 5.29 0.66 98.3% 0.4% 1631 28.6M 0.95 1902k 0.42

1% for most problems, but goes up to around 3-4% for some steal low strategies.
For algorithmic efficiency, we will examine each the problem in turn.

The strong heuristic in TSP is quite strong. Using conf = 1 achieves near
perfect algorithmic efficiency. Other values of conf clearly cause an algorithmic
slowdown. The optimal solution is found on average 2.7 and 3.0 times slower for
conf = 0.66 and 0.5 respectively, resulting in an algorithmic efficiency of 0.82 and
0.80 respectively. The opposite is true when the weak heuristic is used. Using conf
= 1 or 0.66 allows us to find the leftmost optimal solution in approximately the
same number of nodes as the sequential algorithm, but using conf = 0.5 to reflect
that the heuristic is weak allows the algorithm to find the optimal solution even
faster, producing an algorithmic efficiency of 1.15 compared to the sequential
algorithm.
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Table 2. Experimental results for satisfaction problems with simple confidence model

n-Queens, 100 instances
conf Solved Runtime Speedup RunE CPU% Comm% Steals Nodes AlgE
Seq 4 2.9 — — 99.9% 0.0% — 1859 —
1 4 10.4 — — 99.0% 86.6% 2 1845 —
0.66 29 18.0 — — 81.6% 0.3% 9 15108 —
0.5 100 2.9 — — 65.5% 1.6% 8 14484 —

Knights, 40 instances
conf Solved Runtime Speedup RunE CPU% Comm% Steals Nodes AlgE
Seq 7 0.22 — — 99.9% 0.0% — 1212 —-
1 7 0.26 — — 68.1% 59.7% 2 1150 —
0.66 13 0.50 — — 48.0% 4.7% 8 8734 —
0.5 21 0.66 — — 35.2% 6.0% 8 8549 —

Perfect-Square, 100 instances
conf Solved Runtime Speedup RunE CPU% Comm% Steals Nodes AlgE
Seq 15 483.1 — — 99.9% 0.0% — 213k —
1 13 72.3 6.68 0.83 98.0% 19.1% 419 216k 0.99
0.66 14 71.2 6.78 0.85 86.4% 2.9% 397 218k 0.98
0.5 82 8.9 54.02 6.75 89.0% 4.8% 21 32k 6.64

The branching heuristic in Photo is designed to minimize the size of the
search tree, rather than to place the solutions on the left side of the tree, hence,
it is a “weak” heuristic as far as our analysis is concerned. Using conf = 0.66
and 0.5 to reflect this clearly produce higher solution finding efficiency than
conf = 1, giving 1.33 and 1.26 vs 1.15 respectively. However, for the Photo
problem, there are so many optimal solutions in the search tree that one gets
found extremely quickly regardless of which strategy is used, and hence finding
the optimal solution faster has no real effect on total runtime.

The results for Queens-Armies show little difference depending on confidence.
Clearly the heuristic is better than random at finding an optimal solution, and
solution finding efficiency degrades slightly as we ignore the heuristic. But the
overall nodes searched are almost identical for all confidence values.

In our second set of experiments we examine the efficiency of our algorithm
for three satisfaction problems from Gecode’s examples [8]. The problems are:
n-Queens, Knights, and Perfect-Square.

The sequential version solved very few instances of n-Queens and Knights.
Furthermore, all those solves are extremely fast (< 3 sec) and are caused by
the search engine finding a solution at the very leftmost part of the search tree.
Most of the time spent in those runs is from travelling down to the leaf of the
search tree rather than actual search and is not parallelizable, thus comparison
of the statistics for the parallel vs sequential algorithms on those instances is not
meaningful as there is very little work to parallelize. The number of instances
solved is the more interesting statistic and is a better means of comparison. The
parallel algorithm beats the sequential algorithm by an extremely large margin
in terms of the number of instances solved.

n-Queens and Knights both have very deep subtrees and thus once the se-
quential algorithm fails to find a solution in the leftmost subtree, it will often end
up stuck effectively forever. Modelling the fact that the branching heuristic is
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Table 3. Experimental results using accurate confidence values, where we follow the
confidence value to degree α.

Golomb-Ruler 12
α Nodes AlgE
Seq 5.31M —
1 2.24M 2.37
0.5 3.48M 1.53
0 4.27M 1.24
-0.5 10.8M 0.49
-1 10.6M 0.50

Golomb-Ruler 13
α Nodes AlgE
Seq 71.0M —
1 53.2M 1.34
0.5 57.6M 1.23
0 61.9M 1.15
-0.5 74.8M 0.95
-1 111M 0.64

very weak at the top by using conf = 0.5 clearly produce a super linear speedup.
The parallel algorithm solves 100 out of 100 instances of n-Queens compared to
4 out of 100 instances for the sequential algorithm or the parallel algorithm with
conf = 1. The speedup cannot be measured as the sequential algorithm does not
terminate for days when it fails to find a solution quickly. Similarly the parallel
algorithm with conf = 0.5 solved 21 instances of Knights compared to 7 for the
sequential and the parallel version with conf = 1.

Perfect Square’s heuristic is better than random, but is still terribly weak.
Using conf = 0.5 to model this once again produces super linear speedup, solving
82 instances out of 100 compared to 15 out of 100 for the sequential algorithm.
We can compare runtimes for this problem as the sequential version solved a
fair number of instances and those solves actually require some work (483 sec
on average). The speedup in this case is 54 using 8 threads.

So far, we have tested the efficiency of our algorithm using simple confidence
models where the confidence value is the same for all nodes. This is the most
primitive way to use our algorithm and does not really illustrate its full power.
We expect that our algorithm should perform even better when confidence values
specific to each node are provided, so that we can actually encode and utilise
information like, the heuristic is confident at this node but not confident at
that node, etc. In our third set of experiments, we examine the efficiency of our
algorithm when node specific confidence values are provided.

Due to our lack of domain knowledge, we will not attempt to write a highly
accurate confidence heuristic. Rather, we will simulate one by first performing an
initial full search of the search tree to find all solutions, then produce confidence
estimates for the top few levels of the search tree using several strategies like,
follow the measured solution density exactly, follow it approximately, ignore it,
go against it, etc, to see what effect this has on runtime. Let α quantify how
closely we follow the measured confidence value and let conf be the measured
confidence value. Then we use the following formula for our confidence estimate:
conf ′ = α× conf + (1− α)× 0.5. If α = 1, then we follow it exactly. If α = −1,
we go against it completely, etc. We use the Golomb-Ruler problem (see [8]) for
our experiment as the full search tree is small enough to enumerate completely.
The results are shown in Table 3.

