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Preface

This volume contains the proceedings of the Bytecode 2009 workshop, the Fourth
Workshop on Bytecode Semantics, Veri�cation, Analysis and Transformation, held
in York, UK, on the 29th of March 2009 as part of ETAPS 2009.

Bytecode, such as produced by e.g. Java and .NET compilers, has become an
important topic of interest, both for industry and academia. The industrial interest
stems from the fact that bytecode is typically used for the Internet and mobile devices
(smartcards, phones, etc.), where security is a major issue. Moreover, bytecode is
device-independent and allows dynamic loading of classes, which provides an extra
challenge for the application of formal methods. In addition, the unstructuredness of
the code and the pervasive presence of the operand stack also provide extra challenges
for the analysis of bytecode. This workshop focuses on the latest developments in
the semantics, veri�cation, analysis, and transformation of bytecode; encompassing
both new theoretical results and tool demonstrations. There were 16 submissions.
Each submission was reviewed by at least 3 programme committee members. The
committee decided to accept 11 papers. The programme also includes 1 invited talk
by Thomas Jensen.

As the workshop chairs, we would like to thank the program committee, whose
invaluable help and enthusiasm ensured the success of the event. We would also like
to thank all anonymous referees, for their hard work, particularly as much of this
had to be done over their Christmas holidays.

March 2009 Elvira Albert
Samir Genaim
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From Stack Maps to Software Certificates

Thomas Jensen
CNRS

IRISA, Campus de Beaulieu, F-35042 Rennes, France

One of the most successful applications of the principle of Proof Carrying Code
has been to simplify the byte code verification of Java byte code. By providing
additional typing information with a class file (in the form of the so-called stack
maps), the task of byte code verifier has been simplified. Initially meant to facilitate
byte code verification on embedded, resource-constrained devices, the idea has now
been adopted in standard Java.

In this talk, we’ll review the basic principles behind Lightweight Byte Code
Verification and the notion of stack map. We’ll then demonstrate how the idea
of sending a certificate along with the byte code to facilitate verification can be
extended to other kinds of security-related properties, explain how the information
can be compressed into suitable stack maps, and discuss to what extent such an
extended byte code verifier can be incorporated into a Trusted Computing Base
through certification inside a proof assistant.
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Pervasive Load-Time Transformation for
Transparently Distributed Java

Phil McGacheya Antony L. Hoskinga J. Eliot B. Mossb

a Department of Computer Sciences, Purdue University, West Lafayette, IN, USA
b Department of Computer Science, University of Massachusetts Amherst, Amherst, MA, USA

Abstract

The transformation of large, off-the-shelf Java applications to support complex new functionality essentially requires gener-
ation of an entirely new application that retains the execution semantics of the original. We describe such a whole-program
modification in the context of RuggedJ, a dynamic transparent Java distribution system.
We discuss the proxy-based object model that allows remote Java objects to be referenced in the same way as those residing
on the current virtual machine, the optimizations that allow us to bypass proxies in the case of purely local or remote object,
and the mechanisms needed to guarantee that static data remain unique in a distributed system. We then detail some of the
more interesting features involved when implementing this object model in rewritten bytecode, including transformations
required within method bodies and coordination between bytecode and the run-time system that distributes an application
across the network.

Keywords: Java, Bytecode Transformation, Load-Time Rewriting, Transparent Distribution, Object Model

1 Introduction

Automatic code modification for Java applications is a widely-used technique that adds
functionality to existing software. Aspect-oriented programming or bytecode rewriting
make it trivial for programmers to implement cross-cutting concerns such as logging, error
handling, or profiling without modification to original applications. More complex is the
comprehensive transformation of an application; generating an entirely new program that
retains the execution semantics of the original, while adding substantive new functionality.

In this paper we describe the process of pervasive transformation in our transparently
distributed Java system, RuggedJ. We use load-time dynamic bytecode transformation to
generate an entirely new class hierarchy that mirrors the structure of an off-the-shelf Java
application, adding the necessary functionality to execute the application across a network
of Java virtual machines. While we discuss our program transformation process in the
context of RuggedJ, many of our techniques would be equally useful to other large-scale
modification applications such as persistence.

We discuss a proxy-based object model that abstracts object implementation, hiding
whether they are local or remote to a given virtual machine. This model allows for objects to
be distributed and migrated across the RuggedJ network while still preserving the execution
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semantics and class hierarchy of the original application. Additionally, by referring to
transformed classes in rewritten bytecode only using interfaces we allow the elimination of
proxies in the common case where an object is known to be always local or remote.

Performing our transformations at the bytecode level affords us several major advan-
tages: We do not require access to the original application source; we can perform our
transformation at class-load time, taking advantage of dynamic knowledge of the execution
environment; the relative simplicity of bytecode when compared to source allowing our
rewrites to be more general; and we can perform incremental changes on-the-fly, referring
to generated classes that may or may not be created on demand without having to perform
a whole-program compilation.

2 Application Distribution with RuggedJ

The current trend in microprocessor technology is for increases in the number of cores
on a processor to replace the once-familiar increases in processor speed. The immediate
implication for application developers is that we can no longer rely on the next generation of
processors to make our systems run faster; we must instead take advantage of parallelism on
individual machines and, increasingly, distribution across clusters of commodity machines.

Unfortunately, the implementation of complex distributed systems demands a great deal
of additional effort from programmers and is liable to introduce obscure bugs. Objects
must be allocated and tracked across nodes, method calls and field accesses must take into
account the location of their targets, objects may need to be migrated from node to node in
order to gain acceptable performance, and so forth.

RuggedJ is an automatic transparent distribution system that aims to eliminate these
concerns by transforming a Java application to run across a cluster of machines. We achieve
this through a combination of a run-time distribution library and a transformation process
that creates a new, distribution-aware, application from a set of standard Java class files.

Our implementation of RuggedJ is mostly complete. The bytecode transformation pro-
cess is in place and tested on realistic applications running on a single node. We have
distributed simple applications, but are currently working on the complete distribution of
complex systems.

2.1 The RuggedJ Network

A RuggedJ network consists of a set of Java virtual machines (VMs) that distribute and run
an off-the-shelf Java application. Each virtual machine (a node, in RuggedJ terminology)
contains an instance of the RuggedJ run-time library that interacts with the run-times on
other nodes to coordinate the execution of an application. Figure 1 shows the construction
of a RuggedJ network:

We refer to a single physical machine available to RuggedJ as a host. This is distinct
from a node; a single host can run multiple nodes. RuggedJ is designed to be platform-
agnostic, in that a network can consist of heterogeneous hosts. We require only that each
host is capable of running a fully-functional Java VM, and that all VMs run the same
version of Java, including the standard class libraries.

Each node consists of two parts: the transforming class loader and the run-time li-
brary. The presence of a transforming class loader on each node allows a given class to
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Fig. 1. The RuggedJ System Architecture

be rewritten differently on different nodes, taking advantage of the capabilities of the host
or knowledge of the execution environment. We designate the node upon which the ap-
plication starts to be the head node. As well as functioning as a standard RuggedJ node,
the head node acts as a central location for the application, handling I/O requests and other
operations that require native access to a particular host. It also acts as an overseer for
coordination between nodes: the head node maintains full information on the location of
objects and the condition of the network, providing other nodes with a definitive source for
this information. While the head node can present a bottleneck, it is necessary not only as
a co-ordinator but also as a location for classes that cannot be distributed (see Section 3.4)

2.2 Application Partitioning

The partitioning strategy for a given application is defined by the application developer.
While substantial research exists in the literature concerning automatic application parti-
tioning [9, 13, 19], we feel that one is more likely to arrive at an optimal partitioning when
developing it using the domain-specific application knowledge available to the program-
mer. Additionally, many automatic partitioning schemes rely on an advance knowledge
of the network configuration under which an application will run. This runs counter to
our aim of environmental flexibility, where one can use an application partitioning on a
RuggedJ network made up of arbitrary nodes.

To allow the partitioning developer to take full advantage of the RuggedJ network avail-
able, we provide a plug-in interface to which one can attach a partitioning strategy, allowing
access to the RuggedJ run-time’s dynamic internal state (network conditions, node load lev-
els, etc.). RuggedJ consults the strategy for the running application both at class-loading
time, guiding the rewrites that the system applies to a class, and at run time, allowing it
to base its dynamic decisions upon the current state of the network. Some of the options
available to the partitioning designer are discussed in Section 4.4

2.3 Run-Time Support

The RuggedJ run-time library manages the interaction between rewritten bytecode on re-
mote nodes, allowing separate processes to interact and execute a single application. Parts
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class X_local class X_stub class X_proxy

interface X

interface X_static
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class 
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Original Application Transformed Classes

Fig. 2. Classes generated by the RuggedJ class loader

of the library are called by rewritten code, while others coordinate to provide networking
services and to generate an accurate picture of the network as a whole.

Library Functionality: The run-time library provides functionality to rewritten byte-
code. Many of the operations required to support distribution require complex code se-
quences. Specifying such operations within a rewritten method would very quickly lead
to unreadable bytecode, which is difficult to debug. Instead, we delegate to the run-time
library all operations that require more than a very simple bytecode sequence.

Run-time Co-ordination: There are several key tasks performed by the run-time to
co-ordinate execution between nodes. These include monitoring the network and host con-
figurations and status, tracking the location of objects for remote method calls and message
passing between nodes.

3 The RuggedJ Object Model

We accomplish distribution in RuggedJ by abstraction of object locations. We achieve this
through use of proxies for objects. Proxies allow the implementation of an object to vary
depending on whether it is local or remote, while presenting a single interface to external
code. For every class in the original application, RuggedJ generates a series of classes and
interfaces, as shown in Figure 2.

We split classes into two parts: the fields and methods that make up per-object state (the
instance parts), and those that are specific to the class (the static parts). This is necessary
in order to ensure that static data exists exactly once in the RuggedJ network; Section 3.3
discusses this issue further.

When the RuggedJ class loader has rewritten a class, it presents only the transformed
version for loading into the Java VM. The VM never sees the original class, which removes
the possibility of conflicts between modified and unmodified classes. The only exception
to this is in the case of unmodifiable classes, which we describe in Section 3.4.

3.1 Instance Classes

Focusing on the instance parts of Figure 2, we see the three classes and one interface that
RuggedJ generates from the instance parts of each application class X:

Interface X: The interface contains an abstract version of each instance method present
in the original application class, as well as get and set methods for each field (see Sec-
tion 4.2). The name of the interface is significant. By using the name of the original

Bytecode 2009 6 ETAPS 2009, York, UK



class, the Java type system will recognize an object that implements this interface as the
original class. This property simplifies the rewriting of certain bytecode structures, such
as instanceof checks and exception handling, and removes the need to transform ev-
ery reference to the original class. The local, stub and proxy classes each implement the
interface, and rewritten code refers to a class primarily via its rewritten interface.

Class X local: The local class contains the fields and the implementation of each in-
stance method from the original class. One can thus think of it as the “actual” object. Any
methods invoked upon the object must ultimately execute on an instance of the local class.

Class X stub: The stub class represents a remote object (i.e., one for which a local ver-
sion exists on a different node). The stub contains a globally-unique identifier of the remote
object, and it implements each method of the interface as a remote method invocation.

Class X proxy: The proxy class provides a level of indirection between calling code
and the local or stub implementation of an object. It contains a single field that holds
a reference to either a local or stub object, and implementations of every method in the
interface that invoke the relevant method on the referenced object.

Where the original application allocates an object of type X, the transformed version
creates a pair of objects. One is either an X local or X stub, depending on the node
upon which the allocation occurs. The other is an X proxy object that references the local
or stub object. By referring to proxies rather than local or stub object in rewritten code,
RuggedJ ensures that only a single pointer exists to a local or stub object on a given node.
This allows objects to migrate easily from node to node: should an object move from the
local node, it is necessary only to update the reference in the proxy from the local class to
a stub. Migration without proxies would require updating all references in objects or on
stacks, which would be prohibitively expensive.

The design of the object model, however, does allow for the direct allocation of local
or stub objects, bypassing the proxy. This is desirable for objects that are known never to
migrate, such as those objects directly tied to the local virtual machine (such as file handles,
class objects, and so forth), or objects known by the author of the partitioning strategy to
exist on only one machine (such as temporary objects or local data structures). Allocating
proxies for such objects would be unnecessary, adding the overhead of indirection when
the referenced object is never going to change. In these cases, RuggedJ instead simply
allocates either the local or stub object.

We can use X proxy, X local, and X stub objects interchangeably in this man-
ner because each implements the generated interface X. We make all method calls within
rewritten code in terms of the interface, and field accesses go through the generated get
and set methods. By calling methods through interfaces, we minimize the transformation
necessary on calling code, while maximizing flexibility in the types of objects used.

3.2 Inheritance

As well as providing a mechanism by which we can reference different versions of a class
uniformly, RuggedJ’s generated interfaces maintain the inheritance relationships between
original classes. Figure 3 shows the relationship between transformed classes (omitting
static parts).

The original application’s inheritance relationship between subclass Y of class X ap-
pears as the transformed interface Y extending interface X. Since rewritten code refers to
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class Y
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class Y_local

class Y_stub

class Y_proxy

interface Y

Fig. 3. Inheritance between transformed classes

objects exclusively by interface, this allows one to use any object that implements Y when
the original code required an instance of X. Similarly, checkcast or instanceof op-
erations operate over interfaces, and produce the same results in transformed code as in the
original application.

Each transformed class Y local, Y stub and Y proxy extends the equivalent part
of class X. This is not necessary to preserve the inheritance relationships of the original
application. Other than when allocating objects, rewritten code never refers to these in-
dividual classes. Rather, this subclassing works to simplify the implementation of these
classes. Without it, each class would have to contain the fields and implementations for ev-
ery method of the superclasses of its unmodified version, which would lead to duplication
of code and overly-complex classes.

3.3 Static Classes

Turning to the static parts in Figure 2, we see that RuggedJ generates an additional interface
and two classes:

Interface X static: This interface contains each static method and get/set methods for
each static field in the original class. It functions similarly to the instance interface X.
Both X static local and X static stub classes implement X static, allowing
rewritten code to use them interchangeably.

Class X static local: This class contains the static fields and implementations of each
static method from the original class. RuggedJ modifies both fields and methods to be
instance members of X static local rather than static members. This allows class
X static local to fulfill the requirements of interface X static, and decouples the
implementation of static members from the implementation of the VM.

Class X static stub: The static stub acts similarly to the instance stub class. It contains
implementations of each method in interface X static that perform remote invocations
on the appropriate X static local object.

Transforming static methods of original class X into instance members of class
X static local serves two purposes. First, it allows the static part of an object to
be treated as any other object in the RuggedJ network. This allows us to take advantage
of any object migration or caching performed by the system for static data as well as in-
dividual objects. More importantly, however, is the fact that transforming static data to
representation as an object allows us to ensure that only one copy of the data exists in the
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interface gen.Z
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Fig. 4. Wrapping unmodifiable classes

network. Were static fields left unmodified, each VM that loads class X would have its own
copy of each field, leading to inconsistent data.

We use the concept of static singletons to maintain unique static data. The RuggedJ
run-time library creates static objects on demand, and coordinates between nodes to guar-
antee that the network contains at most one instance of X static local. Once some
node has allocated the singleton, all other nodes will create X static stub objects as
required. By managing static singletons through the run-time, we eliminate the need for a
X static proxy class. Since rewritten code does not store references to the static sin-
gleton, we ensure that each node has a single reference to a given static singleton. Should
the need arise to migrate a static singleton, we must update only this one reference.

3.4 Unmodifiable Classes

While RuggedJ can rewrite the majority of application classes as described in Section 3.1,
there are a subset of application and Java standard library classes that it cannot. This lim-
itation arises from the presence of native code. We cannot rewrite a method implemented
using Java’s native interface, and such a method will not be aware of the presence of trans-
formed classes. It may attempt to access fields or methods that we have modified or that
are not available. We call these classes unmodifiable, and do not rewrite them. Tilevich
and Smaragdakis define such classes to be those accessible by native code: classes that
contain native methods, those passed to or returned from unmodifiable classes, the types
of fields in unmodifiable classes, and superclasses of unmodifiable classes [20]. While it
is theoretically possible for native code to access other (indeed, any) classes in the system,
they found this heuristic to be sufficient for the realistic applications they examined.

Since we do not transform unmodifiable classes, we cannot distribute them. In practice,
we find that the majority of unmodifiable classes exist within the Java standard libraries,
and are often closely tied to the underlying VM. This does not prove to be a great obstacle to
the distribution of an application, since such classes would not move in any case. However,
it is necessary that remote nodes be able to reference instances of unmodifiable classes. To
this end, we generate wrappers for unmodifiable classes.

Figure 4 shows the classes we generate for an unmodifiable class. It is important to
note that in this case, class Z is the original, unmodified class; we generate the wrapping
classes as part of a reserved package to avoid naming conflicts with the original. Class
gen.Z local acts as a wrapper around the original class Z. It contains a reference to
the instance of the unmodifiable class, with implementations of instance methods, each of
which calls the appropriate method on the wrapped object. We generate gen.Z stub and
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Fig. 5. Generated array classes

gen.Z proxy identically to the stub and proxy classes described in Section 3.1.
Class gen.Z static local acts as a static singleton for the wrapped class, with

one important difference. Since an unmodifiable class may directly access static members,
we cannot rewrite such static data to form instance methods of gen.Z static local.
Thus, the methods of the static local class instead simply delegate to the original class.
To ensure uniqueness in static data, a given unmodifiable class can thus access static data
only on a single node. While this limits the potential for distribution, in practice most such
classes tend to be allocated only on the head node, with transformable application classes
running on all other nodes.

Rewritten code interacts with unmodifiable code using the interfaces and wrapping
classes in the same way as regular classes. This allows the same transparency with regard
to object location for wrapped classes that exists for transformed classes. However, since
the unmodifiable code itself is unaware of transformed classes, we must unwrap objects
when passing them as arguments to unmodifiable code, and re-wrap returned objects. The
unwrapping process is simple: the methods with Z local unwrap any transformed class
arguments (recall that, by definition, all classes passed to unmodifiable code are themselves
unmodifiable and so can be unwrapped). Wrapping return values is slightly more difficult,
since we must ensure that a given object has only one wrapper—an object returned multi-
ple times from unmodifiable code must always be wrapped by the same object. We control
this in the RuggedJ run-time library, which tracks generated wrappers and creates a new
wrapper only if the object has not been wrapped before.