The results show that using confidence values that are even a little biased
towards the real value is sufficient to produce super linear speedup. And not
surprisingly, going against the real value will result in substantial slowdowns.
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6 Conclusion

By analysing work stealing schemes using a model based on solution density, we
were able to quantitatively relate the strength of the branching heuristic with
the optimal place to work steal from. This leads to an adaptive work stealing
algorithm that can utilise confidence estimates to automatically produce “op-
timal” work stealing patterns. The algorithm produced near perfect or better
than perfect algorithmic efficiency on all the problems we tested. In particular,
by adapting to a steal high, interleaving search pattern, it is capable of produc-
ing super linear speedup on several problem classes. The real efficiency is lower
than the algorithmic efficiency due to hardware effects, but is still quite good at
a speedup of at least 4-5 at 8 threads. Communication costs are negligible on all
problems even at 8 threads.
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A Expected Search Time Calculation

Calculating the expected search time requires a double integration of a hybrid
function. Since this is rather difficult we will pick a simple solution density
probability distribution. Suppose the solution density probability distribution is
uniform, i.e. when the solution density estimate is A, there is an equal chance of
the actual value being anything from 0 to A. The real solution density values are
actually discrete as there can only be a whole number of solutions, but for ease
of integration we leave it as a continuous function. This probability distribution
satisfies our criteria that there is a large error in the estimate and that there is
a substantial chance that it is actually 0. Suppose the solution density estimates
for the left and right branch are A and B respectively, and that they each have n
nodes. Suppose also the solutions are randomly distributed among the n nodes.
We know that when there are m items randomly located in n locations, the
expected number of locations to look before we find one of them is given by
n+1
m+1 . Thus if a is the real solution density in the left branch, the expected time
to find a solution in the left branch is n+1

an+1 ≈
n

an+1 = 1
a+ 1

n

. Suppose we divide up
our processing power such that p units is sent down the left branch, and (1− p)
units is sent down the right branch. The expected number of nodes searched
will depend on which of the branches yield a solution first, thus for real solution
density values of a and b for the left and right branch, it is given by the hybrid
function:

min(
1

p(a+ 1
n )
,

1
(1− p)(b+ 1

n )
) (4)

The expected number of nodes to be searched for solution density estimates
A and B for the left and right branch respectively, given a uniform solution
density probability distribution will then be given by:

1
AB

∫ A

0

∫ B

0

min(
1

p(a+ 1
n )
,

1
(1− p)(b+ 1

n )
)db da (5)

To evaluate this, we need to split the integral into two domains corresponding
to the two halves of the hybrid function. The boundary of the hybrid function
is given by:

p(a+ 1
n ) = (1− p)(b+ 1

n )

⇒ a = 1−p
p (b+ 1

n )− 1
n

or b = p
1−p (a+ 1

n )− 1
n

There are four cases depending on whether the boundary of the hybrid func-
tion intersects the a or the b axis and whether it intersects the a = A line or the
b = B line. For p > 0.5 and p(A + 1

n ) > (1 − p)(B + 1
n ), which corresponds to

intersecting the b axis and the b = B line, we have:
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1
AB

∫ A

0

∫ B

0

min(
1

p(a+ 1
n )
,

1
(1− p)(b+ 1

n )
)dbda

= 1
AB [

∫ B

p
(1−p)n

− 1
n

∫ 1−p
p (b+ 1

n )− 1
n

0

1
(1− p)(b+ 1

n )
dadb+

∫ 1−p
p (B+ 1

n )− 1
n

0

∫ p
1−p (a+ 1

n )− 1
n

0

1
p(a+ 1

n )
dbda+∫ A

1−p
p (B+ 1

n )− 1
n

∫ B

0

1
p(a+ 1

n )
dbda

= 1
AB [

∫ B

p
(1−p)n

− 1
n

1
p
− 1

(1− p)n(b+ 1
n )
db+

∫ 1−p
p (B+ 1

n )− 1
n

0

1
1− p

− 1
pn(a+ 1

n )
da+∫ A

1−p
p (B+ 1

n )− 1
n

B

p(a+ 1
n )
da

= 1
AB [ [

B

p
− 1

(1− p)n
ln(B +

1
n

)− 1
(1− p)n

+
1
pn

+
1

(1− p)n
ln(

p

(1− p)n
)] +

[
B + 1

n

p
− 1

(1− p)n
− 1
pn

ln(
1− p
p

(B +
1
n

)) +
1
pn

ln(
1
n

)] +

[
B

p
ln(A+

1
n

)− B

p
ln(

1− p
p

(B +
1
n

))]]

= 1
AB [

2(B + 1
n )

p
− 1
n

ln(
1− p
p

(nB + 1)) +

B

p
ln(

p

1− p
(nA+ 1)
(nB + 1)

)− 2
(1− p)n

− 1
(1− p)n

ln(
1− p
p

(Bn+ 1))]

If we are reasonably high up in the search tree, which is where the results of
this calculation is most important, then we can assume that we are expecting
a potentially large number of solutions down each branch, e.g. An,Bn � 1.
In that case, all of the terms containing 1/n are much smaller than the terms
containing A or B and the expression simplifies to:
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1
AB

[2
B + 1

n

p
− 1
n

ln(
1− p
p

(nB + 1)) + (6)

B

p
ln(

p

1− p
(nA+ 1)
(nB + 1)

)− 2
(1− p)n

− 1
(1− p)n

ln(
1− p
p

(Bn+ 1))]

=
1
AB

[
2B
p

+
B

p
ln(

pA

(1− p)B
)]

=
1
pA

(2 + ln(
pA

(1− p)B
)) (7)

The calculation for the case p < 0.5 and p(A+ 1
n ) > (1−p)(B+ 1

n ) is similar,
and after the simplification, yields the same equation as (6). Since the problem
is symmetric with respect to A and B, and p and (1− p), we can trivially derive
the equation for the other two cases, which is:

1
(1− p)B

(2 + ln(
(1− p)B
pA

)) (8)

Thus the full function for calculating the expected number of nodes searched
given A, B and p is given by the hybrid function:

f(A,B, p) =

{
1
pA (2 + ln( pA

(1−p)B )) for pA > (1− p)B
1

(1−p)B (2 + ln( (1−p)B
pA )) otherwise
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Abstract. The overhead of matching CHR’s multi-headed rules is al-
leviated by constraint store indexing. The attributed variable interface
provides efficient means of indexing on logical variables. Current state-
of-the-art indexing strategies for ground terms use hash tables. However,
the hash tables incur considerable performance overhead, especially when
frequently computing hash values for large terms.
We propose a high-level approach which improves the efficiency of ground
term indexing. In this approach, we introduce a new data representa-
tion for ground terms, inspired by attributed variables, that avoids the
overhead of hash-table indexing. The experimental evaluation establishes
the usefulness of our representation, but indicates a high cost of map-
ping between this representation and Prolog’s standard terms. Thus, we
reuse previously implemented post-processing program transformations
to compensate for this overhead. We compare our approach with the
current state of the art, and give measurements of its effectiveness in the
K.U.Leuven CHR system.
keywords: Constraint Handling Rules, indexing, program transforma-
tion, term representation, attributed variables

1 Introduction

Constraint Handling Rules (CHR) [4] is a high-level rule-based declarative pro-
gramming language, usually embedded in a host language such as Prolog or
Haskell. Typical applications of CHR include scheduling [1] and type check-
ing [14]. CHR features multi-headed rules, i.e., rules with multiple predicates on
the left-hand side (the head), which sets it apart from conventional declarative
languages, e.g., Prolog or Haskell, where a rule’s head admits only one predicate
or function.

Multi-headed rules afford much of CHR’s expressive power by allowing to
easily combine information from distinct constraints via matching. However, as
the matching procedure significantly affects the complexity of rule evaluation [5],
this source of expressiveness often leads to performance bottlenecks. This effect is

? Post-Doctoral Researcher of the Fund for Scientific Research - Flanders (Belgium)
(F.W.O. - Vlaanderen)
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borne out by the approximative complexity formula of [5], where the multiplicity
of rule’s head appears in the exponent.

Aware of this problem, CHR developers have built data structures supporting
efficient indexing on variables (attributed variables [7]) and ground data (search
trees [8]). With [12] came the realization that O(1) indexing is essential for
implementing CHR algorithms with optimal complexity, which led to the use of
hash tables for indexing ground data, and the general result that the complexity
of CHR systems equals that of RAM machines [13]. CHRd [9] has slimmed the
original attributed variable indexing for faster evaluation of the class of direct-
indexed CHR and use in a tabulated environment.

In this paper we advance the research on CHR indexing with a high-level ap-
proach to efficient indexing on ground terms. Specifically, we make the following
contributions:

– propose an alternative to hash tables for indexing ground data, which does
not suffer from amortization-related overhead (Section 3),

– reuse previously developed post-processing program transformations [10] to
reduce the disadvantages of the new approach (Section 4),

– demonstrate the measurements of the usefulness of the presented technique
in K.U.Leuven CHR system (Section 5), and

– provide an implementation of the presented techniques (available online at
http://www.cs.kuleuven.be/~toms/CHR/AttributedData/).

The presentation begins with an overview of CHR and indexing in Section 2.
Section 3 describes our new representation for ground terms, the conversions
between the new representation and Prolog terms, and the program transfor-
mation for introducing these conversions. Section 4 discusses the overhead of
the conversions, and treats it with the post-processing program transformation.
Section 5 presents the experimental evaluation of the proposed transformations,
Section 6 relates our approach to other work, and Section 7 concludes.

2 Preliminaries

CHR is a language of multi-headed rewriting rules that is particularly well-
suited for specifying custom constraint solvers at a high-level. A CHR program
prescribes the transformations of a constraint store (a collection of user-defined
constraints), based on the built-in constraints of the host language. For the
purpose of this paper we consider Prolog as the host language; the built-in
constraints are Prolog predicates and equations (unifications) of Herbrand terms.

CHR Syntax. A CHR program is a finite set of rules of the form:

label @ Head ?=> Guard | Body

The label names the rule and may be omitted along with the trailing @. The
arrow ?=> denotes the kind of transformation a rule defines, and may be either
<=> or ==> (we use ?=> as a shorthand notation for both forms). There are
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:- chr_constraint arrow/2, merge/2.

pick @ merge(N,A), merge(N,B) <=> A<B | M is N+1, arrow(A,B), merge(M,A).

join @ arrow(X,A) \ arrow(X,B) <=> A<B | arrow(A,B).

Table 1. An example CHR program encoding the merge-sort algorithm

three kinds of CHR rules. The most general are simpagation rules of the form:
H1 \ H2 <=> G | B, where H1 and H2 are sequences of user-defined constraint
terms (the d constraint terms. A rule specifies that when constraints in the store
match H1 and H2 and the guard G holds, the constraints that match H2 can be
replaced by the corresponding constraints in B. The literal true represents an
empty sequence of constraint terms. The guard part, G |, may be omitted when
G is empty.

A simplification rule, which has the form: H2 <=> G | B, specifies that when
the stored constraints match the head, and the guard holds, the head constraints
can be replaced by the body constraints. A rule of this form can be represented
by a simpagation rule: true \ H2 <=> G | B.

A propagation rule, which has the form: H1 ==> G | B, specifies that when the
stored constraints match the head, and the guard holds, the body constraints can
be added to the store. A rule of this form can be represented by a simpagation
rule: H1 \ true <=> G | B.

Example 1. Consider the CHR program in Table 1. The simplification rule pick
states that each pair of stored constraints matching merge(N,A) and merge(N,B)
such that A<B should be replaced with the pair of constraints arrow(A,B) and
merge(M,A) where M=N+1. The simpagation rule join states that, in the pres-
ence of two constraints arrow(X,A) and arrow(X,B) such that A<B, the con-
straint arrow(X,B) should be replaced by arrow(A,B).

The program, by Thom Frühwirth, encodes the classical merge-sort algo-
rithm. The algorithm is executed in the bottom-up fashion: the pick rule selects
two sublists of elements at the same level for merging, whereas the join rule
merges two selected sublists together.

CHR Semantics. CHR has a well-defined declarative as well as operational se-
mantics [4, 3, 9]. The declarative interpretation of a CHR program is given by
the set of universally quantified formulas corresponding to the CHR rules, and
an underlying consistent constraint theory.

The original operational interpretation of a CHR program [4] is a non-deter-
ministic transition system. The transitions are made when an unsolved constraint
is added to the store, or by firing any applicable program rule.

The refined operational semantics [3]3 defines a more deterministic transition
system, specifying, among others, that rules are tried in textual order. An ex-

3 followed by most CHR implementations
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〈[merge(1, 80), merge(1, 40), merge(1, 50), merge(1, 70)], ∅〉 (1)

�∗ 〈[merge(1, 40), merge(1, 50), merge(1, 70)], {merge(1, 80)}〉 (2)

�pick 〈[arrow(40, 80), merge(2, 40), merge(1, 50), merge(1, 70)], ∅〉 (3)

�∗ 〈[merge(2, 40), merge(1, 50), merge(1, 70)], {arrow(40, 80)}〉 (4)

�∗ 〈[merge(1, 50), merge(1, 70)], {arrow(40, 80), merge(2, 40)}〉 (5)

�∗ 〈[merge(1, 70)], {arrow(40, 80), merge(2, 40), merge(1, 50)}〉 (6)

�pick 〈[arrow(50, 70), merge(2, 50)], {arrow(40, 80), merge(2, 40)}〉 (7)

�∗ 〈[merge(2, 50)], {arrow(40, 80), merge(2, 40), arrow(50, 70)}〉 (8)

�pick 〈[arrow(40, 50), merge(3, 40)], {arrow(40, 80), arrow(50, 70)}〉 (9)

�join 〈[arrow(50, 80), merge(3, 40)], {arrow(50, 70), arrow(40, 50)}〉 (10)

�join 〈[arrow(70, 80), merge(3, 40)], {arrow(50, 70), arrow(40, 50)}〉 (11)

�* 〈[merge(3, 40)], {arrow(50, 70), arrow(40, 50), arrow(70, 80)}〉 (12)

�* 〈[ ], {arrow(50, 70), arrow(40, 50), arrow(70, 80), merge(3, 40)}〉 (13)

Table 2. An example derivation for the merge-sort program

tended version of the same transition system is used by the set-based operational
semantics [9].