3.5 Arrays

When distributing an application, we must transform not only objects but also arrays. To
this end, we generate classes for array types, as shown in Figure 5.

We generate a set of interfaces and classes for every pair of array content and dimen-
sionality used in the application. The interface contains get and set methods for the array
content, as well as methods to perform standard operations such as getting the length or
hash value for the array. Class Array of Y 1 local is a wrapper for a one-dimensional
array of Y objects (the contents of which are themselves instances of local, stub, or proxy
classes that implement interface Y). Array classes do not need static singletons, since arrays
maintain no static state.
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We generate the classes for multi-dimensional arrays in the same way as for single
dimension arrays (we represent a two-dimensional array of Y by interface Array of Y 2
and so forth), with the local class containing a wrapped array. The wrapped array is always
one-dimensional, so Array of Y 2 local contains an array of Array of Y 1 objects.
As well as simplifying the implementation of arrays, this design allows us to spread large
multi-dimensional arrays across multiple nodes.

3.6 Hand-Coded Classes

A final, small, subset of classes within RuggedJ are hand-written and loaded unmodi-
fied into the Java VM. These are classes that require specific, customized implementa-
tions within the RuggedJ network. For example, java.lang.System contains sev-
eral methods for which we define special semantics: we must redirect all references to
System.out to the head node, rather than to the local machine. Since performing
such one-off transformations would be laborious and would complicate the transformation
framework, we prefer instead simply to load a hand-coded version of these classes.

4 Implementation

Beyond generating new classes, implementation of the RuggedJ object model requires
widespread modification to application bytecode. In this section we describe some of the
more interesting features of the rewriting process.

4.1 Bytecode Rewriting Tools

When implementing RuggedJ, the first decision we needed to make was the level at which
to rewrite. High-level tools such as AspectJ [10] and MetaAspectJ [8] would allow us
to specify RuggedJ’s transformations in Java source code. While this is adequate to add
code to a method, more complex transformations would require an additional tool. A more
flexible approach is that of Javassist [3, 4], which allows one to specify transformed code in
Java syntax, which it compiles with a custom compiler. This offers a lower-level interface
to rewriting. However, we found that its on-demand compilation approach made whole-
program modification difficult. Ultimately, we found that ASM [1] supports a good balance
of direct access to method bytecode while hiding awkward details such as management of
constant pools and the selection of instructions with hard-coded local variable slots. These
two abstractions vastly simplified the design of transformations and generated bytecode,
making ASM more useful to us than the similarly-featured BCEL [5].

4.2 Transforming Method Bodies

Of the classes we generate for a given application class, only the local and static local
versions contain copied bytecode. We generate all other classes from scratch. Thus, we
apply the following transformations only to the bodies of local and static local classes.

Instance Method Invocation: We must refer to all transformed objects in RuggedJ by
interface rather than class type, allowing us to vary the implementation of a class among
proxy, local, or stub transparently to the calling code. This clearly requires modification to
method call sites, transforming invokevirtual bytecodes to invokeinterface.
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We need a more complicated rewrite in the case of invokespecial bytecodes, used
to call private methods, constructors, or superclass methods. We can call private methods
in the same way as regular methods (for the sake of simplicity, we modify all methods to
be public; the original Java compilation enforced the access controls). However, we cannot
call constructors or superclass methods through an interface. We must invoke a constructor
upon the appropriate class; we describe this process in Section 4.4. Superclass invocations
must specify the superclass type upon which to invoke a method (in case a subclass has
overridden the method). This does not present a problem since we knot that the code we
are modifying is within a local class, the superclass of which we also know.

Instance Field Accesses: We must rewrite accesses to instance fields, since direct ac-
cess to a field assumes that an object is local. To this end, we replace every instance field
access by a call to the appropriate get or set method in the interface.

This policy obviously adds an unnecessary level of indirection when the accessed field
belongs to the accessing object. A more subtle problem exists, however, that necessitates
special handling of such accesses. Under the Java VM specification, the only operation
that may occur in a constructor before the invocation of a superclass constructor is the
initialization of a field in the local object. Rewriting such a field invocation to a method
call would cause a verification error, since a method call cannot precede the superclass
constructor call. We can detect cases where a field access occurs on the accessing object
using a simple flow analysis, as we describe in Section 4.5.

Static Method Bodies: As we discussed in Section 3.3, we transform static fields and
methods within the static local class to be members of the static singleton object. While
transforming fields is straightforward, we must rewrite static method bodies to function as
instance methods. The first local variable slot in an instance method is reserved for the
this pointer, referring to the object upon which the method is invoked. Static methods
are not invoked on any object, and so do not have a this pointer. Thus, when converting a
static method to an instance method we must to update all local variable references to allow
for the new reference.

This transformation can cause major changes to the bytecode sequence of a method.
Not only does it change the parameters to local variable bytecodes, but the bytecodes them-
selves may change. For example, the aload 3 bytecode operates as an aload with a
parameter of 3. Incrementing the local variable slot upon which this bytecode operates
would require replacing the aload 3 bytecode (a one-byte instruction) by an aload with
an argument of 4 (a two-byte instruction). This will affect the offsets of future bytecodes,
and will require updates to jump instructions, exception handling blocks, and so on. Fortu-
nately, a bytecode rewriting toolkit such as ASM abstracts away most of these details.

4.3 Accessing Static Singletons

As in the case of instance field accesses and method invocations, we must rewrite static
accesses. However, the presence of static singletons makes the process somewhat more
complex. First, the RuggedJ run-time library must locate the appropriate static singleton
by looking it up in a hash table of static objects. If the required singleton is unavailable,
the run-time library must first determine whether a singleton exists on another node and,
failing that, create one. This involves coordination with the other nodes in the network
to find an existing singleton, or synchronization with the head node to avoid two nodes
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simultaneously creating singletons. When the code has found the singleton, the modified
bytecode can then invoke the necessary method on it. In the case of field accesses, this
consists of a call to the appropriate get or set method.

This is clearly a costly operation, particularly in the case where the static singleton is
a stub, and a method invocation requires access to a remote object. As such, we minimize
access to static singletons as far as possible. We observe that the static singleton exists only
to ensure that there is only one copy of static data. Therefore, we need to call the singleton
only when we may access that state: calls to static methods that do not read or write the
singleton’s fields do not go through the singleton. Rather, they call a local version of the
static method. Indeed, for classes with no static state, it is not necessary to create a static
singleton at all.

Initialization of static data is performed by the run-time system when a static singleton
is created. Any static{} code block is transformed into an instance method, allowing
it to be called at the appropriate time during singleton creation. Static final fields (con-
stants) are treated in the same way as all other static fields; constants are initialized by the
static initializer, and can have different values on different nodes (consider a constant ini-
tialized to a host’s IP address). Forcing static final fields to go through a static singleton is
conservative, and can be optimized in many cases.

4.4 Allocation

The object allocation process involves interaction between the rewritten bytecode in a
method and the partitioning strategy defined by the application author. It is the primary
means by which one distributes an application. By strategically allocating objects on re-
mote nodes and remotely invoking methods, one can perform large computations across a
collection of nodes.

We define an allocation site as an instance of a new bytecode. When rewriting an al-
location site, the RuggedJ rewriting class loader first queries the partitioning plug-in with
static site information to request a load-time allocation strategy. The allocation site infor-
mation includes the class and method in which the allocation site occurs and the type it
allocates. Based on this, the partitioning can return one of three options:

Allocate Locally: If the policy knows that the code uses the particular type of object
principally on the local node, we can streamline the allocation process to create the local
version of the class. This is a fairly common case: some classes rely on local resources,
many objects are temporary and of purely local interest, and domain-specific knowledge
may determine that an object will rarely be used by another node. The partitioning plug-in
may also determine whether to allocate a proxy to allow for later migration, or simply to
allocate the local version directly, allowing it to be remotely referenced but not migrated.

Allocate Remotely: On the other hand, a policy may sometimes know that we should
always allocate an object on a different node. This may be the case if the partitioning strat-
egy dictates to spread objects of a certain across the network for load balancing purposes,
or that a particular class would benefit from a resource that is not available on the local
host. This option allocates both a proxy and a stub object, and determines at run-time on
which node to allocate the object.

Allocate Dynamically: Finally, there are cases where we will not know the best alloca-
tion node for an object until run time. This may be the case if we should evenly distribute
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the objects of a class over the network: the location of the object will depend on the run-
time distribution pattern. This option defers the decision of whether to allocate a local or
stub class until run time.

Each of these options causes the rewriting class loader to replace the allocation site
with a different bytecode sequence. In the case of a local allocation, the bytecode sequence
simply creates a new local object, with or without a proxy. The remote allocation sequence
involves a call to the run-time library to determine the node upon which to create the object,
then a remote creation request and creation of a stub object and proxy. Finally, the dynamic
allocation option generates both sets of bytecode, with a call to the run-time library to
determine which to execute.

A final complication when rewriting an allocation site is that of calling the appropriate
constructor. The constructor call for an object can be an arbitrary distance from the new
bytecode that creates the object to pass to the constructor, since there may be an arbitrary
number of operations to compute the arguments to the constructor. There may even be
other constructor calls between the two bytecodes, since the arguments to the constructor
may require creation of new objects. We take advantage of the fact that every new bytecode
has exactly one constructor call, and so we can match a new bytecode with its constructor
call using a simple stack-based scanning technique. We scan forward through the bytecode
stream pushing any new bytecodes, and popping them when we encounter constructor
calls. The final constructor we encounter therefore belongs to the original new bytecode.

4.5 Flow Analysis

The vast majority of bytecode modifications in RuggedJ are context-independent; their
implementations do not require knowledge of the method as a whole. Aside from the
method scanning required to locate constructors mentioned above, there exist two cases for
which we need to analyze the method body.

The first concerns operations on arrays. As discussed in Section 3.5, we replace all
arrays in a RuggedJ network with wrapping objects. This presents problems during the
rewriting phase since, unlike most bytecodes that operate over references, array operations
(aaload, aastore, arraylength, etc) do not encode type information. One can
determine the type of the array reference and return value only by modeling the run-time
stack. Since we rewrite these bytecodes to standard invokeinterface method calls,
we need to know both the type and dimensionality of the array upon which to invoke the
method. We find this information using a a standard bytecode flow analysis of types of
objects that tags each array bytecode with the type of array currently on top of the stack.

The second flow analysis we require is to track the this pointer in instance meth-
ods. As mentioned in Section 4.2, the RuggedJ rewriting class loader must differentiate
between field accesses on the current object and those on others. Since we know that the
this pointer exists in local array slot 0, we can track any references that start life with an
aload 0 bytecode, determining them to be references to the current object.

This analysis is, by its nature, conservative. It can produce a false negative when, for
example, code passes a reference to a method that then returns something of the same type.
The return value could be the original reference or a different object. This conservatism is
not a problem since we employ the analysis mostly for optimization, so missing a reference
does not violate correctness. The only occasion where we rely on this analysis is where
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a field initialization occurs prior to the super-constructor call in a constructor. However,
since the only field initializations that may occur before that call are to the local object, the
analysis will always be accurate in this case.

4.6 Uncooperative Code

As with most large-scale automatic application transformation systems, RuggedJ cannot
guarantee correctness in all cases. There are certain corner cases where an adversarial
programmer can foil the rewriting system into producing incorrect results. However, we
are confident that such cases are rare under normal circumstances.

The most apparent area in which our rewrites might lead to errors is reflection. An
application developer generally has more knowledge of the run-time properties of objects
in an application, and could use Java’s reflection system to perform operations on a class
that may not be possible in the rewritten system. With that said, we do take measures to
avoid this by intercepting reflective calls and updating arguments or types to fit within the
RuggedJ system, allowing most common usages of reflection to operate within our system.

We also do not support applications that define their own custom class loaders. Since
RuggedJ uses a rewriting class loader, we cannot integrate the operations that may be per-
formed by an application’s own class loading system.

Finally, we are aware of several ways in which native code could produce incorrect
results within RuggedJ. The heuristics discussed in Section 3.4 allow our system to accom-
modate most native code, but the Java Native Interface allows native code virtually limitless
access to the VM. By allocating or invoking methods on arbitrary objects a native method
can perform operations that are incompatible with RuggedJ’s transformations. This prob-
lem will most likely arise in a non-adversarial application though use of static singletons.
The Java Native Interface CallStatic<type>Method methods allow native code to
invoke static methods of arbitrary classes. Reflectively invoking a static method of a class
that requires a static singleton will result in the call failing in RuggedJ. However, allowing
for arbitrary static method calls would mean that no class could have a static singleton and
so could only be accessed from a single node, making distribution impossible.

5 Related Work

The system that most closely resembles RuggedJ is J-Orchestra [18]. Indeed, J-Orchestra
influenced many of RuggedJ’s original design decisions. However, J-Orchestra’s funda-
mental goal is different from RuggedJ’s. J-Orchestra aims for “resource-driven distribu-
tion,” where one shares an application between a small set of machines with specific capa-
bilities. For example, a transformed system may perform calculations on a back-end server,
while displaying its user interface on a PDA. This differs from RuggedJ’s goal of distribut-
ing an application across a cluster of machines, taking advantage of additional hardware to
exploit parallelism. The design of each system reflects these differing objectives.

The major difference between the two systems is that RuggedJ performs dynamically
many functions that J-Orchestra performs statically. J-Orchestra determines a partitioning
ahead of time for a given network configuration. Guided by a whole-program analysis, a
user determines which classes should have their instances allocated on each network loca-
tion. This approach works well for J-Orchestra’s usage, since it targets small clusters with
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clear roles for each machine. However, RuggedJ performs this partitioning at run time us-
ing an application-specific partitioning plug-in to decide dynamically upon the location of
remote objects. Similarly, one can see the static/dynamic difference in the way in which J-
Orchestra rewrites application code. It transforms classes ahead of time, generating proxies
and remote representations as Java source that one then compiles, producing a jar file for
each network location. This is in contrast to our approach of rewriting at class load-time,
which gives us the ability to generate bytecode tuned to the RuggedJ network upon which
the application is running, and removes the system’s dependence on an external compiler.

Another consequence of J-Orchestra’s ahead-of-time partitioning strategy is that it
makes all partitioning decisions on a per-class basis. In contrast, RuggedJ’s dynamic par-
titioning system allows per-instance decisions, allowing us to allocate instances of a given
class on arbitrary nodes within the network. Not only does this let us take advantage of
current network conditions that cannot be predicted ahead of time, but it also allows us to
perform load-balancing by distributing key objects of a given class across the network.

Finally, there are differences in the object model implemented by each system that
we feel allow RuggedJ more flexibility when executing large applications. In J-Orchestra,
the fundamental class for objects that code may reference remotely is the proxy, while in
RuggedJ it is the interface. Rewritten bytecode in J-Orchestra refers to proxies rather than
interfaces, removing the ability to elide proxies for objects that are known to be either
local or remote. Additionally, J-Orchestra’s approach to arrays differs in that it considers
arrays of a given type but of different dimensionality to be related, while RuggedJ considers
an array type to consist of both a base type and dimension, allowing for a more flexible
partitioning scheme.

There exist several other projects that seek to simplify the distribution of Java. Space
limitations prevent us from discussing these systems in detail, but none follow the same
approach as RuggedJ.

Terracotta [17] is an open-source JVM-level clustering framework that uses bytecode
rewriting techniques to generate a distributed Java application without the requirement to
code to a specific API. The Terracotta approach is superficially similar to that taken by
RuggedJ, but there are several fundamental differences: Terracotta requires that the ap-
plication developer label “root” references with altered semantics through which one can
reach shared objects, while RuggedJ considers all objects as potentially reachable from re-
mote nodes. Additionally, Terracotta is heavily based upon a central server node, which
manages the canonical versions of all shared objects. We maintain canonical versions of
objects throughout the cluster.

Addistant [16] uses bytecode transformation to distribute legacy code, but does not aim
to distribute large parts of the application. AIDE [14] uses a modified JVM to offload
execution from portable devices to servers, whereas RuggedJ runs on unmodified VMs.
JavaParty[7, 15], Javanaise [6], Do! [11, 12] and Java// [2] each provide language-level
features to Java that simplify distributed programming, while RuggedJ performs its trans-
formation at the bytecode level without modification to the original source.

6 Conclusion

Whole-program transformation is a powerful technique that allows one to add substantive
new functionality to an existing off-the-shelf application. In this paper we have presented
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the object model implemented by a transformed application running under the RuggedJ
transparent distribution system. We have outlined the classes and interfaces required for
a flexible, dynamic distributed system and described how such an object model maintains
the semantics of the original application. We then discussed the process of transforming an
application to implement this object model, including the classes generated, modification
to method bodies, and the dynamic distribution of an application though object allocation.

We believe that the techniques described in this paper offer insight into some of the
issues involved in large-scale transformation of Java applications, and may serve to guide
future implementations not only of distributed Java but of any system that uses indirection
to achieve object transparency.
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Abstract

Many users and companies alike feel uncomfortable with execution performance of interpreters, often also
dismissing their use for specific projects. Specifically virtual machines whose abstraction level is higher than
that of the native machine they run on, have performance issues. Several common existing optimization
techniques fail to deliver their full potential on such machines. This paper presents an explanation for this
situation and provides hints on possible alternative optimization techniques, which could very well provide
substantially higher speedups.
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1 Motivation

1000 : 10 : 1. These are the slowdown-ratios of an inefficient interpreter, when
compared to an efficient interpreter, and finally to an optimizing native code com-
piler. Many interpreters were not conceived with any specific performance goals
in mind, but rather striving for other goals of interpreters, among them porta-
bility, and ease of implementation. This also means that there is a huge benefit
in optimizing an interpreter before taking the necessary steps to convert the tool
chain to a compiler. There are common optimization techniques for interpreters,
e.g. threaded code [2],[5],[8], superinstructions [9], and switching to a register based
architecture [20]. The mentioned body of work provides careful analyses and in-
depth treatment of performance characteristics, implementation details.