Example 2. The merge-sort program from Example 1 constructs a sorted list
from a collection of sorted sublists. The head of a sorted sublist is given by
means of a merge(L,N) constraint, where 2L−1 is the sublist’s length and N is
the sublist’s first element. The arrow/2 constraints model the edges between the
nodes of a sorted sublist.

Table 2 outlines an example derivation for the program under the refined
operational semantics. For the clarity of the presentation, the irrelevant transi-
tions and the parts of the execution state not affected by the derivation have
been omitted. For each presented derivation step, the table shows the current
goal, with the active constraint underlined, and the contents of the constraint
store. In the initial goal each sublist consists of a single element, and hence
all sublists have the same length (equal to 21−1). The nodes are collected in
the constraint store until two same-length nodes match the head of the pick
rule. The rule transforms such two nodes into a sorted sublist and increments
the length. The join rule sorts the nodes within each individual sublist. At
the end of the derivation, the constraint store contains a collection of arrow/2
constraints representing the sorted list.

CHR Indexing. Indexing in CHR facilitates retrieval of suspended constraints
to match partner constrains in rule heads. Efficient (constant-time) constraint
store indexing has been traditionally implemented by means of attributed vari-
ables [6], which provide a way to associate Prolog variables with mutable data
represented as arbitrary terms. In the context of CHR, a variable’s attribute
corresponds to those stored constraints, in which the variable is involved. The
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attribute term has the form: attr(Index 1, . . . ,Indexn), where each Index i is a
data structure, typically a list, that contains all constraints on the variable with
a particular constraint symbol. The presence of all variable’s constraints in its
attribute expedites matching when the variable is shared among the constraints
in the heads of the rules.

Constraint store indexing based on attributed variables is efficient, but not al-
ways practical—for example, it is not feasible for ground constraints, in which no
variables are involved. For that reason, in addition to using variable attributes,
early implementations of CHR accumulated constraints in global, unordered
lists. This representation supported O(1)-time insertion of the constraints, how-
ever, constraint lookup and deletion were—in the worst case—linear in the store
size. The introduction of hash tables [12] facilitated indexing on ground data,
yielding amortized constant time complexity for all operations. A hash-table
constraint store is defined as an array, in which every element represents a set
of colliding constraints (i.e., constraints that evaluate to the same value of the
hash function). The table is initialized to a small size, and dynamically expanded
whenever the number of constraints exceeds given threshold. The expansion in-
volves replacing the current array with an array of doubled size, and re-evaluating
the hash function for all elements. Frequent evaluation of the hash function, the
number of colliding constraints, and the resizing operation incur constant, but
potentially considerable, overhead on processing the hash tables, which makes
them altogether slower than attributed variables.

3 Attributed Data

In this section, we consider constraints containing arguments that are ground
terms. If such arguments are matched against each other in rule heads, then
constant-time matching is realized by means of a hash-table index on these
ground arguments.

As an alternative to hash tables, we propose attributed data, which provide
O(1) indexing with constant factors closer to those of attributed variables. The
key insight underlying our approach is that the CHR run time can internally use
an attributed-variable–like representation for externally provided ground terms.

3.1 Indexing Key Declarations

In our approach, ground arguments of the constraints that are matched against
each other in rule heads—and hence serve as indexing keys—are internally rep-
resented using a special data type key type. The programmers indicate such con-
straint arguments using the new annotation ‘as chr key’. The specifier ‘+type
as chr key keytype’ states that the argument in question is ground (+), and uses
type as its external representation and keytype as its internal representation. The
abstract key type for a given indexing key in a CHR program is generated auto-
matically by the CHR compiler based on the occurrence pattern of that key in
the heads of the program rules.
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Example 3. In the merge-sort program from Example 1, since the second argu-
ment of merge/2 as well as both arguments of arrow/2 are always ground and
correspond to the numbers being sorted, a programmer may decide to capture
all of them using the same internal representation. Denoted as elem key, this
representation is declared as follows:

:- chr_constraint
merge(+int,+int as_chr_key elem_key),
arrow(+int as_chr_key elem_key,+int as_chr_key elem_key).

3.2 Indexing Key Representation

The instances of the new data type resemble the attribute terms of attributed
variables. The key type representation, however, does not include the actual
variables to avoid unnecessary indirection.

The internal representation I of a ground indexing key in a CHR program
is a term:

I = key(E,Index 1, . . . ,Indexn)

where each Index i is an index on an argument position of that key in a head
constraint of some program rule, and E is the key’s original external value.

The number and form of the indexes in the internal representation for a
particular key is orthogonal to the use of attributed data, and is determined
by the CHR compiler based on the form of the rule heads and the subset of
head constraints available when looking for a matching partner. For a detailed
discussion of this issue we refer the reader to Section 3.2 of [8].

For the purpose of this paper we assume that the default representation of
argument indexes Index i is a flat list of constraint suspensions, with predefined
operations for adding and removing the constraints. The main structure itself
can be updated (e.g. for replacing an old index with a new one) by the destructive
argument update predicate setarg/3 implemented by most Prolog systems.

Example 4. Since two of the three argument positions declared as indexing keys
in Example 3 are never used to retrieve partner constraints, the CHR compiler
decides that only one index—for the first argument of arrow/2— will be ex-
ploited to speed-up the matching of the join rule.

Hence, given the number 80 as the external representation, the corresponding
internal representation, assuming that the single index is empty, is key(80,[]).

Definition 1 (Conversion Functions). For a ground indexing key type t, the
injective conversion function φ maps an external value tE of t onto the internal
representation tI of t:

φ(tE) =


h[tE ] if h[tE ] is defined
tI otherwise

such that tI = key(tE,∅1, . . . ,∅n)
and h := h[tE → tI]
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where h is a global hash table relating the external values of ground indexing
keys to their known internal representations. The injective conversion function
ψ = φ−1 maps the internal representations tI onto the external values tE:

ψ(key(tE,Index 1, . . . ,Indexn)) = tE

Example 5. The following internal representations are initially computed for the
list of numbers given in the query in Example 1: φ(80) = key(80,[]), φ(40)
= key(40,[]), φ(50) = key(50,[]), φ(70) = key(70,[]). Figure 1 depicts
these internal representations, as well as the example hash table (with a linked
list of buckets) underlying φ.

Hashtable

80   

50   

70   

40   

key(80,  )

key(50,  )

key(70,  )

key(40,  )

Fig. 1. Internal representation of 80, 40, 50 and 70, and hash table for φ.

3.3 Source-to-Source Transformation

In this section we define a source-to-source transformation for mapping between
the external and internal representations of ground indexing keys. Without loss
of generality, we only formalize the transformation for a single key type. Multiple
keys are easily supported by repeated application of the transformation, while
making sure to avoid name clashes.

The conversion rule Φ applies the conversion function φ at run time:

Definition 2 (Conversion Rule). The conversion rule Φ replaces the external
value of a ground indexing key argument ti in a constraint term c/n with its
internal representation t′ = φ(t):

c(t1,. . .,ti,. . .,tn) <=> t′i = φ(ti), c′(t1,. . .,t
′
i,. . .,tn).

Example 6. The dynamic conversion rule for the arrow/2 constraint from the
merge-sort program is of the form:
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arrow(X,Ne) <=> Ni = φ(Ne), arrow’(X,Ni).

Definition 3 (Converted Rule). The converted CHR rule is defined as:

φ(H ?=> G | B) = H ′ ?=> G′, G | B

where

– H ′ differs from H in that any constraint c(t1, . . . , ti, . . . , tn) is replaced by
its converted form c′(t1, . . . , xi, . . . , tn), where xi is a fresh variable.

– the new guard G′ relates the original arguments of each constraint to the new
ones: G′ contains one ti = ψ(xi) for each converted argument.

Example 7. The converted join rule from the merge-sort program is of the form:

join’ @ arrow’(X1,AI) \ arrow’(X2,BI) <=>
X = ψ(X1), X = ψ(X2),
A = ψ(AI), B = ψ(BI), A<B |
arrow(A,B).

Definition 4 (Converted Program). The converted CHR program φ(P ) is
defined as the set of converted rules R comprising the original program, the
functions φ and ψ, and the encoding of Φ:

φ(P ) = φ(R) ∪ φ ∪ ψ ∪ Φ

3.4 Elaborated Example

Consider the merge-sort program, and the query

?- merge(1,80), merge(1,40), merge(1,50), merge(1,70).

evaluated as shown in Table 2. In the execution state (9), arrow(40,50) is the
active constraint, whereas arrow(40,80) and arrow(50,70) are suspended in
the constraint store. In the following derivation step, the join rule is triggered,
and arrow(40,80) is retrieved from the store to serve as the partner constraint
to match the rule’s head.

Figure 2 illustrates two instances of this situation: (a) with indexing based on
a hash table, and (b) with indexing based on attributed data. In the former case,
retrieving the required partner constraint involves hashing the number 40 into
the table, traversing the bucket list to find the appropriate bucket, and locating
the constraint within the bucket. In the latter case, the internal representation
key(40,L) provides direct access to the linked list containing arrow(40,80).
Clearly, using attributed data avoids the overhead of hashing into the table and
of traversing the bucket list.
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Hashtable

arrow(40,50)

arrow(40,80)

arrow(50,70)

80   

50   

70   

40   

(a) Hashtable

arrow'( , )

key(40,  )

arrow'( , )

key(80,  ) key(50,  )

arrow'( , )

key(70,  )

(b) Attributed Data

Fig. 2. Situation during the merge-sorting of 80, 40, 50 and 70.
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4 Post-Processing

The experimental results in Section 5 indicate that the performance improve-
ment obtained by better indexing is offset, or in some cases even surpassed,
by the run-time overhead of applying the conversion functions. In this section
we outline a transformation that statically eliminates most of this overhead; it
was previously used to avoid similar performance issues in other transformations
based on term flattening [10]. The effectiveness of the transformation is borne
out by the benchmarks in Section 5.

original converted

c(X)
φ

**UUUUUUUUUUUUUUU

c′(Y )
ψ

ttiiiiiiiiiiiiiiii

c(Z)
φ

**UUUUUUUUUUUUUUUU

c′(U)
ψ

ssgggggggggggggggg

. . .

(a) Actual Situation

original converted

c(X)
φ

))SSSSSSSSSSSSSSSS

c′(Y )

��
c′(U)

��. . .

(b) Ideal Situation

Fig. 3. Transitions between the original and converted constraints

Alternating the conversions between the internal and external argument rep-
resentations is a major source of runtime overhead. In a typical scenario (Fig-
ure 3(a)), an external value is converted into the internal representation and
matched in a head of a rule, then it is converted back in the rule’s body for
calling a new constraint, converted again to match another rule, and so on. To
avoid this overhead, the transformed rules should operate solely on the inter-
nal representation of the arguments, whereas the external values should be used
only by the queries external to the programs. We propose a four-step rewriting
procedure that aims to trigger this ideal scenario (Figure 3(b)). Execution of a
program enhanced with the procedure consists of two phases:

(1) conversion of an argument’s external value to the internal representation,
and

(2) processing of the internal representation.

For all but the most trivial programs, we expect the runtime cost of (1) to be
marginal with respect to the cost of (2).
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Our rewriting procedure comprises the following steps.

Step 1: Make conversion explicit.
Unfold constraint calls according to the conversion rules.

Example 8. Consider the join rule from the program in Table 1:

arrow(X,A) \ arrow(X,B) <=> A < B | arrow(A,B).

After conversion, the rule has the form:

arrow’(XI1,AI) \ arrow’(XI2,BI) <=>
X = ψ(XI1), X = ψ(XI2),
A = ψ(AI), B = ψ(BI),
A < B | arrow(A,B).

By applying Step 1 to the above rule we obtain:

arrow’(XI1,AI) \ arrow’(XI2,BI) <=>
X = ψ(XI1), X = ψ(XI2),
A = ψ(AI), B = ψ(BI),
A < B | arrow’(φ(A),φ(B)).

We refer the reader to the work of Tacchella et al. [15] for the formal
definition and correctness proof of unfolding of CHR rules.

Step 2: Eliminate identity conversion.
Apply the following equation from left to right:

∀t : φ ◦ ψ(t) = t

The transformation is valid based on the property that φ is the inverse of
ψ.

Example 9. Applying Step 2 to the last rule in Example 8 yields:

arrow’(XI1,AI) \ arrow’(XI2,BI) <=>
X = ψ(XI1), X = ψ(XI2),
A = ψ(AI), B = ψ(BI),
A < B | arrow’(AI,BI).

Step 3: Convert external values of matchings to the internal representations.

Apply the equivalence from left to right:

∀t1, t2 : ψ(t1) = ψ(t2)⇔ t1 = t2

The transformation is valid based on the property that ψ is injective.
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Example 10. Applying Step 3 to X in the rule from Example 9 yields:

arrow’(XI,AI) \ arrow’(XI,BI) <=>
X = ψ(XI),
A = ψ(AI), B = ψ(BI),
A < B | arrow’(AI,BI).

Step 4: Clean up.
Drop unused conversion guards and refold the unfolded constraint calls
that could not be simplified.

Example 11. Applying Step 4 to the rule in Example 10 yields:

arrow’(XI,AI) \ arrow’(XI,BI) <=>
A = ψ(AI), B = ψ(BI),
A < B | arrow’(AI,BI).

In general, these rewriting steps are not sufficient to enforce the ideal scenario of
Figure 3(b). However, as the results in Section 5 show, they have good practical
effects.