Those optimization techniques, however, have one thing in common: their basic
assumption is that interpretation’s most costly operation is instruction dispatch,
i.e., in getting from one bytecode instruction to its successor. While this assumption
is certainly true for the interpreters of languages analyzed in the corresponding
papers, e.g. Forth, Java, and OCaml, our recent results indicate that it is specifically
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not true for the interpreter of the Python programming language. We find that this
correlates with a difference in the virtual machine abstraction levels between their
corresponding interpreters.

In virtual machines where the abstraction level is very low, i.e., essentially a 1 : 1
correspondence between bytecode and native machine code, the basic assumption of
dispatch being the most costly operation within an interpreter is valid. Members of
this class are the interpreters of Forth, Java, and OCaml, among others. Contrary
to those, interpreters that provide a high abstraction level do not support this
assumption. The interpreters of Python, Perl, and Ruby belong here. Additionally,
we analyze the interpreter of Lua, which is somewhere in between both classes.

In their conclusion, Piumarta and Riccardi [15] suppose the following: “The
expected benefits of our technique are related to the average semantic content of a
bytecode. We would expect languages such as Tcl and Perl, which have relatively
high-level opcodes, to benefit less from macroization. Interpreters with a more RISC-
like opcode set will benefit more — since the cost of dispatch is more significant
when compared to the cost of executing the body of each bytecode.” Our work shows,
whether their expectations turn out to be correct, and we make explicit what is
only implicitly indicated by their remark. Specifically we contribute:

• We categorize some virtual machines according to their abstraction level. We
show which characteristics we consider for classifying interpreters, and provide
hints regarding other programming languages than those discussed.

• We subject optimization techniques to that categorization and analyze their po-
tential benefits with respect to their class. This serves as a guideline for a)
implementers, which can select a set of suitable optimization techniques for their
interpreter, and b) researchers which can categorize other optimization techniques
according to our classification.

2 Categorization of Interpreters

To get a big picture on the execution profile of the Python interpreter, we collected
9 million samples of instruction execution times running the pystone benchmark
on a modified version of the Python 3.0rc1 interpreter, which samples CPU cycles.
We sampled Operation Execution, Dispatch and Whole Loop costs. Operation
Execution contains all cycle costs for the first machine instruction in operation im-
plementation until the last. Dispatch costs contain the number of cycles spent for
getting from one operation to another, e.g. in a switch-statement from one case to
another. Python’s interpreter, however, does not dispatch directly from one byte-
code to another, but maintains some common code section which is conditionally
executed before dispatching to the next instruction. To account for that special
case, we measured so called Whole Loop costs, which measure the CPU cycles from
the first and last instructions within the main loop.

Based on extensive previous work, [2],[5],[8],[9],[20], we expected that instruc-
tion dispatch would be the most costly interpreter activity for Python’s virtual
machine, too. Figure 1 shows our results obtained by examining CPU cycles for the
Python 3.0rc1 interpreter, running on a Pentium 4, 3 GHz, with Xubuntu 8.04.
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Fig. 1. CPU cycles per code section for Minimum, 1st quartile, median, and 3rd quartile measures.

Section Min 1st Quartile Median 3rd Quartile

Op-Execution 75 568 1076 2052

Dispatch 84 812 1296 2084

Whole Loop 84 1576 2568 4156

Table 1
Minimum, 1st quartile, median, and 3rd quartile values for CPU cycles per code section. All values here
are inclusive, i.e., values for Dispatch include Operation Execution, and Whole Loop includes values of

Dispatch, and Operation Execution respectively.

Our results do not support the assumption of instruction dispatch being the
most costly operation for the Python interpreter, actually operation execution is.
For a detailed explanation of why this is, we present a comparative example of one
instruction implementation of the interpreters of Java, OCaml, Python, and Lua in
Section 2.1:

Java, according to the latest Java Language Specification [10], the Java instruction
set consists of 205 operations, including reserved opcodes. Instructions are typed
for the following primitive types: integers, longs, floats, doubles, and addresses.
In our example we take a look at the Sable VM, version 1.13.

OCaml, is a derivative of ML enriched with object oriented elements [13]. Version
3.11.0 contains 146 instructions. Among those are regular stack manipulation
instructions, complemented by instructions to manipulate the environment, which
is needed for function application, and evaluation respectively. Additionally, it
contains direct support for integer operations, which are however not documented
in the corresponding documentation [3].

Python, is a multi-paradigm dynamically typed programming language, that en-
ables hybrid object-oriented/imperative programming with functional program-
ming elements [18]. It has 93 instructions in Python 3.0rc1. Most of its operations
support ad-hoc polymorphism, e.g. BINARY ADD concatenates string operands, but
does numerical addition on numerical ones [17].
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Lua, is somewhat similar to Python according to its characteristics, a multi-
paradigm programming language that allows functional, imperative and object-
oriented (based on prototypes) programming techniques. It includes a
lightweight—it has just 38 instructions—and fast execution environment based
on a register architecture [16].

It is worth noting that our results are not restricted to those programming
languages only. Actually, we conjecture that this is true for the interpreters of
programming languages with similar characteristics, i.e., for the Python case this
also includes Perl [21], and Ruby [14].

2.1 Categorization based on the comparative addition example

Our classification scheme requires the assessment of the abstraction level of sev-
eral virtual machines interpreting different languages. In order to do so, we take a
representative bytecode instruction present in all our candidates and analyze their
implementations. This enables us to show important differences in bytecode imple-
mentation, and in consequence allows us to classify them accordingly.

The representative instruction we use for demonstration is integer addition,
e.g. for Java we take a look at IADD, for OCaml we show ADDINT, for Python
BINARY ADD, and for Lua we inspect OP ADD. With the notable exception of Lua, all
our candidates use a stack architecture, i.e., they need to pop their operands off
the corresponding stack, and push their result onto it before continuing execution.
In Lua’s register architecture, operand-registers and result-registers are encoded in
the instruction.

We have highlighted the relevant implementation points by using a bold font,
and use arrows for additional clarity.

Fig. 2. Implementation of Java’s integer addition operation, IADD in Sable VM v1.13.

Fig. 3. Implementation of integer addition in OCaml v3.11.0.

Figures 2 and 3 share an interesting characteristic. They do not implement
addition on the virtual machine level, but express the bytecode addition by lever-
aging the addition used by the compiler, i.e., expose the addition of the native
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machine. Consequently, the virtual machine addition is expressed using a single na-
tive machine instruction. This constitutes our class of a low abstraction level virtual
machines, where the interpreter is only a thin layer above a real machine.

Fig. 4. Implementation of integer addition in Python 3.0rc1.

Python’s case (cf. Figure 4) shows a contrary picture: the upper arrow shows
that BINARY ADD does unicode string concatenation on string operands by calling
unicode concatenate. On non-string operands it calls PyNumber Add, which im-
plements dynamic typing and chooses the matching operation based on operand
types, indicated by the lower arrow. In our integer example, the control flow would
be: PyNumber Add, binary op, and finally long add. If, however the operands
were float, or complex types, then binary op would have diverted to float add, or
complex add respectively (cf. Figure 5).

Fig. 5. Ad-hoc polymorphism in Python’s BINARY ADD instruction.

Aside from this ad-hoc polymorphism, the addition in Python 3.0 has an ad-
ditional feature: it allows for unbounded range mathematics for integers, i.e., it is
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not restricted by native machine boundaries in any way. As a direct consequence,
the original Python add instruction cannot be directly mapped onto one native ma-
chine instruction in the interpreter. This constitutes our second class, namely high
abstraction level virtual machines.

Fig. 6. Implementation of integer addition in Lua 5.1.4.

Our classes are by no means completely separated and disjoint, since interpreters
can be members of both classes, having some subset of instructions belong into one
set, and a separate subset of instructions to the other. This is exemplified in Lua
(cf. Figure 6) in which addition has characteristics of both classes.

In Lua, if operand types are numeric it delegates the actual addition implemen-
tation to the compiler, and therefore to the machine (cf. Figure 6 arrow a). No
distinction between float, double, long, and integers is necessary, because Lua uses
double as its default numeric type. So far, this would indicate a low abstraction
level. However, if operand types are non-numeric, Lua’s implementation delegates
to the Arith (cf. Figure 6, arrow b) function, which tries to convert these operand
types into a numeric representation that can be added, e.g. if given a string operand
which holds a non-ambiguous numerical value, it would extract this value and con-
tinue with regular addition. This “operand-polymorphism” is often found in other
programming languages, too—e.g. in Perl—and constitutes a high abstraction level
instruction.

2.2 Comparison of Low and High Abstraction Level Virtual Machines

The previous section introduces our two classes of interpreters, namely:

• Low abstraction level, where operation implementation can be directly translated
to a few native machine instructions. Figure 7(a) shows the implementation of
the interpreter’s add instruction, and how the actual add is realized using a single
machine add instruction.

• High abstraction level, where operation implementation requires significantly
more native machine instructions than for low abstraction level. Analogous to
Figure 7(a), Figure 7(b) shows the relative impact of implementing a complex
add. Frequent characteristics for high abstraction level are:
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(a) Low Abstraction Level Virtual Machine (b) High Abstraction Level Virtual Machine

Fig. 7. Illustration of Virtual Machine Abstraction Levels. Important are the different ratios of a : b which
affects the relative optimization potential of various optimization techniques.

· Ad-Hoc Polymorphism: a) either polymorphic operations are selected for con-
crete tuples of operand types, e.g. in Python, or b) operand-type coercion into
compatible types for a given operation implementation, e.g. in Lua or Perl.
· Complex Operation Implementation: In Python’s case, this complexity directly

maps to unbounded integer range mathematics for numeric operations, or full
unicode support at the interpreter level.

3 Optimizations for Low Abstraction Level Interpreters

The well known techniques for interpreter optimization focus on reduction of instruc-
tion dispatch cost. As shown in Figure 7(a), virtual machines with low abstraction
level are particularly well suited for those techniques, since dispatch often is their
most expensive operation. Threaded code [5] reduces the instructions necessary for
branching to the next bytecode implementation. The regular switch dispatch tech-
nique requires 9-10 instructions, whereas e.g. direct threaded code needs only 3-4
instructions for dispatch [6], with only one indirect branch. Superinstructions [9]
substitute frequent blocks of bytecodes into a separate bytecode, i.e., they elimi-
nate the instruction-dispatch costs between the first and last element of the replaced
block.

Recent advances in register based virtual machines [20], however, suggest a com-
plete architectural switch from a stack-based interpreter architecture to a register
based model. This model decreases instruction dispatches by eliminating a large
number of stack manipulation operations, i.e., the frequent LOAD/STORE oper-
ations that surround the actual operation. The paper reports that 47% of Java
bytecode instructions could be removed, at the expense of growing code size of
about 25%.

Table 2 shows a list of achievable speedups for low abstraction level interpreters.
For high abstraction level virtual machines, these speedups are not nearly as

high. Vitale and Abdelrahman [22] actually report that applying their optimization
technique to Tcl has negative performance impacts on some of their benchmarks, be-
cause of instruction cache misses due to complex operation implementation leading
to excessive code growth—the main characteristic we use to identify high abstrac-
tion level virtual machines.

This, however, does not mean that these techniques are irrelevant for virtual
machines with a high abstraction level. Actually, quite the opposite is true: once
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Optimization Technique Speedup Factor Reference

Threaded Code
(compared to switch dispatch interpreter)

up to 2.02 [8]

Superinstructions
(compared to threaded code interpreter)

up to 2.45 [7]

Replication + Superinstructions
(compared to threaded code interpreter)

up to 3.17 [7]

Register vs. Stack Architecture
(both using switch dispatch)

1.323 avg [20]

Register vs. Stack Architecture
(both using threaded code)

1.265 avg [20]

Table 2
Reference of reported speedup factors for several techniques.

techniques for optimizing the high abstraction level are implemented, the ratio of
operation-execution vs. instruction-dispatch (as indicated by the arrows a and b in
Figures 7(a) and 7(b)) has favorably changed their optimization potential. There-
fore, our categorization merely provides an ordering of relative merits of various
optimization techniques, such that considerable deviations in expected/documented
vs. actually measured speedups are not stunningly surprising anymore.

4 Optimizations for High Abstraction Level Inter-
preters

Figure 7(b) shows that many machine instructions are necessary for realizing the
high abstraction level of an interpreter instruction. Therefore we are interested
in cutting down the costs here, since they provide the greatest speedup potential.
In this situation it makes sense to provide a reminder as to what characteristics
constitute our classification into the class of high abstraction level. As already
mentioned earlier in the addition example, there are two answers to that question:

a) ad-hoc polymorphism

b) complex operation implementation (unbounded range mathematics)

Hence there are two issues to deal with. In the first case (a), a look at the
history of programming languages provides valuable insights. We are trying to find
programming languages with similar characteristics like Python’s but having more
efficient execution environments. Smalltalk fits the bill, and specifically SELF

is a prominent derivative which offered an efficient execution engine back in the
early 90s. Among the various optimizations in SELF, specifically type feedback
in combination with inline caching seems particularly matching our first problem.
Hölzle and Ungar [12] report performance speedups by a factor of 1.7 using type
feedback, and give advice that languages having generic operators are ideally suited
for optimization with type feedback. Application of type feedback requires that for
a pair of operand-types the target of the actually selected operation implementation
is cached, such that consecutive calls can directly jump there, when operand-types
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match the cached pair (cf. Figure 8).

Fig. 8. Type feedback for Python’s BINARY ADD instruction. The gray-colored part is the system default
look-up routine from Figure 5. The dashed arrows represent querying the type feedback cache (upper
bidirectional arrow), and updating the cache with new target addresses after running through the system
look-up routine (lower unidirectional arrows).

In the second case (b), the same technique can be applied. This requires that
the actual operation implementation would be sub-structured to the following steps:

(i) Try to use the fastest possible native machine method

(ii) If i fails/overflows, apply unbounded range software algorithm

By encoding this information into separate types—e.g. int, long, arbitrary—, the
type feedback infrastructure of our first problem (a) can be reused. In such a case,
a positive check against machine boundaries and overflow errors, calling downwards
the chain of most-general implementations and updating the cache for subsequent
calls is necessary.

Aside from these optimization techniques, we want to mention a subtle issue that
comes up when comparing high abstraction level instructions with low abstraction
level instructions. When we compare the addition example of Java and Python,
we find that JVM’s integer addition bytecodes, IADD and LADD, are bound by a
maximum range of representable numbers—32-bit for integers, and 64-bit for long
integers respectively—whereas Python’s BINARY ADD implementation is not. Since
the JVM does not offer unbounded range mathematics at the virtual machine level,
it is necessary to leverage library functionality—in our case java.math.BigInteger—
in order to have a 1 : 1 correspondence between the integer addition of both lan-
guages. In Java’s case a call to IADD, or LADD for that matter, would be substi-
tuted by a invocation of a software algorithm for unbounded range mathematics
of java.math.BigInteger—probably similar to the one implemented for Python’s
BINARY ADD, or long add respectively. This implies that even though a similar al-
gorithm might be used, their difference in implementation level is significant: in
Java we need a library, which generates multiple bytecodes for implementation of
the unbounded range addition, whereas the Python compiler still emits just a single
BINARY ADD instruction.

Consequently, a high abstraction level sometimes can be considered as an op-
timization technique itself, since it can save a considerable amount of emitted low
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abstraction level instructions—we could probably say that this is a derivative, or
special case, of the superinstruction optimization technique [9]. In conclusion, this
example also illuminates that the instruction set architecture is also of significant
importance for the performance of virtual machines—probably we can also reuse the
analogy of hardware machine instruction set architecture, by recognizing the terms
RISC and CISC in context with our classification, e.g. low and high abstraction
level interpreters.

5 Related Work

Romer et al. [19] provide an analysis for interpreter systems. Their objective was to
find out whether interpreters would benefit from hardware support. However, they
conclude that interpreters share no similarities, and therefore hardware support
was not meaningful. Among other measurements, they collected average native
instructions per bytecode (Section 3 of their paper). This is a sort of a black-box
view on our classification scheme based on comparable source code examples from
bytecode implementations. Finally, there is no link to optimization techniques, too.

Contrary to Romer et al. [19], Ertl and Gregg [8] found that at least within
the subset of efficient interpreters, hardware support in the form of branch target
buffers would significantly improve performance for the indirect branch costs in-
curred in operation dispatch. Their in-depth analysis by means of simulation of a
simple MIPS CPU found that the indirect branching behavior of interpreters is a
major cause for slowdowns. Another important result of Ertl and Gregg is that a
Prolog implementation, the Warren Abstract Machine based YAP [4], is very effi-
cient, too: This implies that there is no immanent performance penalty associated
with dynamically typed programming languages. Their class of efficient interpreters
maps perfectly well to our category of low abstraction level virtual machines.

Adding to their set of efficient interpreters, they also provide results for the
interpreters of Perl, and Xlisp—both of which achieve results that do not fit within
the picture of efficient interpreters. This is where we introduce the concept of
high abstraction level interpreters, and how it correlates to optimization techniques.
Interestingly, for Xlisp Ertl and Gregg mention the following: “We examined the
[Xlisp] code and found that most dynamically executed indirect branches do not
choose the next operation to execute, but are switches over the type tags on objects.
Most objects are the same type, so the switches are quite predictable.” This directly
translates to our situation with high abstraction level interpreters (Section 4).

In his dissertation, Hölzle also notes that a problem for an efficient SELF inter-
preter would be the abstract bytecode encoding of SELF [11], with a point in case
on the send bytecode, which is reused for several different things. Interestingly,
Hölzle observes, that instruction set architecture plays a very important role for the
virtual machine, and conjectures that a carefully chosen bytecode instruction set
could very well rival his results with a native code compiler.
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6 Conclusions

We introduced the classes of high and low abstraction levels for interpreters, and
categorized some interpreted systems into their corresponding classes. Using them,
we subjected various known optimization techniques for their relative optimization
potential. Techniques that achieve very good speedups on low abstraction level
interpreters do not achieve the same results for high abstraction level virtual ma-
chines. The reason for this is that the ratio of native instructions needed for oper-
ation execution vs. the native instructions needed for dispatch, and therefore their
relative costs changes. In low abstraction level interpreters the ratio usually is 1 : n,
i.e., many operations can be implemented using just one machine instruction, but
dispatch requires n instructions, which varies according to the dispatch technique
applied, and is costly because of its branching behavior. Quite contrary for high ab-
straction level interpreters: here operation execution usually consumes much more
native instructions than dispatch does, which lessens the implied dispatch penalties.

Our classes are not mutually exclusive, an interpreter can have both, low and
high abstraction level instructions. For our classes of high abstraction level inter-
preters, exemplified by Python and Lua—but conjectured to be true for Perl and
Ruby, too—type feedback looks particularly promising. When faced with other
programming languages but the same situation, i.e., a discrepancy in expected and
reported speedups for low abstraction level techniques, our mileage may vary. In
such a situation, only detailed analysis of an interpreter’s execution profile can tell
us where most time is spent and which techniques are most promising with regard
to optimization potential.

In closing, we want to mention that our objectives are to demonstrate the rela-
tive optimization potential for different abstraction levels between an interpreter’s
virtual machine instruction set and the native machine it runs on.
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Abstract

Virtual machines (VMs) facilitate the deployment of applications in heterogeneous environments. Popular
VMs such as Sun Microsystem’s Java VM or Microsoft’s Common Language Runtime (CLR) use a stack-
based machine architecture to execute bytecode instructions. The focus of this paper is to explore the ability
of XML to serve as a generic framework to represent bytecode instructions from different VMs. With an
XML representation, supporting technologies such as XSL stylesheets and XPath expressions can be used
to provide various transformations of bytecode instructions. We demonstrate the flexibility and power of
this approach by showing examples of cross-compilation for various CLR bytecode instructions to the JVM
as well as API mappings of the underlying runtime libraries.

1 Introduction

Virtual machines are abstract computing machines that offer a homogeneous com-
puting platform in a heterogeneous environment. Instead of compiling source code
to machine language, an intermediate language called bytecode is produced. It can-
not directly run on a physical machine and requires a virtual machine that loads
and executes the application. While often confronted with the argument of being
slower in execution, they offer a number of advantages over machine compiled lan-
guages. Specifically, they ease the development and deployment of applications in
heterogeneous environments, without the need to recompile the application for a
specific platform. Two virtual machines that are widely used today are the Java
Virtual Machine (JVM) from Sun Microsystems [9] and Microsoft’s Common Lan-
guage Runtime (CLR) as part of their .NET framework [2]. Implementations can
be found on devices like cell phones, personal computers, or chip-cards. Both vir-
tual machines rely on a stack-based execution model, but the CLR features a wider
range of data types and bytecode instructions than the JVM.
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Programs to manipulate virtual machine bytecode are becoming more prevalent.
BAT2XML [3] uses XML to represent Java bytecode in order to take advantage of
supporting XML technologies for processing and manipulation. One of the features
of BAT2XML allows for the easy injection and extraction of Java bytecode. This
means that the bytecode can be analyzed and then optimized. BAT2XML is only
able to represent Java bytecode, however, and has no provisions for CLR bytecode.

Aspect-Oriented Programming (AOP, [7]) provides another example of the need
to manipulate bytecode. AOP is concerned with separating the basic business logic
of a system from what it deems to be crosscutting concerns such as logging and
authorization. These concerns are shared by modules all throughout a system.
Rather than being added at the source code level, they are separated out into
aspects and added in at compile time by an aspect weaver. This “weaving” is done
on a bytecode level.

Cross-compilation is yet another example of a situation where byte code is di-
rectly processed. It would be of obvious economic interest to be able to map byte-
code instructions from one VM to the other. By doing so, developers for one VM
could deploy their applications on the other VM. The IKVM project [4] offers sup-
port to execute JVM applications on a CLR platform. The JaCIL project [5] cross-
compiles .NET executables to run on a JVM. However, neither of these approaches
can provide a generic representation of bytecode for both the CLR and the JVM.

The approach taken in this paper is to make extensive use of XML technologies
in order to provide a framework for generic bytecode manipulation. We use XML
in order to provide a representation of bytecode that is a superset of stack-based
machine languages. This allows for the easy manipulation of bytecode, and we
demonstrate this with a cross-compilation example that uses XSL stylesheets [10]
for translating CLR bytecode instructions to the JVM. XSL stylesheets allow for a
declarative methodology when performing this transformation.

Ultimately, this paper is a showcase for the power of XML technologies and
declarative programming for a non-trivial application. The outline of this paper
is as follows: In Section 2 we present XMLVM, our XML-based representation of
bytecode instructions. Section 3 gives an overview of the JVM and the CLR while
focusing on their differences. Based on XMLVM, we show in Section 4 how to cross-
compile bytecode instructions using XSL stylesheets. Section 5 presents conclusions
and outlook for future work.

2 XMLVM

Cross-compilation requires access to the bytecode instructions for both the CLR
and the JVM. From an engineering perspective, this can be accomplished by various
libraries that allow the inspection and construction of executables. For Java class
files, the Byte Code Engineering Library (BCEL, [1]) allows such manipulations. For
CLR executables, the .NET framework offers a similar library based on a reflection
API for low-level bytecode manipulations. It should be noted that BCEL can only
be accessed using Java while the .NET API is only offered for languages supported
by .NET. Currently, there is no single library that allows JVM and CLR bytecode
manipulations from one high-level programming language (e.g., Java or C#). Any
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kind of cross-platform bytecode manipulations are therefore difficult to realize. For
that reason we have chosen to create an abstraction for bytecode instructions using
XML [11] and limit the use of platform-specific libraries only during reading and
writing JVM and CLR executables.

We use XML to represent the contents of a Java class file as well as the contents
of a CLR executable. Since the resulting XML document is structured according to
the semantics of a program for a generalized virtual machine, we call it XMLVM.
Another way to look at XMLVM is that it defines an assembly language for those
virtual machines using XML as the syntax. The benefit of using XML is that
it creates an abstraction in the sense that it hides the complexities of bytecode
manipulation libraries. It thereby allows us to focus on the bytecode manipulations
itself by exploiting powerful XML technologies such as XSL and XPath. In addition,
the declarative nature of XSL will result in compact specifications for mapping CLR
bytecode instructions to the JVM.

The following template shows the general structure of an XMLVM translation
unit used for both JVM and CLR programs:

1 <xmlvm xmlns:clr="http://xmlvm.org/clr"
2 xmlns:jvm="http://xmlvm.org/jvm"
3 xmlns="http://xmlvm.org">
4 <class ...>
5 <field .../>
6 <method ...>
7 <signature>...</signature>
8 <code>...</code>
9 </method>

10 </class>
11 </xmlvm>

An XMLVM program consists of several classes, each contained in a separate
translation unit. Each class can have one or more fields and methods. The attributes
of the XML tags, which are not shown in the template above, give more details
such as identifier names or modifiers. A method is defined through a signature
and the actual implementation, denoted by the tags <signature> and <code>
respectively. We make use of XML namespaces to indicate the semantics of the
various tags used in an XMLVM program. The tags shown in the template above
are located in the default namespace and represent common features between the
CLR and the JVM. Those features specific to the particular VM—such as different
byte code instructions—are located in their respective namespace. Consider the
following simple C# program that will serve as an example when discussing the
mapping of numerical operators:

1 // C#
2 using System;
3

4 class AddTest {
5

6 public static void Main() {
7 int a = 11;
8 int b = 22;
9 Console.WriteLine(a + b);

10 }
11 }

Class AddTest has one public static method called Main. The method adds
two integer values and prints the sum to the console. The following XML shows a
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simplified representation of class AddTest in XMLVM:

1 <xmlvm xmlns:clr="http://xmlvm.org/clr"
2 xmlns="http://xmlvm.org">
3 <class name="AddTest">
4 <method name="Main" isStatic="true" isPublic="true">
5 <signature>
6 <return type="void" />
7 </signature>
8 <code>
9 <clr:var index="0" type="int" />

10 <clr:var index="1" type="int" />
11 <clr:ldc type="int" value="11" />
12 <clr:stloc index="0" />
13 <clr:ldc type="int" value="22" />
14 <clr:stloc index="1" />
15 <clr:ldloc index="0" />
16 <clr:ldloc index="1" />
17 <clr:add />
18 <clr:call has-this="false" class-type="System.Console" method="WriteLine">
19 <signature>
20 <return type="void" />
21 <parameter type="int" />
22 </signature>
23 </clr:call>
24 <clr:return />
25 </code>
26 </method>
27 </class>
28 </xmlvm>

It should be emphasized again that the above XMLVM program is essentially an
XML representation of the contents of the AddTest.exe executable generated by a
C# compiler. The top-level tags are identical to the XML template shown earlier.
The <method> tag has attributes for each of the modifiers public and static. A
method has access to its own stack and local variables as well as the global heap. If
a method has actual parameters, they are automatically stored in the local variables
upon entering the method.

The most interesting part of the above XMLVM program is the actual imple-
mentation of method Main, which lies in between the tags <code> and </code>.
Since the bytecode instructions belong to the CLR, the respective XMLVM instruc-
tions are placed in the XML namespace denoted by the prefix clr. The <clr:var>
(variable) tag declares a variable with respective type that can be addressed by a
given index. Instruction <clr:ldc> (load constant) pushes a constant referred to
by attribute value onto the stack.

The <clr:stloc> (store location) instruction pops off the top of the stack and
saves it in the local variable referred to by attribute index. The <clr:ldloc>
(load location) instruction does the inverse by pushing the content of a variable
onto the stack. The instruction <clr:add> (addition) pops the last two values off
the stack and pushes their sum back onto the stack. The <clr:call> instruction
invokes the method System.Console.WriteLine(). The false value of attribute
has-this indicates that WriteLine() is a static method, because it does not re-
quire a this reference. Note that the actual parameters have been removed by the
<clr:call> instruction after the invocation. The <clr:return> instruction fi-
nally leaves the method Main and returns to the caller.

The aforementioned <clr:add> instruction gives no indication as to the type of
the operands. In this particular example, the <clr:add> instruction will compute
the sum of two integers, since the two top elements of the stack are of type integer.
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The same <clr:add> instruction would have been used if two floating point values
had been added. The CLR states that the virtual machine has to determine the
correct type through some mechanism. This could be accomplished by either a
static data flow analysis of the program or by maintaining a type-stack at runtime.

The <clr:add> instruction does not check for overflow. If an overflow oc-
curs, only the least significant bytes of that type are considered for the sum of the
arguments. If the C# program above had computed the sum using the expres-
sion checked((int) (a + b)), it would have resulted in the byte code instruction
<clr:add ovf> (add overflow) that raises a runtime exception when an overflow
occurs. Note that for the <clr:add ovf> instruction the VM also has to determine
the correct type of the arguments similar to <clr:add>.

3 Overview of the JVM and CLR

An exhaustive comparison between the JVM and the CLR is outside of the scope
of this paper, as our main interest lies in the exploration of bytecode manipulation
with XML technologies. In the following we focus on two key features of the CLR
for which there is no corresponding support in the JVM. Later in this paper we
will present how these features can be mapped to the JVM. Specifically, we will
demonstrate how both the CLR’s type-agnostic instructions (as used with primitive
types) and value types can be mapped to the JVM. Other features such as delegates
and generics are left for future work. The work involved with this mapping will allow
us to demonstrate the power and flexibility of using XML, in conjunction with XSL
and XPath, to perform cross-compilation. The features discussed in the following
already allow for non-trivial applications to be cross-compiled using a declarative
approach. In the following sections we discuss primitive types (Section 3.1) and
value types (Section 3.2).

3.1 Numerical Primitive Types

As with any high-level programming language, the languages based on the JVM
and the CLR both define a set of primitive types such as bytes, integers, or doubles.
Furthermore, both execution platforms define various bytecode instructions such as
addition or subtraction that operate on these primitive types. We first discuss the
different data models of the JVM and the CLR and then introduce the bytecode
instructions.

The JVM supports numerical types of various sizes and precisions. In the fol-
lowing we focus on integer types. Based on the Java programming language, the
JVM supports four different integer types, ranging from 8 to 64 bit precision. One
interesting fact is that the JVM (and therefore Java) only supports signed integers.
I.e., there is no built-in support for unsigned integer types. As with the JVM, the
CLR also supports integer types of various precisions. One important difference
however is that the CLR supports both signed and unsigned integer types.

Based on the integer types, both virtual machines offer various byte code in-
structions that operate on those types. In the following we introduce the bytecode
instructions for adding two integer values. The bytecode instructions for subtrac-
tion, multiplication, and division follow the same pattern. The JVM features the
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following two different bytecode instructions for adding integers:

• <jvm:iadd>: adds two signed 32 bit integers of type int.
• <jvm:ladd>: adds two signed 64 bit integers of type long.

Interestingly, there are no special instructions for adding 8 bit and 16 bit integer
values. As noted in section 3.11.1 of the JVM specification, “encoding types into
opcodes places pressure on the design of [the VM’s] instruction set” [9]. As a
consequence, the JVM designers wanted the <jvm:iadd> instruction (along with
other 32 bit integer-based instructions) to be able to work with both bytes and
shorts. This is accomplished by sign-extending values of these types to 32 bit
signed integers when loaded onto the stack.

Despite the fact that an overflow may occur, execution of an <jvm:iadd> or
<jvm:ladd> instruction never throws a runtime exception. The result is the 32 low-
order bits of the true mathematical result in a sufficiently wide two’s-complement
format, represented as a value of type int. If an overflow occurs, then the sign of
the result may not be the same as the sign of the mathematical sum of the two
values.

Whereas there are only two bytecode instructions for adding integers offered by
the JVM, the CLR supports three different op-codes for adding integers:

• <clr:add>: adds two signed integers without overflow check.
• <clr:add ovf>: adds two signed integer values with overflow check. Throws
OverflowException if an overflow occurs.

• <clr:add ovf un>: adds two unsigned integer values with overflow check.
Throws OverflowException if an overflow occurs.

It is interesting to note that the description for the add instruction only specifies
the addition of two signed integers. There is no mention of unsigned integers. How
can it be possible, then, that the CLR supports the basic addition of unsigned
integers? It turns out that the CLR imposes a constraint somewhat similar to that
of the JVM for items placed upon its evaluation stack. Only signed 32 bit and 64 bit
integers can be loaded onto the stack. Unsigned types are simply sign-extended and
treated as signed types when loaded onto the stack. The CLR then takes advantage
of the fact that, for some operations, signed and unsigned integers do not need to be
treated differently. In those cases where they need to be treated differently, special
instructions such as <clr:add ovf un> are used [2].

Based on this examination, we can see that there are several significant differ-
ences between the JVM and CLR with respect to their support of integer types.
This complicates the efforts involved with cross-compilation. To translate bytecode
from the CLR to the JVM, for example, the cross-compilation process must at least
provide support for unsigned integers, use the appropriate bytecode instructions for
different data types, and check for overflow by throwing a runtime exception when
an overflow occurs.
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3.2 Value Types

The CLR introduces the notion of value types. Value types are similar to classes,
but their instances are allocated on the stack. Instances of classes (i.e., objects) are
usually allocated on the heap and are garbage collected when not used anymore.
Garbage collection introduces significant runtime overhead. However, since value
types are allocated on the stack, they will be automatically reclaimed when the
method where they were defined is exited. For this reason, the underlying behavior
of value types in the CLR differs from that of classes. This is demonstrated by the
following C# program:

1 // C#
2 using System;
3

4 public struct Person {
5 public string Name;
6

7 public Person(string name) {
8 Name = name;
9 }

10 }
11

12 class ValueTypeTest {
13 static void Main() {
14 Person p1 = new Person("Bob");
15 Person p2 = p1;
16 p2.Name = "Alice";
17 assert(p1.Name == "Bob");
18 assert(!p1.Equals(p2));
19 }
20 }

In C#, a struct defines a value type (line 4). Although a value type is also
instantiated via the new operator (line 14), it will effectively be allocated on the
stack. As a consequence, variable p2 in the example above will copy the value type
(line 15). If Person were a proper class, p1 and p2 would be referencing the same
object. But as can be seen by the assertions in lines 17 and 18, p1 and p2 are
separate copies. Value types can be converted to and from proper garbage collected
objects. Converting a value type to an object is called boxing, while the reverse
mapping is called unboxing. Apart from the boxing and unboxing operation, the
CLR introduces no special bytecode instructions for handling value types. The same
bytecode instructions are used for objects and value types, but their semantics are
different. The JVM offers no support for value types and therefore this requires
special handling during cross-compilation.

4 CLR to JVM Transformation

The preceding section outlined some differences between the CLR and the JVM.
The CLR is a superset of the JVM in many ways, which is underlined by the fact
that the CLR supports more primitive types as well as features additional bytecode
instructions not found in the JVM. Therefore, it is relatively straightforward to
map a JVM program to the CLR. There already exists at least one project that
implements this direction of the transformation [4].

The reverse direction of the transformation poses more challenges, and in the
following we discuss some techniques to accomplish this with the use of various XML
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Fig. 1. XMLVM Toolchain.

technologies. The basis for this study is the use of XMLVM, which was introduced
in Section 2. Figure 1 summarizes the overall workflow of our toolchain. The
transformation begins with a CLR executable that is first translated to an XML
representation we call XMLVMCLR, whose format was described earlier. The next
step consists of a data flow analysis of the XMLVM program which we refer to as
XMLVMCLR−DFA. Section 4.1 details how the data flow analysis can be done via
XSL stylesheets. After the data flow analysis, the CLR bytecode instructions can
be transformed to the JVM (referred to XMLVMJV M in Figure 1), the details of
which will be given in Section 4.2. After cross-compiling the bytecode instructions,
the API of external libraries need to be mapped which is described in Section 4.3.
Finally, the resulting XMLVMJV M−API program can be translated to a binary Java
class file that can be executed on a standard JVM.

4.1 Data Flow Analysis

Up to this point we have shown how XML can be used to represent any program that
can be executed on the JVM or the CLR. As outlined earlier, the CLR only features
un-typed instructions; this is illustrated by our examination of integer addition. As
a consequence, it will become necessary to know the type of the operands during
the cross-compilation process. Without this knowledge, it would be impossible to
map the CLR-add instruction to one of the typed add-instructions supported by the
JVM. As a prerequisite, one has to determine on which specific argument types the
un-typed instructions operate. This can be accomplished by a data flow analysis.
This task is similar to what a bytecode verifier has to do when loading a program
into the virtual machine [6].