5 Evaluation

We implemented our approach in K.U.Leuven CHR [11] on SWI-Prolog [16]. The
implementation consists of two components: (1) a pre-processor, which trans-
forms a CHR program with key annotations into its converted form, and (2)
the actual code generator of the CHR compiler, which generates attributed data
indexing instructions and emits definitions for the conversion functions. Note
that the pre-processor performs the transformations for all keys simultaneously
rather than sequentially. In doing so, it avoids generating multiple intermediate
conversion rules for constraints involving more than one key type.

We have evaluated our implementation on several standard CHR bench-
marks. All run times, given in seconds for the original programs and relative
to the original for the transformed versions, were measured on a MacBook Pro
Intel Core Duo 1.83 GHz, with 1 GB RAM. Our benchmark suite includes the
following programs:

– chrg, a CHRg parser with an exponential number of parses
– dijkstra, Dijkstra’s shortest path algorithm
– fib, computation of fibonacci numbers, with effective memoing
– fib2, computation of fibonacci numbers, with ineffective memoing
– mergesort, mergesort algorithm
– flat ram, RAM machine interpreter, flattened by symbol specialization [10]
– reverse, reversing chain of list cells
– turing, Turing machine simulator, running the copy program
– uf opt, optimal union-find algorithm
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index representation
benchmark hash table attr. data relative post-processed relative

chrg 2.17 2.10 96.8% 1.58 72.8 %
flat ram 4.69 4.31 91.9% 2.50 53.3%
mergesort 3.33 4.89 146.8% 1.85 55.6 %
reverse 2.55 3.25 127.4% 1.92 75.3%
uf opt 0.34 0.38 111.8% 0.25 73.5%
turing 1.50 1.31 87.3% 1.19 79.3%
wfs 1.32 0.88 66.7% 0.85 64.4%

fib 1.24 1.53 123.4% 1.52 122.6%
fib2 1.61 1.30 80.7% 1.05 65.2%

dijkstra 2.26 4.52 200.0% 3.53 156.2%

Table 3. K.U.Leuven CHR run times (in sec.) for attributed data benchmarks

– wfs, well-founded semantics algorithm.

For each benchmark, we have manually added the as chr key annotations
for the argument positions according to the following prioritized guidelines:

1. If two head constraints share more than one variable, we do not annotate the
corresponding argument positions of those variables, because they are better
served by multi-argument indexing. For instance, consider a rule head of the
form c(X,Y), d(Y,X). Although indexing on a single argument, i.e., using
either X or Y, does work, indexing on the combination of both arguments is
usually more efficient.

2. If two head constraints share exactly one variable, we annotate the corre-
sponding argument positions of that variable with the same key.

3. If no variables are shared, no index is required.

Most benchmarks require a single key type. The exceptions are ram flat and
turing, each using two key spaces to represent instruction labels/states and data
addresses, and wfs with separate key spaces for atoms and clause identifiers.

Table 3 lists the run-time results of exploiting attributed data in K.U.Leuven
CHR, measured for plain hash tables, plain attributed data, and attributed data
with post-processed rule bodies.

The first block of seven benchmarks clearly shows the positive effects of our
approach. Although, the attributed data used alone causes a slow-down (up to
about 50% for mergesort), when augmented with post-processing, it improves
the run time by 20% to 50%.

The second block illustrates two cases of slow-downs incurred by the use of
attributed data. The first benchmark, fib, performs one hash-table lookup per
new constraint, and the initial attributed data conversion preserves that count.
Hence, the attributed data manipulation is pure overhead (25%). The second
benchmark, fib2, modifies the simpagation rule of fib:

fib(N,F1) \ fib(N,F2) <=> F1 = F2.

into a simplification rule:
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fib(N,F1), fib(N,F2) <=> F1 = F2, fib(N,F1).

This modification causes the parameter N to be reused in the new call in the rule’s
body. As a consequence, attributed data requires only one hash-table lookup for
every two new constraints, which results in a visible speed-up.

The second slow-down, in dijkstra, results form a limitation of our cur-
rent implementation, which does not allow multi-argument indices involving
attributed data arguments. For this benchmark, such a multi-argument index
would be more efficient than a single-argument attributed data index.

6 Related Work

Several programming languages define features that resemble our concept of
attributed data. The as chr key annotation is related to (primary, secondary
and foreign) keys in database tables and indexing declarations in some Prolog
systems.

The conversion function φ relates to hash consing—a technique, originated in
Lisp, for mapping to and representing terms by unique (hash) values. Although
the main aim of hash consing is to reduce memory consumption by increased
sharing, it is also used to speed up equality tests.

The solver types facility of Mercury [2] also imposes a dual view of constraint
arguments. The internal representation type is defined by the library program-
mer, rather than generated automatically. Externally, the solver type is abstract,
but coercion functions should be provided for external representations. Finally,
a folklore optimization technique in C/C++ adds (pointer) fields to structures
to compactly represent lists (and other data types) that contain them.

7 Conclusion

We have presented attributed data—a new term representation that facilitates
improving the efficiency of CHR indexing at a high level. A complementary post-
processing procedure compensates for possible overhead of conversions between
the new representation and the standard representation of Prolog terms.

Our technique has been implemented for the K.U.Leuven CHR system on
SWI-Prolog. Evaluation on a set of benchmarks shows that using attributed
data enables performance improvement, and that post-processing is critical to
fully realize this potential.

As a further optimization of the approach, we could directly expose the ab-
stract key types in the situations when there is no preference for the external
argument representation. For example, programmers often use variables and in-
tegers as identifiers in CHR constraints. The nature of the data type is of no
concern, as long as it supports unique value creation and value comparison. The
appropriate choice of the abstract key type could eliminate unnecessary indirec-
tions of attributed variables or hash tables.

Two other interesting avenues for future work involve introducing support
for automated inference of key type annotations, and extending attributed-data
indexing to combinations of multiple arguments.
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About Redundant Sudoku Rules
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Abstract. The rules of Sudoku are often specified by twenty seven
all different constraints, which we will call big rules. It is shown that
many subsets of six of these big rules are redundant, and that six is
maximal. Any all different constraint can be specified as a (quadratic
sized) set of binary inequalities, which we will call small rules. The re-
dundancy of small rules is also investigated.

1 Introduction

A very common formulation of the 3x3 Sudoku [1] rules is one in which (a)
all numbers in the puzzle are said to be in [1..9] and (b) the numbers in each
column, row and box are said to be different. A CLP-program would typically
code the latter as 27 all different constraints of 9 variables each: we will refer
to these constraints as the big rules. We will use often the word Sudoku in italics
as an abbreviation of the 27 big rules.

Any all different constraint can also be formulated in terms of binary in-
equality constraints. For example, all different([A,B,C,D]) is the conjunc-
tion of the constraints A 6= B, A 6= C, A 6= D, B 6= C, B 6= D and C 6= D. We
will refer to these binary 6=-constraints as the small rules. As we will see, Sudoku
can be rewritten as 810 different small rules.

For most people it is intuitively clear that some of the small rules must be
redundant, i.e., implied by the others. It might be less obvious which ones are
redundant, let alone how many. On the other hand, often, the same people are
convinced that not a single big rule is redundant. These two issues form the
topic of this paper: what is the largest redundant set of big rules, and the largest
redundant set of small rules.

The paper proceeds as follows. We start by revising some Sudoku terminology
in Section 2. In Section 3 we introduce a pictorial representation of big Sudoku
rules that will make proofs much easier. In Section 4 we prove two positive
lemmas that can be used to easily reason about the redundancy of subsets of
the 6 big rules. In Section 5 we describe a Prolog program that systematically
applies the two positive lemmas to find all redundant sets of six big rules. While
doing this we detect 7 negative lemmas. This results in a complete classification.
In Section 6 we turn to the study of sets of seven big rules and show that none
of them are redundant. Again, our Prolog program discovers a new negative
lemma, whose proof is also presented. In Section 7, we show that at least 20%
of the small rules can be redundant, and conjecture that no more are possible.
Finally, in Section 8 we conclude and provide some historical notes.
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2 Terminology

The usual formulation of Sudoku refers to 27 regions on the board:

– the 9 rows, denoted as R1 ... R9
– the 9 columns, denoted as C1 ... C9
– the 9 boxes, denoted as B1 ... B9

as shown in the picture below. By an abuse notation we also write R3 if we mean
that the all different constraint on row R3 is enforced or true.

C1C2C3C4C5C6C7 C9C8

R1

R2

R4

R5

R7

R6

R8

R3

R9

B3B2B1

B4

B7 B8

B5 B6

B9

Individual cells of a puzzle are denoted as
A11, A12 ... A99. We use the word horizontal
(vertical) chute to refer to three horizontal (ver-
tical) boxes - the usual term is band (stack). For
instance, {B2, B5, B8} denotes a vertical chute.
In the usual specification of Sudoku, each cell is
involved in 20 small rules: 8 in the same box, 6
more in the same row and 6 more in the same
column. Since there are 81 cells, and each rule
is posted twice, there are in total 810 different
small rules. When a set S of constraints is equiv-
alent to the conjunction of all the Sudoku constraints, we use the short phrase:
S is Sudoku.

3 Representing Sets of Sudoku Rules

Given the above notation, we could easily represent sets of rules as, for example,
{R1, R2, R3, B1, B5, B9}. However, this only works well for small sets. Since
we will be dealing mostly with sets of more than 20 big rules, we develop a
graphical representation. Our representation always shows the borders of the
boxes of a Sudoku board. A missing column, row or box rule will appear as a
shaded column, row or box, respectively. Figure 1 shows an example.

Fig. 1. The left shows a Sudoku board with all 27 rules, the right shows one with only
22: {C1, C3, C4, C5, C6, C7, C8, C9, R1, R2, R3, R4, R6, R7, R8, R9, B1, B3, B4, B6, B8, B9}

The pictures provide a quick and intuitive insight into which rules are present
and which are not. Note that the absence of a rule does not mean it is violated,
simply that it has not been specified in the associated model.
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We will also use Missing(n) to denote the set {S ⊆ Sudoku|#S = 27− n}.
For example, every element of Missing(5) has 22 big rules.

We can in a similar way show the set of rules defined only for a given a chute:
this is illustrated in Figure 2.

Fig. 2. {R1, R2, R3, B1, B2, B3}, {R1, R2, R3, B1, B3} and {R1, R3, B1, B3}

4 Two Constructive Lemma’s

Lemma 1.

Proof The pictured lemma says that the set of rules {R1, R2, R3, B1, B3} implies
also B2. The proof can be given by trying to fill the chute with 27 numbers, so
that is fulfilled (and of course with all numbers being in [1..9]). Consider
first where we can place a 5. There must be exactly one 5 in R1, one 5 in R2
and one 5 in R3, so there are in total three 5’s in the chute. There is also exactly
one 5 in B1, and one 5 in B3, so the remaining 5 must be in B2. And this holds
also for the other numbers, so B2 is satisfied.

The dual of Lemma 1 is Lemma 2: we leave its proof to the reader.

Lemma 2.

The lemma is clearly trivial and we can state the fol-
lowing corollary by composing the above two lemmas:

Corollary 1.

and are both Sudoku.

Proof Glue together twice the trivial lemma with Lemma 1 or Lemma 2, and
obtain the result immediately.

It is now clear that every single big rule is, by itself, redundant !
The two lemma’s really are constructive: they show how to derive one new big

rule from a set of big rules. The following two theorems exploit that constructive
power to reason about redundancy.
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Theorem 1.

is Sudoku.

Proof We prove this by repeatedly using Lemma 1 and 2 as follows:

III I 3*I

where the labels of the arcs indicate which lemma is used, and how many times
it is used.

The proof of Theorem 2 is also left to the reader.

Theorem 2.

is Sudoku.

The theorems show that at least two elements of Missing(6) are large enough
for representing Sudoku. Note that there are many symmetric versions of the the-
orems, but we have of course chosen the ones that are visually most pleasing. In
the next section we will investigate all elements of Missing(6) that are redun-
dant.

5 A Full Classification of Missing(6)

Lemmas I and II give us a way to increase the number of big rules, as shown in
the proof of Theorem 1. We use this in the algorithm of Figure 3 (where n is a
parameter of the algorithm) to determine all elements of Missing(6) that are
redundant (i.e., those for which the algorithm will output S is Sudoku).

While the number of elements in Missing(6) is relatively small (296,010), it
is much smaller if we eliminate from Missing(6) those elements that can be ob-
tained from the spatial symmetries of Sudoku. We have programmed Algorithm
I in Prolog (of course) and run it over the (reduced) set of Missing(n) for values
of n in 2..6. To our surprise, the algorithm only got stuck for the following seven
values of C:
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for each S ∈Missing(n) do
C ← copy(S)
while Lemma 1 or Lemma 2 is applicable to C

apply it to C
if C == Sudoku

then output S is Sudoku
else output S got stuck in C

Fig. 3. Algorithm I

It is clear that if a C is not Sudoku, then any subset of C is not Sudoku either,
i.e., the S from which C was derived by lemma application, is not Sudoku. So
we set off to prove that the above sets of big rules are not Sudoku. This resulted
in the seven negative lemmas provided in the next section.

5.1 Seven Negative Lemmas

For each of the configurations C above, we can prove the negative result that C
is not Sudoku. The proof of each lemma consists of a simple picture whose details
we explain for the first proof. We expect the reader to work out the details for
the others.

Lemma 3.

is not Sudoku.

Proof

4 5 5 4

Explaining the proof: consider a completely filled out Sudoku puzzle that
satisfies the full set of big rules, and which has a 4 in A11 and a 5 in A13.
This situation is depicted in the left part of the proof. If we swap the 4 and
5 we obtain the picture on the right, where the shadows indicate the only two
big rules that are violated by the swap. Clearly, the filled out puzzle with the
two numbers swapped is not a valid solution to the full set of rules, but it only
violates C1 and C3. That proves the lemma.
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The statements and proofs of the other six negative lemmas are similar: we
always start from a completely filled out Sudoku puzzle, with numbers 4 and 5
at particular places. It is easy to check that such an initial puzzle indeed exists.