During a data flow analysis, all the execution paths through a program are
traced, but instead of pushing and popping specific arguments onto the stack, only
the types of those arguments are stored on the stack. For this reason it is also called
a type stack (vs. an argument stack). With this analysis, it is possible to determine
the type of the arguments that will be stored on the stack at any point during the
execution of the program.

As a first step towards a data flow analysis, we take advantage of XML’s ex-
tensibility and introduce new markup of an XMLVM program that can capture the
effects an individual bytecode instruction has on the type stack. For each instruc-
tion, we need to record the state of the type stack before and after execution of that
instruction. Those two states will be marked up with the tags <stack-pre> and
<stack-post> respectively and appended as children to the XML tag of the byte-
code instruction. The elements contained on a stack are denoted by the <elem>
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tag. We refer to the resulting XMLVM program that contains these type-stack
annotations as XMLVMCLR−DFA.

We use XSL templates to generate the type stack transition for each instruction.
XSL templates specify translations to apply to an XML document when an XML
node is found that matches the rule specified in the match attribute. As a specific
example, consider the aforementioned <clr:ldloc> instruction that pushes the
content of a local variable onto the stack. In terms of changes to the type stack,
this instruction will push an argument of a certain type (determined by the type
of the variable whose value is to be pushed onto the stack). The following is an
example of the XSL template for <clr:ldloc>:

1 <xsl:template match="clr:ldloc[preceding-sibling::*[1]/dfa:stack-post]">
2 <clr:ldloc>
3 <xsl:copy-of select="@*"/>
4 <stack-pre>
5 <xsl:copy-of select="preceding-sibling::*[1]/stack-post/*"/>
6 </stack-pre>
7 <stack-post>
8 <xsl:copy-of select="preceding-sibling::*[1]/stack-post/*"/>
9 <elem>

10 <xsl:variable name="idx" select="@index"/>
11 <xsl:attribute name="type">
12 <xsl:value-of select="../clr:var[@index = $idx]/@type"/>
13 </xsl:attribute>
14 </elem>
15 </stack-post>
16 </clr:ldloc>
17 </xsl:template>

The DFA for this instruction can only be computed once the <stack-post>
of the preceding instruction has been determined. This condition is given by the
XPath expression of the match attribute (line 1). The first <copy-of> copies all
attributes to the result tree via the @* expression (line 3). Next, the template defines
the type stack before the instruction executes via the <stack-pre> tag. The state
of the type stack at this point is identical with the <stack-post> of the previous
instruction. Therefore, the XPath expression of the second <copy-of> selects the
<stack-post> of the first preceding sibling of the current instruction (lines 4–6).
The above template finally defines the type stack after executing the <clr:ldloc>
instruction via the <stack-post> tag (lines 7–15). In case of this instruction, one
new element is added to the top of the type stack whose type is determined by the
type of the variable whose value is pushed by <clr:ldloc>. The <value-of> in
the template above (line 12) uses an XPath expression to reference that type. The
following excerpt shows the resulting XMLVMCLR−DFA program for AddTest with
the computed type stack transitions:

1 <!-- ... -->
2 <clr:ldloc index="0">
3 <stack-pre/>
4 <stack-post>
5 <elem type="int"/>
6 </stack-post>
7 </clr:ldloc>
8 <clr:ldloc index="1">
9 <stack-pre>

10 <elem type="int"/>
11 </stack-pre>
12 <stack-post>
13 <elem type="int"/>
14 <elem type="int"/>
15 </stack-post>
16 </clr:ldloc>
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17 <clr:add>
18 <stack-pre>
19 <elem type="int"/>
20 <elem type="int"/>
21 </stack-pre>
22 <stack-post>
23 <elem type="int"/>
24 </stack-post>
25 </clr:add>
26 <!-- ... -->

In the XMLVMCLR−DFA excerpt above it can be seen that the data flow analysis
added tags for each CLR instruction that reflects the content of the type stack before
and after the execution of that instruction. As shown in lines 17 to 25, the CLR
instruction <clr:add> pops off two integers and pushes an integer back onto the
type stack. It should be noted that the data flow analysis done here is much less
complex than what a bytecode verifier typically is required to check. In particular,
since we are only interested in primitive types, it is not necessary to compute the
LUB (least upper bound) of object types of different execution paths [8].

4.2 Generating JVM Bytecode

The next step of the XMLVM toolchain consists in translating the CLR instruc-
tions to JVM bytecode. In some cases this mapping is trivial, as there is a one-
to-one correspondence between CLR and JVM instructions. One example is the
<clr:ldnull> instruction, which pushes a null reference onto the execution stack.
This can be directly mapped to the <jvm:aconst null> instruction. In other
cases, the mapping has to rely on the data flow analysis as introduced in the pre-
vious section. In the following sections we demonstrate how to map CLR bytecode
instructions for numerical operations and value types to semantically equivalent
JVM bytecode instructions.
4.2.1 Mapping Numerical Operations
As explained earlier, the CLR only features un-typed instructions, whereas the
JVM only has typed instructions. The <clr:add> instruction of the XMLVMCLR

program needs to be mapped to one of the typed addition operators of the JVM.
This can be accomplished with the help of the data flow analysis. The following
two XSL templates demonstrate the mapping of the CLR instruction <clr:add>
for integer types:

1 <xsl:template match="clr:add[stack-post/elem[last()][@type = ’int’]]">
2 <jvm:iadd/>
3 </xsl:template>
4

5 <xsl:template match="clr:add[stack-post/elem[last()][@type = ’long’]]">
6 <jvm:ladd/>
7 </xsl:template>

The XPath expression in the match-statements of the XSL templates check the
top of the type stack and map the <clr:add> CLR instruction to either the JVM
<jvm:iadd> instruction (line 2) or the JVM <jvm:ladd> instruction (line 6) de-
pending whether the top of the type stack is of type int or long. This is an
example of how un-typed CLR instructions can be mapped to type-specific JVM
instructions via declarative XSL templates. The following XMLVM excerpt shows
the JVM bytecode instructions that result from transforming the CLR implemen-
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tation of the AddTest class introduced earlier:

1 <code>
2 <jvm:ldc type="int" value="11"/>
3 <jvm:istore index="0"/>
4 <jvm:ldc type="int" value="22"/>
5 <jvm:istore index="1"/>
6 <jvm:iload index="0"/>
7 <jvm:iload index="1"/>
8 <jvm:iadd/>
9 <jvm:invokestatic class-type="System.Console" method="WriteLine">

10 <signature>
11 <return type="void"/>
12 <parameter type="int"/>
13 </signature>
14 </jvm:invokestatic>
15 <jvm:return/>
16 </code>

In some cases it is not possible to map one CLR bytecode instruction to
exactly one JVM instruction. The instructions that check for overflow (both
<clr:add ovf> and <clr:add ovf un>) during addition are two such cases. In
order to map those CLR instructions to the JVM, it is necessary to introduce a
compatibility library that mimics the semantics of the original CLR instruction. As
an example, consider the CLR instruction <clr:add ovf> discussed earlier. Since
the JVM does not offer a single bytecode instruction with the same semantics, the
<clr:add ovf> instruction is mapped via the following stylesheet to an invocation
of the static method MathLib.add ovf(int, int):

1 <xsl:template match="clr:add_ovf[stack-post/elem[last()][@type = ’int’]]">
2 <jvm:invokestatic class-type="MathLib" method="add_ovf">
3 <signature>
4 <return type="int"/>
5 <parameter type="int"/>
6 <parameter type="int"/>
7 </signature>
8 </jvm:invokestatic>
9 </xsl:template>

This above XSL template demonstrates that bytecode instructions can be very
easily inlined. The JVM tag <jvm:invokestatic> serves the same purpose
as the CLR tag <clr:call has-this="false"> for static methods. Whenever
the <clr:add ovf> instruction is encountered in a CLR program, an invoca-
tion to a compatibility library is made that mimics the semantics of that instruc-
tion. The following Java class MathLib shows one possible implementation of the
<clr:add ovf> bytecode instruction for integers for which no direct correspon-
dence exists in the JVM. Note that the signature of this method is consistent with
the <clr:add ovf> instruction:

1 // Java
2 public class MathLib {
3 static public int add_ovf(int x, int y) {
4 int z = x + y;
5 if (z == ((long) x + (long) y))
6 return z;
7 else
8 throw new OverflowException();
9 }

10 }
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4.2.2 Mapping Value Types
Value types have been introduced in the CLR as light-weight objects for which the
JVM offers no equivalent bytecode operations. The following XMLVMCLR shows
the CLR bytecode instructions for lines 14-15 of the ValueTypeTest.Main() method
introduced in Section 3.2:

1 <clr:var index="0" isValueType="true" type="Person" />
2 <clr:var index="1" isValueType="true" type="Person" />
3 <clr:ldloca index="0" />
4 <clr:ldc type="String" value="Bob" />
5 <clr:call has-this="true" class-type="Person" method=".ctor">
6 <vm:signature>
7 <vm:return type="void" />
8 <vm:parameter type="String" />
9 </vm:signature>

10 </clr:call>
11 <clr:ldloc index="0" />
12 <clr:stloc index="1" />

The <clr:var> declarations of type Person will allocate sufficient memory on
the stack to hold instances of that value type. Since value types are allocated on the
stack, they are not created via <clr:newobj>. The <clr:ldloca> (load location
address) pushes the address where the value type is allocated onto the stack. The
following <clr:call> instruction then calls the constructor (.ctor) of the value
type. The combination of <clr:ldloc> and <clr:stloc> copies a value type.
Note that those two byte code instructions also work with regular objects, but
since they are applied to value types in this example, a deep copy is performed.
Analyzing the bytecode instructions created by a C# compiler, several observations
can be made:

• Value types are not allocated via the instruction <clr:newobj> that is typically
used to instantiate a new object on the heap.

• Value types are allocated on the stack. The <clr:var> variable declaration
implicitly allocates memory for the new value type on the stack.

• Value types are manipulated via the same bytecode instructions as regular objects.
The <clr:stloc> instruction in this case does a deep copy of a value type.

Since the JVM has no support for value types, they have to be simulated while
retaining the semantics as defined by the CLR. The easiest approach is to convert
value types to heap-allocated objects. If value types are mapped to objects, they
need to be allocated via <clr:newobj>. Special care has to be taken when copying
value types. The <clr:ldloc> and <clr:stloc> copy references for objects,
while performing a deep copy for value types. In this case, the data flow analysis
again helps to map these bytecode instructions to proper JVM instructions. Since a
deep copy cannot be performed with a single bytecode instruction, we generate a call
to a compatibility library that implements this behavior. Each value type inherits
directly or indirectly from class System.ValueType. We add a static method COPY
to this class that performs the deep copy using the Java reflection API. Here is the
declaration of this method:

1 // Java
2 package System;
3

4 public class ValueType extends System.Object {
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5 static public void __COPY(ValueType from, ValueType to)
6 { ... }
7 }

With the assistance of this helper method, the bytecode instruction
<clr:stloc> will be mapped to a static invocation of this method whenever the
instruction is handling a value type:

1 <jvm:aload index="1" type="Person"/>
2 <jvm:invokestatic class-type="System.ValueType" method="__COPY">
3 <vm:signature>
4 <vm:return type="void"/>
5 <vm:parameter type="System.ValueType"/>
6 <vm:parameter type="System.ValueType"/>
7 </vm:signature>
8 </jvm:invokestatic>

The <clr:stloc> instruction expects the value type to be stored on the stack.
Since we treat all value types as objects, this value type will be represented as a
reference. The destination (also represented as a reference) is pushed onto the stack
via <jvm:aload> before making a call into the compatibility library. The signature
of method COPY is chosen such that it matches the stack layout at this point in
time.

4.3 API Transformation

Cross-compiling CLR bytecode instructions to JVM bytecode instructions does not
solve the problem of external libraries referenced by the application. E.g., if a C#
application uses WinForms to create a button on a user interface, it will refer-
ence class System.Windows.Forms.Button. Cross-compiling bytecode instructions
would result in a Java class file having an external reference to this class that does
not exist in the Java runtime library. One solution is to create a set of compatibility
classes in Java with the exact API as their CLR counterparts.

In some cases it is possible to map the API without the need of compatibility
classes as can be seen with the .NET class System.String. Its behavior is almost
identical to that of the Java class java.lang.String. In principle, every reference
of System.String can be replaced with java.lang.String in the cross-compiled
program. There are some important differences, however, in their respective im-
plementations. One such difference is the way the length of a string is determined.
Class System.String in .NET defines the read-only property Length for that pur-
pose:

1 // C#
2 namespace System {
3 class String {
4 public int Length {get;}
5 // ...
6 }
7 }

When used in a C# program, the resulting bytecode calls an instance
method of name get Length(). This method has the same behavior as
java.lang.String.length() and it can therefore be replaced. This is accom-
plished by the following XSL template:
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1 <xsl:template match="jvm:invokevirtual[@class-type = ’System.String’ and
2 @method = ’get_Length’]">
3 <jvm:invokevirtual class-type="java.lang.String" method="length">
4 <vm:signature>
5 <vm:return type="int"/>
6 </vm:signature>
7 </jvm:invokevirtual>
8 </xsl:template>

Changing class names and method names is the essence of API mapping. When
used together with API wrapping, the cross-compiled Java application behaves iden-
tically to its original CLR version. The above XSL template demonstrates the full
potential of declarative XPath expression to filter out the desired API.

5 Conclusion and Outlook

In this paper we have demonstrated the feasibility of using XML technologies to per-
form bytecode manipulations—such as with the cross-compilation of CLR bytecode
instructions to the JVM. This allows .NET developers to deploy their applications
on a standard JVM. The CLR offers a wider range of features than the JVM,
thereby making the cross-compilation non-trivial. We see our work as a showcase
for the power of XML technologies. In particular, XSL stylesheets have proven to
be a powerful abstraction for bytecode manipulations. XSL is a declarative, Turing
complete language that allows us to focus on performing bytecode transformations
without having to deal with byte code manipulation libraries such as BCEL or the
.NET reflection API.

In this paper we have shown how to map integer operations and value types to the
JVM. Other features of the CLR remain for future work. In particular the support
for generics will require significant work. Other future research will investigate the
capabilities of XMLVM to represent bytecode programs that use instructions from
different VMs. In particular, we plan to look at the possibility of weaving byte
code instructions from different VMs into one XMLVM program in the context of
AOP. This would make it possible to weave a C# aspect into a Java application
and vice-versa. The cross-compilation would have to cope with mixed bytecode
instructions from different VMs. XMLVM would be particularly well-suited to serve
as an abstraction for this heterogeneous mix of bytecode instructions.
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Abstract

This paper describes the S3MS.NET run time monitor, a tool that can enforce security policies expressed
in a variety of policy languages for .NET desktop or mobile applications. The tool consists of two major
parts: a bytecode inliner that rewrites .NET assemblies to insert calls to a policy decision point, and
a policy compiler that compiles source policies to executable policy decision points. The tool supports
both singlethreaded and multithreaded applications, and is sufficiently mature to be used on real-world
applications.
This paper describes the overall functionality and architecture of the tool, discusses its strengths and
weaknesses, and reports on our experience with using the tool on case studies as well as in teaching.
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1 Introduction

In todays networked world, code mobility is ubiquitous. Even mobile phones and
Personal Digital Assistants increasingly support the installation of third party ap-
plications from a variety of sources. This support for applications from potentially
untrustworthy sources comes with a serious risk: malicious or buggy applications
can lead to denial of service, financial damage, leaking of confidential information
and so forth. The research community has developed a variety of countermeasures
for addressing the threat of untrusted mobile code. One important class of counter-
measures addresses this risk by monitoring the application at run time, and aborting
it if it violates a predefined security policy.

This paper reports on a tool developed within the Security of Software and
Services for Mobile Systems (S3MS) project. It implements a monitor for the .NET
platform through bytecode inlining. Several of the key algorithms implemented in
the tool have been proven formally correct, and the implementation is sufficiently
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mature to handle real-world applications for both the .NET Compact Framework
(for mobile devices) and the full .NET Framework (for desktops and servers).

2 Tool Architecture

2.1 Overview

As case studies [10] show, the major security concerns of users about third-party
applications are invocations of functionality that incurs a monetary cost, and treat-
ment of sensitive data. Access to this functionality as well as to the sensitive
information is provided by calling system API methods. A simple way to prevent
the application from causing harm is to suppress the calls to the potentially dan-
gerous methods, effectively sandboxing the application. However, in this way the
useful functionality that the application can provide is also hampered. To allow this
functionality to the application, without compromising security, the access to the
sensitive system calls (later called security-relevant methods) should be regulated by
the policy, which grants access to security-relevant methods according to specified
rules. These rules can include conditions on the environment (e.g. time) or on the
previous access requests of the application (as in history-based access control [4]).

To define what functionality is considered security-relevant, we rely on the policy.
For example, if the policy prohibits network accesses after sensitive information
was accessed by the application, then the security-relevant API calls are “starting
a connection” and “accessing sensitive information”. All other operations, such as
creating files, are irrelevant to this policy and need not to be monitored. Note,
that some operations are more likely to be listed as security-relevant than others.
For instance, GUI operations are unlikely to be listed as security-relevant by any
realistic policy, and therefore will be executed without any monitoring overhead.

The S3MS.NET run time monitor consists of two key components (Figure 1).
The inliner rewrites potentially dangerous applications. It scans the bytecode to
find security-relevant API calls, and wraps additional code around such calls. This
additional code checks whether the application is allowed to perform this call. If
so, the wrapper code will silently allow the application to continue. If not, the
application will be interrupted.

The second component, called the policy compiler, generates an executable ver-
sion of the policy that the user has created. The dotted line in Figure 1 signifies
that the wrapper code inserted by the inliner will call functions in the executable
policy, generated by the policy compiler.

Fig. 1. The architecture of the tool
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The tool supports multiple platforms – most notably the .NET Compact Frame-
work and the .NET Full Framework – and hence both tool components additionally
take a platform description as input.

We discuss each of the two components in some more detail.

2.2 The Inliner

The inliner loops over the bytecode of an untrusted application looking for calls to
security-relevant methods (SRM). Identifying such calls statically in the presence
of dynamic binding and delegates (a form of type safe function pointers supported
by the .NET virtual machine) is non-trivial. The tool implements the algorithm by
Vanoverberghe and Piessens [8].

Before and after each call to a SRM, a call to the executable version of the
policy, called the policy decision point (PDP), is injected. A PDP is a Dynamic
Link Library that manages the security state associated with the application. It
can be thought of as an implementation of a security automaton [6] that reacts to
the start and return (both normal and exceptional) of SRMs.

Listings 1 and 2 show the effect of inlining on a simple program that sends an
SMS. If the method to send SMS’s is considered security relevant, the inliner will
transform it as shown. Note that the tool operates on the level of bytecode, not on
source level, but we show the results as they would look at source level to make the
transformation easier to understand.

SmsMessage message = . . .
message . SendSMS ( ) ;

Listing 1. Example code that sends an SMS message on a mobile phone.

SmsMessage message = . . .
PDP. BeforeSendSMS ( message ) ;
try {

message . SendSMS ( ) ;
PDP. AfterSendSMS ( message ) ;

} catch ( Secur i tyExcept ion se ) {
throw se ;

} catch ( Exception e ) {
PDP. ExceptionSendSMS ( message , e ) ;
throw ;

}

Listing 2. The SMS example code, after inlining.

Before each SRM call, a ’before handler’ is added, which checks whether the
application is allowed to call that method. If not, an exception is thrown. This
exception will prevent the application from calling the method, since the program
will jump over the SRM to the first suitable exception handler it finds.

Likewise, after the SRM call, an ’after handler’ is added. This handler typ-
ically only updates the internal state of the PDP. If an exception occurs during
the execution of the SRM, the ’exceptional handler’ will be called instead of the
’after handler’. In summary, the different handler methods implement the reaction
of the security automaton to the three types of events: calls, normal returns and
exceptional returns of security-relevant methods.
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2.2.1 Inheritance and Polymorphism
The simplified code shown above does not deal with inheritance and dynamic bind-
ing. Support for this was implemented by extending the logic in the PDP to consider
the type of the object at runtime, instead of only looking at the static type that
is available during the inlining process. When a security-relevant virtual method
is called, calls are inlined to so-called dynamic dispatcher methods that inspect the
runtime type of the object and forward to the correct handler. The details, and a
formal proof of correctness of this inlining algorithm is presented in [8].

2.2.2 Multithreading and Synchronization
Inlining in a multithreaded program requires synchronization. Two synchronization
strategies are possible: strong synchronization, where the security state is locked
for the entire duration of a SRM call, or weak synchronization where the security
state is locked only during execution of the handler methods.

Our tool implements strong synchronization, which might be problematic when
SRMs take a long time to execute, or are blocking (e.g. a method that waits for
an incoming network connection). To alleviate this problem, the tool partitions
the handler methods according to which security state variables they access. Two
partitions that access a distinct set of state variables can be locked independently
from each other.

2.3 The Policy Compiler

The policy compiler is the component that translates source policies, written by the
user or the system administrator, into an executable policy decision point.

The tool supports two different policy languages, one that represents security
automata by means of an explicit declaration of the security state, and guarded
commands that operate on this state, and another one that is a variant of a temporal
logic. Both languages extend history-based access control by introducing the notion
of scopes. A scope specifies whether the policy applies to (1) a single run of each
application, (2) saves information between multiple runs of the same application or
(3) gathers events from the entire system.

2.3.1 ConSpec
ConSpec ([1]) is directly based on the notion of security automata, and is similar
to Erlingsson’s PSLang[7] policy language. Like PSLang, a ConSpec specification
includes the definition of state variables and the definition of what state transitions
are caused by each of the security relevant events. An SRM is executed if the state
allows it, and the state is updated accordingly before or after the execution of the
SRM. ConSpec extends PSLang with support for multiple scopes.

2.3.2 2D-LTL
An alternative to ConSpec is the 2D-LTL policy language [5], a temporal logic
language based upon a bi-dimensional model of execution. One dimension is a
sequence of states of execution inside each run (session) of the application, and
another one is formed by the global sequence of sessions themselves ordered by
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their start time. To reason about this bi-dimensional model, two types of temporal
operators are applied: local and global ones. Local operators apply to the sequence
of states inside the session, for instance, the “previously local” operator (YL) refers
to the previous state in the same session, while “previously global” (YG) points to
the final state of the previous session.

3 Experience and Discussion

The S3MS.NET run time monitor was developed in the European FP6 project,
Security of Software and Services for Mobile Systems (S3MS). The tool is a compo-
nent of a comprehensive security architecture for mobile devices [2] that supports
a novel paradigm for developing trustworthy applications, the security-by-contract
paradigm [3].

The implementation of the tool, as well as supporting documentation and ex-
amples can be found at http://www.cs.kuleuven.be/~pieter/inliner/.

Space limitations make it impossible to discuss related research in this paper.
We refer to the public S3MS deliverables at http://www.s3ms.org for a detailed
overview of related work. Here, we limit ourselves to a brief summary of our expe-
riences with the tool.

In the context of the S3MS project, we gained experience with the tool described
in this paper on two case studies:

• a “Chess-by-SMS” application, where two players can play a game of chess on
their mobile phones over SMS.

• a multiplayer online role-playing game where many players can interact in a vir-
tual world through their mobile phones. The client for this application is a
graphical interface to this virtual world, and the server implements the virtual
world, and synchronizes the different players.

In addition, the tool was used to support a project assignment for a course on
secure software development at the K.U.Leuven. In this assignment, students were
asked to enforce various policies on a .NET e-mail client.

Based on these experiences, we summarize the major advantages and limitations
of the tool.

A major advantage of the tool, compared to state-of-the-art code access security
systems based on sandboxing (such as .NET CAS and the Java Security Architec-
ture) is its improved expressiveness. The main difference between CAS and the
approach outlined here, is that CAS is stateless. This means that in a CAS policy,
a method call is either allowed for an application or disallowed. With the S3MS
approach, a more dynamic policy can be written, where a method can for instance
be invoked only a particular number of times. This is essential for enforcing policies
that specify quota on resource accesses.

A second important strength of the tool is its performance. A key difference
between CAS and our approach, is that CAS performs a stack walk whenever it
tries to determine whether the application may invoke a specific sensitive function
or not. Because stack walks are slow, this may be an issue on mobile devices (CAS
is not yet implemented on the .NET Compact Framework). The speed of the S3MS
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approach mainly depends on the speed of the before and after handlers. These
can be made arbitrarily complex, but are usually only a few simple calculations.
This results in a small performance overhead. Microbenchmarks [9] show that the
performance impact of the inlining itself is negligible, and for the policies and case
studies done in S3MS, there was no noticeable impact on performance.

Finally, the support for multiple policy languages and multiple platforms makes
the tool a very versatile security enforcement tool.

A limitation is that we do not support applications that use reflection. Using the
reflection API, functions can be called dynamically at runtime. Hence, for security
reasons, access to the reflection API should be forbidden, or the entire system
becomes vulnerable. We do not see this as a major disadvantage, however, because
our approach is aimed at mobile devices, and the reflection API is not implemented
on the .NET Compact Framework. Also, by providing suitable policies for invoking
the Reflection API, limited support for reflection could be provided.

A second limitation of the approach implemented in the tool is that it is hard and
sometimes even impossible to express certain useful policies as security automata
over API method calls. For instance, a policy that limits the number of bytes
transmitted over a network needs to monitor all API method calls that could lead
to network traffic, and should be able to predict how much bytes of traffic the
method will consume. In the presence of DNS lookups, redirects and so forth, this
can be very hard.

A final limitation is that the policy languages supported by the tool are tar-
geted to “expert” users. Writing a correct policy is much like a programming task.
However, more user-friendly (e.g. graphical) policy languages could be compiled to
Conspec or 2D-LTL.
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Abstract

Although in most cases class initialization works as expected, some static fields may be read before being
initialized, despite being initialized in their corresponding class initializer. We propose an analysis which
compute, for each program point, the set of static fields that must have been initialized and discuss its
soundness. We show that such an analysis can be directly applied to identify the static fields that may be
read before being initialized and to improve the precision while preserving the soundness of a null-pointer
analysis.

Keywords: static analysis, Java, semantics, class initialization, control flow, verification.

1 Introduction

Program analyses often rely on the data manipulated by programs and can therefore
depend on their static fields. Unlike instance fields, static fields are unique to each
class and one would like to benefit from this uniqueness to infer precise information
about their content.

When reading a variable, be it a local variable or a field, being sure it has been
initialized beforehand is a nice property. Although the Java bytecode ensures this
property for local variables, it is not ensured for static and instance fields which
have default values.

Instance fields and static fields are not initialized the same way: instance fields
are usually initialized in a constructor which is explicitly called whereas static fields
are initialized in class initializers which are implicitly and lazily invoked. This makes
the control flow graph much less intuitive.

The contributions of this work are the followings.
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• We recall that implicit lazy static field initialization make the control flow graph
hard compute.

• We identify some code examples that would need to be ruled out and some other
examples that would need not to be ruled out.

• We propose a language to study the initialization of static fields.
• We propose a formal analysis to infer an under-approximation of the set of static

fields that have already been initialized for each program point.
• We propose two possible applications for this analysis: a direct application is to

identify potential bugs and another one is to improve the precision while keeping
the correctness of a null-pointer analysis.

The rest of this paper is organized as follows. We recall in Sect. 2 that the actual
control flow graph which includes the calls the class initializers it not intuitive and
give some examples. We present in Sect. 3 the syntax and semantics of the language
we have chosen to formalize our analysis. Section 4 then presents the analysis, first
giving an informal description and then its formal definition. We then explain
in Sect. 5 how the analysis can be extended to handle other features of the Java
bytecode language. In Sect. 6, we give two possible applications of this analysis.
Finally, we discuss the related work in Sect. 7 and conclude in Sect. 8.

2 Why Static Analysis of Static Fields is Difficult?

The analysis we herein present works at the bytecode level but, for sake of simplicity,
code examples are given in Java. As this paper is focused on static fields, all fields
are assumed to be static unless otherwise stated.

In Java, a field declaration may include the initial value, such as A.f in Fig. 1.
A field can also be initialized in a special method called a class initializer, which is
identified in the Java source code with the static keyword followed by no signature
and a method body, such as in class B in the same figure. If a field is initialized with a
compile-time constant expression, the compiler from Java to bytecode may translate
the initialization into a field initializer (cf. [12], Sect. 4.7.2), which is an attribute of
the field. At run time, the field should be set to this value before running the class
initializer. In-line initializations that have not been compiled as field initializers are
prepended in textual order to the class initializer, named <clinit> at the bytecode
level. For this analysis, we do not consider field initializers but focus on class
initializers as they introduce the main challenges. Although this simplification is
sound, it is less precise and we explain how to extend our analysis to handle field
initializers in Sect. 5.3.

The class initialization process is not explicitly handled by the user: it is forbid-
den to explicitly called a <clinit> method. Instead, every access (read or write) to
a field of a particular class or the creation of an instance of that same class requires
that the JVM (Java Virtual Machine) have invoked the class initializer of that class.
This method can contain arbitrary code and may trigger the initialization of other
classes and so on.

The JVM specification [12] requires class initializers to be invoked lazily. This
implies that the order in which classes are initialized depends on the execution path,

Bytecode 2009 54 ETAPS 2009, York, UK



class A extends Object{static B f = new B();}
class B extends Object{

static B g;
static {

g = A.f;
}

}

Fig. 1. Initial values can depend on foreign code: in this example, the main program should first use B for
the initialization to start from B to avoid B.g to be null.

class A extends Object{
public static int CST= B.SIZE;}

class B extends Object{
public static int SIZE = A.CST +5;

}

Fig. 2. Integer initial values can also depend on foreign code

it is therefore not decidable in general.
The JVM specification also requires class initializers to be invoked at most once.

This avoids infinite recursions in the case of circular dependencies between classes,
but it also implies that when reading a field it may not contain yet its “initial”
value. For example, in Fig. 1, the class initializer of A creates an instance of B
and therefore requires that the class initializer of B has been invoked. The class
initializer of B reads a field of A and therefore requires that the class initializer of A
has been invoked.

• If B.<clinit> is invoked before A.<clinit>, then the read access to the field A.f
triggers the invocation of A.<clinit>. Then, as B.<clinit> has already been
invoked, A.<clinit> carries on normally and creates an instance of class B, store
its reference to the field A.f and returns. Back in B.<clinit>, the field A.f is
read and the reference to the new object is also affected to B.g.

• If A.<clinit> is invoked before B.<clinit>, then before allocating a new in-
stance of B, the JVM has to initialize the class B by calling B.<clinit>. In
B.<clinit>, the read access to A.f does not trigger the initializer of A because
A.<clinit> has already been started. B.<clinit> then reads A.f, which has
not been initialized yet, B.g is therefore set to the default value of A.f which is
the null constant.

This example shows that the order in which classes are initialized modifies the
semantics. The issue shown in Fig. 1 is not limited to reference fields. In the
example in Fig. 2, depending on the initialization order, A.CST will be either 0 or
5, while B.SIZE will always be 5.

One could notice that those problems are related to the notion of circular de-
pendencies between classes and may think that circular dependencies should be
avoided. Figure 3 shows an example with a single class. In (a), A.ALL is read in the
constructor before it has been initialized and it leads to a NullPointerException.
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class A extends Object{
static EMPTY=new A("");
static ALL=new HashMap ();

String name;
public A(String name){

this.name = name;
ALL.add(name ,this);

}
}

(a) An uninitialized field read
leads to a NullPointerException

class A extends Object{
static ALL=new HashMap ();
static EMPTY=new A("");

String name;
public A(String name){

this.name = name;
ALL.add(name ,this);

}
}

(b) No uninitialized field is read

Fig. 3. The issue can arise with a single class

(b) is the correct version, where the initializations of ALL and EMPTY have been
switched. This example is an extract of java.lang.Character$UnicodeBlock of
Sun’s Java Runtime Environment (JRE) that we have simplified: we want the anal-
ysis to handle such cases. If we consider that A depend on itself, then we forbid
way to much programs. If we do not consider that A depend on itself and we do
not reject (a) then the analysis is incorrect. We therefore cannot rely on circular
dependencies between classes.

3 The Language

In this section we present the program model we consider in this work. This model
is a high level description of the bytecode program that discards the features that
are not relevant to the specific problem of static field initialization.

3.1 Syntax

We assume a set P of program points, a set F of field names, a set C of class names
and a set M of method names. For each method m, we note m.first the first program
point of the method m. For convenience, we associate to each method a distinct
program point m.last which models the output point of the method. For each class
C we note C.<clinit> the name of the class initializer of C. We only consider four
kinds of instructions.

• put(f) updates a field f ∈ F.
• invoke calls a method (we do not mention the name of the target method because

it would be redundant with the flow inter information described below).
• return returns from a method.
• any models any other intra-procedural instruction that does not affect static

fields.

As the semantics presented below will demonstrate, any instruction of the standard
sequential Java bytecode can be represented by one of these instructions.
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The program model we consider is based on control flow relations that must
have been computed by some standard control flow analysis.

Definition 3.1 A program is a 5-tuple (m0, instr , flow intra, flow inter, flow clinit)
where:

• m0 ∈M is the method where the program execution starts;
• instr ∈ P ⇀ {put(f), invoke, return, any} is a partial function that associates

program points to instructions;
• flow intra ⊆ P× P is the set of intra-procedural edges;
• flow inter ⊆ P×M is the set of inter-procedural edges, which can capture dynamic

method calls;
• flow clinit ∈ P ⇀ C is the set of initialization edges which forms a partial function

since an instruction may only refer to one class;

and such that instr and flow intra satisfy the following property:

For any method m, for any program point l ∈ P that is reachable from m.first in
the intra-procedural graph given by flow intra, and such that instr(l) = return,
(l,m.last) belongs to flow intra.

In practice, flow clinit will contain all the pairs (l, C) of a bytecode program such
that the instruction found at program point l is of the form new C, putstatic C.f ,
getstatic C.f or invokestatic C.m (see Section 2.17.4 of [12]). 3

Figure 7 in Sect. 4.2 presents an example of program with its three control flow
relations. In this program, the main method m0 contains two distinct paths that
lead to the call of a method m. In the first one, the class A is initialized first and its
initializer triggers the initialization of B. In the second path, A is not initialized but
B is. A.<clinit> is potentially called at exit point 8 but since 8 is only reachable
after a first call to A.<clinit>, this initialization edge is never taken.

3.2 Semantics

The analysis we consider does not take into account the content of heaps, local
variables or operand stacks. To simplify the presentation, we hence choose an
abstract semantics which is a conservative abstraction of the concrete standard
semantics and does not explicitly manipulate these domains.

The abstract domains the semantics manipulates are presented below.

v ∈ Value (abstract)

s ∈ Static def= F→ Value + {Ω}
h ∈ History def= P(C)

cs ∈ Callstack def= ({0, 1} × P)?

<l, cs, s, h> ∈ State def= P× Callstack× Static×History

3 To be completely correct we also need to add an edge from the beginning of the static void main method
to the initializer of its class. We can also handle correctly superclass and interface initialization without
deep modification of the current formalization.
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NeedInit(l, C, h)
<l, cs, s, h>→<C.<clinit>.first , LlM :: cs, s, h ∪ {C}>
<l, cs, s, h>→1<l

′, cs ′, s′, h′> ∀C, ¬NeedInit(l, C, h)
<l, cs, s, h>→<l′, cs ′, s′, h′>

instr(l) = put(f) flow intra(l, l′) v ∈ Value
<l, cs, s, h>→1<l

′, cs, s[f 7→ v], h>
instr(l) = any flow intra(l, l′)
<l, cs, s, h>→1<l

′, cs, s, h>
instr(l) = invoke flow inter(l,m)
<l, cs, s, h>→1<m.first , l :: cs, s, h>

instr(l) = return flow intra(l′, l′′)
<l, l′ :: cs, s, h>→1<l

′′, cs, s, h>
instr(l) = return <l′, cs, s, h>→1 st ′

<l, Ll′M :: cs, s, h>→1 st ′

Fig. 4. Operational semantics

A field contains either a value or a default value represented by the symbol Ω. Since
a class initializer cannot be called twice in a same execution, we need to remember
the set of classes whose initialization has been started (but not necessarily ended).
This is the purpose of the element h ∈ History. Our language is given a small-
step operational semantics with states of the form <l, cs, s, h>, where the label l
uniquely identifies the current program point, cs is a call stack that keeps track of
the program points where method calls have occurred, s associates to each field its
value or Ω and h is the history of class initializer calls. Each program point l of a
call stack is tagged with a Boolean which indicates whether the call in l was a call
to a class initializer (the element of the stack is then noted LlM) or was a standard
method call (simply noted l).