Lemma 4.

is not Sudoku.

Proof

4 5

Lemma 5.

is not Sudoku.

Proof

4 5 5 4

Lemma 6.

is not Sudoku.

Proof

4

4

5

5 4 5

4 5
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Lemma 7.

is not Sudoku.

Proof

45

4

4 5

5

Lemma 8.

is not Sudoku.

Proof

4

4

4

5

5

5 5

5

5

4

4

4

Lemma 9.

is not Sudoku.

Proof

54 5

5 44 5

4

5.2 Using the Negative Lemmas

We can increase the accuracy of our first algorithm by noticing that subsets of
non-Sudoku are also non-Sudoku:
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for each S ∈Missing(n) do
C ← copy(S)
while Lemma 1 or Lemma 2 applicable to C

apply a Lemma to C
if C == Sudoku

then output S is Sudoku
else output S is not Sudoku

Fig. 4. Algorithm II

We have run the algorithm with n = 6 and, for each element S of (the
reduced) Missing(6), we have modified the program to generate a picture with
some annotations. These are provided in the Appendix. It turns out there are
40 different elements in (the reduced) Missing(6) that are Sudoku.

6 No Element in Missing(7) is Sudoku

When run with n = 7, Algorithm I gets stuck in only one new set of big rules.
This results in one more negative lemma:

Lemma 10.

is not Sudoku.

Proof

4 5

5 4

4

4

4 5

5

5

Running Algorithm II for n = 7 shows that no element in Missing(7) is
Sudoku. This means that six is the maximal size of a redundant set of big rules.

7 Redundant Sets of Small Rules

Recall that Sudoku can also be specified by 810 small rules, which are obtained
by expanding the big rules to binary inequalities. We will denote the set of all
small rules Sudokusmall. In this section we will briefly study the redundancy of
sets of the small rules. In analogy with Missing(n) which was meant for big rules,
we introduce the notation Missingsmall(n) = {S ⊆ Sudokusmall|#S = 810−n}.
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The output of Algorithm II for n = 6 (shown in the Appendix) indicates that
the largest n for which an element of Missingsmall(n) is known to be Sudoku is
162: indeed, the big rules of Theorem 2 give rise directly to 648 small rules. We
name this set of small rules Small648. Theorem 2 now can be read as: Small648
is Sudoku.

We have used Small648 in an experiment which needed two more ingredients.
The first is a large set of difficult Sudoku puzzles. For this we took the set from
Gordon Royle’s website [2] who has collected a large set (more than 50.000)
distinct and minimal Sudoku puzzles with 17 given entries. Here minimal means
that while with the 17 givens the puzzle has a unique solution, if any one given
is removed the puzzle has more than one solution. We refer to this set as GR.

The second ingredient is a way to transform a given Sudoku solver P to take
into account less small rules. Because of the symmetries, this needs to be done
only 11 times, so we did that by hand. Our P was adapted from an example
CLP(FD) program from the B-Prolog [3] distribution and run under B-Prolog.
Since we did not know in advance how many examples we would run, we wanted
a fast CLP(FD) system. However, the programs also run in e.g., SICStus Prolog.

for each s ∈ Small648 do
S ← Small648 \ {s}
transform P to take into account only S
run P on every problem p ∈ GR
if some p has more than one solution

then output S is not Sudoku
else output S maybe is Sudoku

Fig. 5. Algorithm III

It turns out that the algorithm could always decide that S is not Sudoku.
This proves that the set Small648 forms a locally minimal set of small rules
equivalent to Sudoku. Another way to phrase this result is: Sudoku only needs
80% of its small rules.

Since the number of example problems that needed to be tried before the
modified program P finds more than one second solution is so small, we dare to
conjecture the following:

Conjecture 1. No element of Missingsmall(n) is Sudoku for n > 162.

It is clear that this conjecture should not be attacked with blind and brute
force.

8 Discussion and Conclusion

On 18 May 2008, in rec.puzzles, the following message was posted:

Quick question that I though someone here might know the
answer to - or be able to suggest a different forum.
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If you have a completed sudoku grid, you supposedly need
to check all 9 rows, then all 9 columns, then all 9 boxes
to validate that it has been completed correctly. But it’s
pretty obvious that the grid can be validated with somewhat
less checking. For instance, if each of the boxes has been
checked and the first 2 rows are checked, there’s no need
to check the 3rd row.

So what’s the minimum amount of checking that needs to be
done to show that a completed 9x9 grid is valid?

Before we even saw this post1, other people tried to answer, but it was clear
that none had the full picture presented here. Still, the original poster had figured
out our Theorem 2 on his own, but got stuck there. It was quite satisfactory that
our research started out of curiosity and ended up being of use to someone !

Redundant constraints are often important for a solver to be able to find
a solution efficiently. So it might seem a futile exercise to find out whether a
particular constraint satisfaction problem has redundant constraints. However,
understanding better redundant Sudoku rules might give insight in why the 16-17
problem is so hard. Also, studying redundant Sudoku constraints is interesting
in itself, because it seems not generally known that so many of the big and small
Sudoku rules are redundant. On the other hand, it is difficult to add rules and
stay Sudoku: it is clear that any additional small inequality rule changes the
game.

During our discussion, one particular constraint was considered sacred: all
cells have a value in 1..Max, with Max = 9. It is clear that one cannot maintain
any big constraint for Max strictly smaller than 9. But it seems worthwhile
to investigate Max = 10 (or more) for the usual Sudoku constraints and for
particular givens: the uniqueness of the solutions under such circumstances could
result in a better understanding of Sudoku. It is also clear that our techniques
can be readily applied to the investigation of Sudoku puzzles of different sizes. In
particular, the generalization of our lemmas 1 and 2 to other sizes is not difficult,
and the algorithms remain correct. Still, for large sizes, they might be not as
helpful.
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Appendix

All Elements of Missing(6)

Each element of Missing(6) is annotated as follows:

– upper left corner: indicates the number of small rules that result from ex-
panding the big rules displayed

– lower left corner: S means Sudoku; the other characters indicate in which
configuration algorithm I got stuck; M corresponds to Lemma 4, 2 corre-
sponds to Lemma 5, 4 corresponds to Lemma 6, T corresponds to Lemma
7, xxx corresponds to Lemma 9, and F corresponds to Lemma 8,
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678

T

678

S

681

S

675

2

678

2

672

M

678

4

684

4

672

4

678

4

672

2

678

S

672

M

675

M

675

T

678

S

681

S

675

2

678

xxx

672

M

675

M

675

S

678

T

678

S

678

M

675

2

675

S

678

S

675

S

678

2

675

M

672

S

678

S

678

2

675

S

684

4

687

4

693

4

687

4

690

4

684

S

690

S

684

S

690

S

687

S

690

S

687

4

690

4

687

S

687

S

690

S

702

4

702

4

702

4

702

F