The small-step relation →⊆ State × State is given in Fig. 4 (we left implicit
the program (m0, instr ,flow intra,flow inter,flow clinit) that we consider). It is based
on the relation NeedInit ⊆ P× C×History defined by

NeedInit(l, C, h) def= flow clinit(l) = C ∧ C 6∈ h

which means that the class initializer of class C must be called at program point
l if and only if there is a corresponding edge in flow clinit and C.<clinit> has not
been called yet (i.e. C 6∈ h).

The relation → is defined by two rules. In the first one, the class initializer of
class C needs to be called. We hence jump to the first point of C.<clinit>, push
on the call stack the previous program point (marked with the flag L·M) and record
C in the history h. In the second rule, there is no need to initialize a class, hence we
simply use the standard semantic of the current instruction, given by the relation
→1⊆ State× State.

The relation →1 is defined by five rules. The first one corresponds to a field
update put(f): an arbitrary value v is stored in field f . The second rule illustrates
that the instruction any does not affect the visible elements of the state. For a
method call (third rule), the current point is pushed on the call stack and the
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control is transferred to (one of) the target(s) of the inter-procedural edge. At last,
the instruction return requires two rules. In the first case, a standard method call,
the transfer comes back to the intra-procedural successor of the caller. In the second
case, a class initializer call, we have finished the initialization and we must now use
the standard semantic →1 of the pending instruction in program point l.

We end this section with the formal definition of the set of reachable states
during a program execution. An execution starts in the main method m0 with an
empty call stack, an empty historic and with all fields associated to the default
value Ω.

Definition 3.2 [Reachable States] The set of reachable states of a program p =
(m0, instr ,flow intra,flow inter,flow clinit) is defined by

JpK = { <i, cs, s, h> | <m0.first , ε, λf.Ω, ∅>→?<i, cs, s, h> }

4 A Must-Have-Been-Initialized Data Flow Analysis

In this section we present a sound data flow analysis that allows to prove a static
field has already been initialized at a particular program point. We first give an
informal presentation of the analysis, then present its formal definition and we finish
with the statement of a soundness theorem.

4.1 Informal presentation

For each program point we want to know as precisely as possible, which fields we
are sure we have initialized. Since fields are generally initialized in class initializers,
we need an inter-procedural analysis that infers the set of fields Wf that must have
been initialized at the end of each method. Hence at each program point l where
a method is called, be it a class initializer or another method, we will use this
information to improve our knowledge about initialized fields.

However, in the case of a call to a class initializer, we need to be sure the class
initializer will be effectively executed if we want to safely use such an information.
Indeed, at execution time, when we reach a point l with an initialization edge to a
class C, despite flow clinit(l) = C, two exclusive cases may happen:

(i) C.<clinit> has not been called yet: C.<clinit> is immediately called.

(ii) C.<clinit> has already been called (and may still be in progress): C.<clinit>
will not be called a second time.

Using the initialization information given by C.<clinit> is safe only in case (i), i.e.
the control flow information in flow clinit is not precise enough. To detect case (i),
we keep track in a flow-sensitive manner of the class initializer that may have been
called during all execution reaching a given program point. We denote by May this
set. Here, if C is not in May , we are sure to be in case (i). May is computed by
gathering, in a flow sensitive way, all classes that may be initialized starting from
the main method. Implicit calls to class initializer need to be taken in account, but
the smaller May is, the better.
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1 class A{static int f = 1;}
2 class B{static int g = A.f;}
3 class C{
4 public static void main(String [] args){
5 ... = B.g;
6 ... = A.f;
7 ... = B.g;
8 }
9 }

Fig. 5. Motivating the Must set

For the simplicity’s sake we consider in this work a context-insensitive analy-
sis where for each method, all its calling contexts are merged at its entry point.
Consider the program example given in Fig. 5. Before line 5, May only contains
C, the class of the main method. There is an implicit flow from line 5 to the class
initializer of B. At the beginning of the class initializer of B, May equals to {B, C}.
We compute the set of fields initialized by A.<clinit>, which is {A.f}. As A is
not in May at the beginning of B.<clinit>, we can assume the class initializer
will be fully executed before the actual read to A.f occurs, so it is a safe read.
However, when we carry on line 7, the May set contains A, B and C. If we flow this
information to B.<clinit>, then the merged calling context of B.<clinit> is now
{A, B, C}, which makes impossible to assume anymore that A.<clinit> is called at
line 2. To avoid such an imprecision, we try to propagate as few calling context as
possible to class initializers by computing in a flow-sensitive manner a second set
of class whose initializer must have already been called in all execution reaching
a given program point. We denote by Must this set. Each time we encounter an
initialization edge for a class C, we add C to Must since C.<clinit> is either called
at this point, or has already been called before. If C ∈ Must before an initialization
edge for C, we are sure C.<clinit> will not be called at this point and we can avoid
to propagate a useless calling context to C.<clinit>.

To sum up, our analysis manipulates, in a flow sensitive manner, three sets May ,
Must and Wf . May and Must correspond to a control flow analysis that allows to
refine the initialization graph given by flow clinit. The more precise control flow
graph allows a finer tracking of field initialization and therefore a more precise Wf .

4.2 Formal specification

In this part we consider a given program p = (m0, instr ,flow intra,flow inter,flow clinit).
We note Pp(C) (resp. Pp(F)) the finite set of classes (reps. fields) that appears in
p. For each program point l ∈ P, we compute before and after the current point
three sets of data (May ,Must ,Wf ) ∈ Pp(C)× Pp(C)× Pp(F). Since May is a may
information, and Must and Wf are must information, the underlying lattice of the
data flow analysis is given by the following definition.

Definition 4.1 [Analysis lattice] The analysis lattice is (A],v,t,u,⊥,>) where:

• A] = Pp(C)× Pp(C)× Pp(F).
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• ⊥ = (∅,Pp(C),Pp(F)).
• > = (Pp(C), ∅, ∅).
• for all (May1,Must1,Wf 1) and (May2,Must2,Wf 2) in A],

(May1,Must1,Wf 1) v (May2,Must2,Wf 2) iff

May1 ⊆ May2, Must1 ⊇ Must2 and Wf 1 ⊇Wf 2

(May1,Must1,Wf 1) t (May2,Must2,Wf 2) =

(May1 ∪May2,Must1 ∩Must2,Wf 1 ∩Wf 2)

(May1,Must1,Wf 1) u (May2,Must2,Wf 2) =

(May1 ∩May2,Must1 ∪Must2,Wf 1 ∪Wf 2)

Each element in A] expresses properties on fields and on an initialization historic.
This is formalized by the following correctness relation.

Definition 4.2 [Correctness relation] (May ,Must ,Wf ) is a correct approximation
of (s, h) ∈ Static×History, written (May ,Must ,Wf ) ∼ (s, h) iff:

Must ⊆ h ⊆ May and Wf ⊆ { f ∈ F | s(f) 6= Ω }

This relation expresses that

(i) May contains all the classes for which we may have called the <clinit> method
since the beginning of the program (but it may not be finished yet).

(ii) Must contains all the classes for which we must have called the <clinit>
method since the beginning of the program (but it may not be finished yet
neither).

(iii) Wf contains all the fields for which we are sure they have been written at least
once.

The analysis is then specified as a data flow problem.

Definition 4.3 [Data flow solution] A Data flow solution of the Must-Have-Been-
Initialized analysis is any couple of maps Ain, Aout ∈ P → A] that satisfies the set
of equations presented in Fig. 6, for all program point l of the program p.

In this equation system, Ain(l) is the abstract union of three kinds of data flow
information: (i) A0(l) gives the abstraction of the initial states if l is the starting
point of the main method m0; (ii) Afirst(l) is the abstract union of all calling con-
texts that may be transferred to l if it is the starting point of a method m. We
distinguish two cases, depending on whether m is the class initializer of a class C.
If it is, incoming calling contexts are transformed with F init

call which filters unfeasi-
ble calling edges with Must and adds C to May and Must otherwise. Otherwise,
incoming calling contexts are transformed with F init (described below) which take
into account the potential class initialization that may have been performed before
the call. (iii) At last, we merge all incoming data flows from predecessors in the
intra-procedural graph.
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Ain(l) = A0(l) tAfirst(l) t
⊔{Aout(l′) | flow intra(l′, l)}

Aout(l) =Fcall

(
F init(l, Ain(l)),

⊔{Ain(m.last) | flow inter(l,m)}) if instr(l) = invoke

Finstr(l)(F init(l, Ain(l))) otherwise

where

A0(l) =

 (∅, ∅, ∅) if l = m0.first

⊥ otherwise

Afirst(l) =


⊔{

F init
call (C,Ain(l′)) | flow clinit(l′) = C

}
if l = C.<clinit>.first⊔{

F init(l′, Ain(l′)) | flow inter(l′,m)
}

if l = m.first

⊥ otherwise

and Freturn, Fany, Fput(f) ∈ A] → A], Fcall ∈ A] × A] → A], F init
call ∈ C × A] → A]

and F init ∈ P×A] → A] are transfer functions defined by:

Freturn(May ,Must ,Wf ) =Fany(May ,Must ,Wf ) = (May ,Must ,Wf )
Fput(f)(May ,Must ,Wf ) = (May ,Must ,Wf ∪ {f})

Fcall ((May1,Must1,Wf 1), (May2,Must2,Wf 2)) =

(May2,Must1 ∪Must2,Wf 1 ∪Wf 2)

F init
call (C, (May ,Must ,Wf )) =

⊥ if C ∈ Must

(May ∪ {C},Must ∪ {C},Wf ) otherwise

F init(l, a) =

Fcall(a,Ain(C.<clinit>.last)) if flow clinit(l) = C and C 6∈ May

a if (flow clinit(l) = C and C ∈ Must)

or ∀C.(flow clinit(l) 6= C)

a t Fcall(a,Ain(C.<clinit>.last)) otherwise

Fig. 6. Data flow analysis

The equation on Aout(l) distinguishes two cases, depending on instr(l) is a
method call or not. If it is, we merge all data flows from the end of the poten-
tially called methods and combine them, using Fcall described below, with the data
flows facts F init(l, Ain(l)) that is true just before the call. Otherwise, we transfer
the data flow Ain(l), found at entry of the current instruction with F init and then
Finstr(l). While F init handles potential class initialization that may have been per-
formed before the instruction, Finstr(l) simply handles the effect of the instruction
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(a) A program example

l instr(l)
Ain(l) Aout(l)

May Must Wf May Must Wf

0 any ∅ ∅ ∅ ∅ ∅ ∅
1 any ∅ ∅ ∅ {A, B} {A, B} ∅
2 invoke {A, B} {A, B} {f} {A, B} {A, B} {f}
3 any ∅ ∅ ∅ {A, B} {B} ∅
4 invoke {A, B} {B} ∅ {A, B} {B} ∅
5 any {A, B} {B} ∅ {A, B} {B} ∅
6 put(f) {A} {A} ∅ {A, B} {A, B} {f}
7 any {A, B} {A, B} {f} {A, B} {A, B} {f}
8 return {A, B} {A, B} {f} {A, B} {A, B} {f}
9 {A, B} {A, B} {f} {A, B} {A, B} {f}
10 return {A, B} {B} ∅ {A, B} {B} ∅
11 {A, B} {B} ∅ {A, B} {B} ∅
12 return {A, B} {B} ∅ {A, B} {B} ∅
13 {A, B} {B} ∅ {A, B} {B} ∅

(b) Least dataflow solution of the program example

Fig. 7. Program and analysis example

been called before. We can hence use safely the last data flow of C.<clinit> but
we combine it with a using the operator Fcall described below. (ii) In the second
case, we are sure that no class initializer will be called, either because there is no
initialization edge at all, or there is one for a class C but we know that C.<clinit>
has already been called. (iii) In the last case, the two previous cases may happen
so we merge the corresponding data flows.

At last, Fcall is an operator which combines dataflows about calling contexts
and calling returns. It allows to recover some must information that may have been
discarded during the method call because of spurious calling contexts. It is based on
the monotony of Must and Wf : these sets are under-approximation of initialization
historic and initialized fields but since such sets only increase during execution a
correct under-approximation (Must ,Wf ) at a point l is still a correct approximation
at every point reachable from l.

The program example presented is Fig. 7 is given with the least solution of its
corresponding dataflow problem. In this example, A.<clinit> has two potential
callers in 1 and 7 but we don’t propagate the dataflow facts from 7 to 6 because we
know that A.<clinit> has already been called at this point, thanks to Must . At
point 2, the method m is called but we don’t propagate in Aout(2) the exact values
found in Ain(m.last) because we would lose the fact that A ∈ Must before the call.
That is why we combine Ain(2) and Ain(m.last) with Fcall in order to refine the
must information Must and Wf .

Theorem 4.4 (Computability) The least data flow solution for the partial order
" is computable by the standard fixpoint iteration techniques.

Proof. This is consequence of the facts that each equation is monotone, there is a
finite number of program points in p and (A!,",#,$) is a finite lattice. !

Theorem 4.5 (Soundness) If (Ain, Aout) is a data flow solution then for all reach-
able states <i, cs, s, h>∈ !p", Ain(i) ∼ (s, h) holds.

Proof. We first define an intermediate semantics " which is shown equivalent to

11

(a) A program example

l instr(l)
Ain(l) Aout(l)

May Must Wf May Must Wf

0 any ∅ ∅ ∅ ∅ ∅ ∅
1 any ∅ ∅ ∅ {A, B} {A, B} ∅
2 invoke {A, B} {A, B} {f} {A, B} {A, B} {f}
3 any ∅ ∅ ∅ {A, B} {B} ∅
4 invoke {A, B} {B} ∅ {A, B} {B} ∅
5 any {A, B} {B} ∅ {A, B} {B} ∅
6 put(f) {A} {A} ∅ {A, B} {A, B} {f}
7 any {A, B} {A, B} {f} {A, B} {A, B} {f}
8 return {A, B} {A, B} {f} {A, B} {A, B} {f}
9 {A, B} {A, B} {f} {A, B} {A, B} {f}
10 return {A, B} {B} ∅ {A, B} {B} ∅
11 {A, B} {B} ∅ {A, B} {B} ∅
12 return {A, B} {B} ∅ {A, B} {B} ∅
13 {A, B} {B} ∅ {A, B} {B} ∅

(b) Least dataflow solution of the program example

Fig. 7. Program and analysis example

instr(l) in a straightforward manner.
The transfer function F init is defined with tree distinct cases. (i) In the first

case, we are sure the class initializer C.<clinit> will be called because it has never
been called before. We can hence use safely the last data flow of C.<clinit> but
we combine it with a using the operator Fcall described below. (ii) In the second
case, we are sure that no class initializer will be called, either because there is no
initialization edge at all, or there is one for a class C but we know that C.<clinit>
has already been called. (iii) In the last case, the two previous cases may happen
so we merge the corresponding data flows.

At last, Fcall is an operator which combines data flows about calling contexts
and calling returns. It allows to recover some must information that may have
been discarded during the method call because of spurious calling contexts. It is
based on the monotony of Must and Wf : these sets are under-approximations of
initialization history and initialized fields but since such sets only increase during
execution a correct under-approximation (Must ,Wf ) at a point l is still a correct
approximation at every point reachable from l.

The program example presented is Fig. 7 is given with the least solution of its
corresponding dataflow problem. In this example, A.<clinit> has two potential
callers in 1 and 7 but we don’t propagate the dataflow facts from 7 to 6 because we
know that A.<clinit> has already been called at this point, thanks to Must . At
point 2, the method m is called but we don’t propagate in Aout(2) the exact values
found in Ain(m.last) because we would lose the fact that A ∈ Must before the call.
That is why we combine Ain(2) and Ain(m.last) with Fcall in order to refine the
must information Must and Wf .

Theorem 4.4 (Computability) The least data flow solution for the partial order
v is computable by the standard fixpoint iteration techniques.

Proof. This is consequence of the facts that each equation is monotone, there is a
finite number of program points in p and (A],v,t,u) is a finite lattice. 2
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Theorem 4.5 (Soundness) If (Ain, Aout) is a data flow solution then for all reach-
able states <i, cs, s, h>∈ JpK, Ain(i) ∼ (s, h) holds.

Proof sketch. We first define an intermediate semantics ; which is shown equiv-
alent to the small-step relation → but in which method calls are big-steps: for
each point l where a method m is called we go in one step to the intra-procedural
successor of l using the result of the transitive closure of ;. Such a semi-big-step
semantics is easier to reason with method calls. Once ; is define, we prove a
standard subject reduction lemma between ; and ∼ and we conclude. 2

5 Handling the Full Bytecode

5.1 Exceptions

From the point of view of this analysis, exceptions only change the control flow
graph. As the control flow graph is computed separately, it should not change the
analysis herein described.

However, if we really need to be conservative, loads of instructions may throw
runtime exceptions (IndexOutOfBoundException, NullPointerException, etc.)
or even errors (OutOfMemoryError, etc.) and so there will be edges in the con-
trol flow graph from most program points to the exit point of the methods, making
the analysis very imprecise.

There are several ways to improve the precision while safely handling exceptions.
First, we can prove the absence of exception for some of those (e.g. see [9] to remove
most NullPointerExceptions and [1] to remove the IndexOutOfBoundExceptions
you need to remove). Then it is cheap to analyse, for each method, the context
in which the method is called, i.e. the exceptions that may be caught if they are
thrown by the method: if there are no handler for some exception in the context
of a particular method, then there is no use to take in account this exception in
the control flow graph of this method. Indeed, if such an exception were thrown it
would mean the termination of the program execution so not taking in account the
exception may only add potential behaviours, which is safe.

5.2 Inheritance

In the presence of a class hierarchy, the initialization of a class starts by the initial-
ization of its superclass if it has not been done yet. There is therefore an implicit
edge in the control flow graph from each <clinit> method to the <clinit> method
of its superclass (except for Object.<clinit>). Although it does not involve any
challenging problem, the semantics and the formalization need to be modified to in-
troduce a new label at the beginning of each <clinit> method such that, if l is the
label we introduce at the beginning of C.<clinit>, then flow clinit(l) = super(C).

Note that it is not required to initialize the interfaces a class implements, nor
the super interfaces an interface extends (cf. Sect. 2.17.4 of [12]).
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5.3 Field Initializers and Initialization order

Although the official JVM specification states (Sect. 2.17.4) that the initialization
of the superclass should be done before the initialization of the current class and
that the field initializers are part of the initialization process, in Sun’s JVM the field
initializers are used to set the corresponding fields before starting the initialization
of the superclass. This changes the semantics but removes potential defects as this
way it is impossible for some code to read the field before it has been set.

If the analysis is targeted to a such JVM implementation, depending on the
application of the analysis, the fields which have a field initializer can be safely
ignored when displaying the warnings found, or be added to Wf either when the
corresponding class is added to Must or at the very beginning (mo.first). In order
for the analysis to be compatible with the official specification, the analysis needs to
simulate the initialization of the fields that have a field initializer at the beginning of
the class initializer, just after the implicit call to the class initializer of its superclass.

5.4 Reflection, User-Defined Class-Loader, Class-Path Modification, etc.

There are several contexts in which this analysis can be used: it can be used to
find bugs or to prove the correctness of some code, either off-line or in a PCC [15]
architecture.

In case it used to find bugs, the user mainly need to be aware that those features
are not supported.
If it is used to prove at compile time the correctness of some code, the analysis
needs to handle those features. In case of reflection, user-defined class-loaders or
modification of the class-path, it is difficult to be sure that all the code that may
be executed has been analyzed. The solution would restrict the features of the
language in order to be able to infer what code may be executed, which is an over-
approximation of the code that will be executed, and to analyze this code. For
example, Livshits et al. proposed in [13] an analysis to correctly handle reflection.

In a PCC architecture, the code is annotated at compile time and checked at
run time. The issue is no more to find the code that will be executed, because
the checking is done at run time when it is a lot easier to know what code will be
executed, but to consider enough code when annotating. This can be done the same
way as with off-line proofs and by asking the programmer when it is not possible
to infer a precise enough solution. In this case, if the user gives incorrect data the
checker will notice it while checking the proof at run time.

6 Two Possible Applications for the Analysis

6.1 Checking That Fields are Written Before Being Read

The analysis presented in this paper computes a set of fields that have been written
for each program point. To check that all fields are written before being read, i.e.
that when a field C.f is read at program point l, we need to check that C.f is in
the set of written field at this particular program point.
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6.2 Nullness Analysis of Static Fields

While in our previous work [10] we choose to assume no information about static
fields, several tools have targeted the analysis of static fields as part of their analysis
but missed the issue of the initialization herein discussed.

To safely handle static fields while improving the precision, we can abstract
every field by the abstraction of the values that may be written to it and, if the
static field may be read before being initialized, then we add the abstraction of the
null constant to the abstraction of the field. It is a straightforward extension of
the analysis presented in [10].

7 Related work

Kozen and Stillerman studied in [11] eager class initialization for Java bytecode and
proposed a static analysis based on fine grained circular dependencies to find an
initialization order for classes. If their analysis finds an initialization order, then
our analysis will be able to prove all fields are initialized before being read. If their
analysis finds a circular dependency, it fails to find an initialization order and issues
an error while our analysis considers the initialization order implied by the main
program and may prove that all fields are written before being read.

Instance field initialization have been studied for different purposes. Some works
are focused on null-ability properties such as Fähndrich and Leino in [5], our work
in [10] or Fähndrich and Xia in [6]. Other work have been focused on different
properties such as Unkel and Lam [16] who studied stationary fields. Instance field
initialization offers different challenges from the one of static fields: the initialization
method is explicitly called soon after the object allocation.

Several formalizations of the Java bytecode have been proposed that, among
other features, handled class initialization such as the work of Debbabi et al. in [4]
or Belblidia and Debbabi in [14]. Their work is focused on the dynamic semantics
of the Java bytecode while our work is focused on its analysis.

Böerger and Schulte [2] propose another dynamic semantics of Java. They con-
sider a subset of Java including initialization, exceptions and threads. They have
exhibited [3] some weaknesses in the initialization process as far as the threads are
used. They pointed out that deadlocks could occur in such a situation.

Harrold and Soffa [7] propose an analysis to compute inter-procedural definition-
use chains. They have not targeted the Java bytecode language and therefore neither
the class initialization problems we have faced but then, our analysis can be seen
as a lightweight inter-procedural definition-use analysis where all definitions except
the default one are merged.

Hirzel et al. [8] propose a pointer analysis that target dynamic class loading
and lazy class initialization. There approach is to analyse the program at run
time, when the actual classes have been loaded and to update the data when a
new class is loaded and initialized. Although it is not practical to statically certify
programs, a similar approach could certainly be adapted to implement a checker in
PCC architecture such as the one evoked in Sect. 5.4.
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8 Conclusion and Future Work

We have shown that class initialization is a complex mechanism and that, although
in most cases it works as excepted, in some more complicated examples it can be
complex to understand in which order the code will be executed. More specifically,
some fields may be read before being initialized, despite being initialized in their
corresponding class initialization methods. A sound analysis may need to address
this problem to infer precise and correct information about the content of static
fields. We have proposed an analysis to identify the static fields that may be read
before being initialized and shown how this analysis can be used to infer more
precise information about static fields in a sound null-pointer analysis.

We expect the analysis to be very precise if the control flow graph is accurate
enough, but we would need to implement this analysis to evaluate the precision
needed for the control flow graph.
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Abstract

Automatic cost analysis of programs has been traditionally concentrated on a reduced number of resources
such as execution steps, time, or memory. However, the increasing relevance of analysis applications such as
static debugging and/or certification of user-level properties (including for mobile code) makes it interesting
to develop analyses for resource notions that are actually application-dependent. This may include, for
example, bytes sent or received by an application, number of files left open, number of SMSs sent or
received, number of accesses to a database, money spent, energy consumption, etc. We present a fully
automated analysis for inferring upper bounds on the usage that a Java bytecode program makes of a set of
application programmer-definable resources. In our context, a resource is defined by programmer-provided
annotations which state the basic consumption that certain program elements make of that resource. From
these definitions our analysis derives functions which return an upper bound on the usage that the whole
program (and individual blocks) make of that resource for any given set of input data sizes. The analysis
proposed is independent of the particular resource. We also present some experimental results from a
prototype implementation of the approach covering a significant set of interesting resources.

1 Introduction

The usefulness of analyses which can infer information about the costs of com-
putations is widely recognized since such information is useful in a large num-
ber of applications including performance debugging, verification, and resource-
oriented specialization. The kinds of costs which have received most attention so
far are related to execution steps as well as, sometimes, execution time or memory
(see, e.g., [27,34,36,20,9,21,40] for functional languages, [38,8,19,42] for imperative
languages, and [17,16,18,32] for logic languages). These and other types of cost
analyses have been used in the context of applications such as granularity control
in parallel and distributed computing (e.g., [29]), resource-oriented specialization
(e.g., [13,33]), or, more recently, certification of the resources used by mobile code
(e.g., [14,6,12,5,22]). Specially in these more recent applications, the properties of
interest are often higher-level, user-oriented, and application-dependent rather than
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(or, rather, in addition to) the predefined, more traditional costs such as steps, time,
or memory. Regarding the object of certification, in the case of mobile code the cer-
tification and checking process is often performed at the bytecode level [28], since,
in addition to other reasons of syntactic convenience, bytecode is what is most often
available at the receiving (checker) end.

We propose a fully automated framework which infers upper bounds on the usage
that a Java bytecode program makes of application programmer-definable resources.
Examples of such programmer-definable resources are bytes sent or received by
an application over a socket, number of files left open, number of SMSs sent or
received, number of accesses to a database, number of licenses consumed, monetary
units spent, energy consumed, disk space used, and of course, execution steps (or
bytecode instructions), time, or memory. A key issue in approach is that resources
are defined by programmers and by means of annotations. The annotations defining
each resource must provide for some relevant user-selected elements corresponding
to the bytecode program being analyzed (classes, methods, variables, etc.), a value
that describes the cost of that element for that particular resource. These values can
be constants or, more generally, functions of the input data sizes. The objective of
our analysis is then to statically derive from these elementary costs an upper bound
on the amount of those resources that the program as a whole (as well as individual
blocks) will consume or provide.

Our approach builds on the work of [17,16] for logic programs, where cost func-
tions are inferred by solving recurrence equations derived from the syntactic struc-
ture of the program. Most previous work deals only with concrete, traditional
resources (e.g., execution steps, time, or memory). The analysis of [32] also allows
program-level definition of resources, but it is designed for Prolog and works at the
source code level, and thus is not directly applicable to Java bytecode due to partic-
ularities like virtual method invocation, unstructured control flow, assignment, the
fact that statements are low-level bytecode instructions, the absence of backtracking
(which has a significant impact on the method used in [32]), etc. Also, the presen-
tation of [32] is descriptive in contrast to the concrete algorithm provided herein.
In [2], a cost analysis is described that does deal with Java bytecode and is capa-
ble of deriving cost relations which are functions of input data sizes. The authors
also presented in [3] an experimental evaluation of the approach. This approach is
generic, in the same sense as, e.g., [16], in that both the conceptual framework and
its implementation allow adaptation to different resources. However, this is done
typically in the implementation. Our approach is interesting in that it allows the
application programmer to define the resources through annotations directly in the
Java source, and without changing the analyzer code or tables in any way. Also,
without claiming it as any significant contribution of course, we provide for im-
plementation convenience a somewhat more concrete, algorithmic presentation, in
contrast to the more descriptive approach of previous work (including [17,16,32,2,3],
etc.).

2 User-Defined Resources: Overview of the Approach

A resource is a fundamental component in our approach. A resource is a user-defined
notion which associates a basic cost function with some user-selected elements (class,
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import java . net . URLEncoder ;

public class CellPhone {
SmsPacket sendSms ( SmsPacket smsPk ,

Encoder enc ,
Stream stm ) {

i f ( smsPk != null ) {
St r ing newSms = enc . format ( smsPk . sms ) ;
stm . send (newSms ) ;
smsPk . next=sendSms ( smsPk . next , enc , stm ) ;
smsPk . sms = newSms ;

}
return smsPk ;
}
}
class SmsPacket{

St r ing sms ;
SmsPacket next ;

}

interface Encoder{
St r ing format ( S t r ing data ) ;

}
class TrimEncoder implements Encoder{

@Cost ({ ” cent s ” , ”0” })
@Size ( ” s i z e ( r e t)<= s i z e ( s ) ” )
public St r ing format ( S t r ing s ){

return s . tr im ( ) ;
}

}
class UnicodeEncoder implements Encoder{

@Cost ({ ” cent s ” , ”0” })
@Size ( ” s i z e ( r e t )<=6∗ s i z e ( s ) ” )
public St r ing format ( S t r ing s ){

return URLEncoder . encode ( s ) ;
}

}
abstract class Stream{

@Cost ({ ” cent s ” , ”2∗ s i z e ( data ) ” })
native void send ( St r ing data ) ;

}

CellPhone.sendSms(r0,r1,r2,r3,r4,r5)

CellPhone.sendSms(r0,r1,r2,r3,r4,r5)

Builtin.ne(r1,null,void)
Builtin.gtf(r1,sms,r6)

Builtin.asg(r4,r5)

Builtin.eq(r1,null,void)
Builtin.asg(null,r5)

Builtin.gtf(r1,next,r8)
CellPhone.sendSms(r0,r8,r2,r3,r9,r10)
Builtin.stf(r1,next,r10,r1_1)
Builtin.stf(r1_1,sms,r7,r4)

Encoder.format(r2, r6, r7)
Stream.send(r3,r7,void)

Stream.send(r0,r1,r2)

Encoder.format(r0,r1,r2)

Builtin.asg(r3,r2)
java.net.URLEncoder.encode(r1,r3)

Encoder.format(r0,r1,r2)

java.lang.String.trim(r1,r3)
Builtin.asg(r3,r2)

TrimEncoder.format(r0,r1,r2) UnicodeEncoder.format(r0,r1,r2)

TrimEncoder.format(r0,r1,r2) UnicodeEncoder.format(r0,r1,r2)

@Cost({"cents","0"}) @Cost({"cents","0"})

@Cost({"cents","2*size(r1)"})

@Size("size(r2)<=size(r1)") @Size("size(r2)<=6*size(r1)")

Fig. 1. Motivating example: Java source code and Control Flow Graph

method, statement) in the program. This is expressed by adding Java annotations
to the code. The objective of the analysis is to approximate the usage that the
program makes of the resource.

We start by illustrating the overall approach through a working example. The
Java program in Fig. 1 emulates the process of sending text messages within a
cell phone. This example is not intended to be realistic, but rather a small piece
of code that illustrates a number of aspects of the approach. The source code is
provided here just for clarity, since the analyzer works directly on the corresponding
bytecode. The phone (class CellPhone) receives a list of packets (SmsPacket), each
one containing a single SMS, encodes them (Encoder), and sends them through a
stream (Stream). There are two types of encoding: TrimEncoder, which eliminates
any leading and trailing white spaces, and UnicodeEncoder, which converts any
special character into its Unicode(\uxxxx) equivalent. The length of the SMS
which the cell phone ultimately sends through the stream depends on the size of
the encoded message.

In the example, the resource is the cost in cents of a dollar for sending the
list of text messages. We will assume for the sake of discussion that the carrier
charges are proportional to the number of characters sent, and at 2 cents/char-
acter. This is reflected by the user in the method that is ultimately respon-
sible for the communication (Stream.send), by adding the annotation @Cost-
({"cents","2*size(data)"}). Similarly, the formatting of an SMS made in
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any implementation of Encoder.format is free, as indicated by the @Cost-
({"cents","0")}) annotation (the actual system allows defining overall cost de-
faults but we express them here explicitly). The analysis then processes these local
resource usage expressions and uses them to infer a safe upper bound on the total
(global) usage of the defined resources made by the program.

As illustrated by the example, these Java annotations allow defining the re-
sources to be tracked (which is done by simply mentioning them in the annota-
tions) and to provide cost functions for the built-in and external (library) blocks
that are relevant to the particular resource (i.e., which affect the usage of such re-
source). They also allow defining data size relations among arguments and defining
and declaring size measures. The resource usage expressions are defined using the
following language (which we will call L):

〈expr〉 ::= 〈expr〉〈bin op〉〈expr〉 | (
P | Q

)〈expr〉
| 〈expr〉〈expr〉 | lognum〈expr〉 | −〈expr〉
| 〈expr〉! | ∞ | num

| size([〈measure〉,]arg(r num))

〈bin op〉 ::= + | − | × | / | %

〈measure〉 ::= int | ref | . . .

We now summarize the fundamental steps of the analysis:

Step 1: Constructing the Control Flow Graph.
In the first step, the analysis translates the Java bytecode into an intermediate

representation building a Control Flow Graph (CFG). Edges in the CFG connect
block methods and describe the possible flows originated from conditional jumps,
exception handling, virtual invocations, etc. A (simplified) version of the CFG
corresponding to our code example is also shown in Fig. 1.

The original sendSms method has been compiled into two block methods that
share the same signature: class where declared, name (CellPhone.sendSms), and
number and type of the formal parameters. The bottom-most box represents the
base case, in which we return null, here represented as an assignment of null to
the return variable r5; the sibling corresponds to the recursive case. The virtual
invocation of format has been transformed into a static call to a block method
named Encoder.format. There are two block methods which are compatible
in signature with that invocation, and which serve as proxies for the intermedi-
ate representations of the interface implementations in TrimEncoder.format and
UnicodeEncoder.format. Note that the resource-related annotations have been
carried through the CFG and are thus available to the analysis.

Step 2: Inference of Data Dependencies and Size Relationships.
The algorithm infers in this phase size relationships between the input and the

output formal parameters of every block method. We assume that the size of (the
contents of) a linked structure pointed to by a variable is the maximum number
of pointers we need to traverse, starting at the variable, until null is found. The
following equations are inferred by the analysis for the two CellPhone.sendSms
block methods (with sri we denote the size of input formal parameter position i,
corresponding to variable ri):
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Sizer5
sendSms(sr0 , 0, sr2 , sr3) ≤ 0

Sizer5
sendSms(sr0 , sr1 , sr2 , sr3) ≤ 7× sr1 − 6 + Sizer5

sendSms(sr0 , sr1 − 1, sr2 , sr3)

The size of the returned value r5 is independent of the sizes of the input param-
eters this, enc, and stm (sr0 , sr2 and sr3 respectively) but not of the size sr1 of the
list of text messages smsPk (r1 in the graph). Such size relationships are computed
based on dependency graphs, which represent data dependencies between variables in
a block, and user annotations if available. In the example in Fig. 1, the user indicates
that the formatting in UnicodeEncoder results in strings that are at most six times
longer than the ones received as input @Size("size(ret)<=6*size(s)"), while the
trimming in TrimEncoder returns strings that are equal or shorter than the input
(@Size("size(ret)<=size(s)")). In this case the equations provide implicitly the
size measure (i.e., that the size of a string is its length). The equation system shown
above is approximated by a recurrence solver included in our analysis in order to
obtain the closed form solution Sizer5

sendSms(sr0 , sr1 , sr2 , sr3) ≤ 3.5× s2
r1
− 2.5× sr1 .

This is a reasonable bound given that we have not specified a maximum size for
each string.

Step 3: Resource Usage Analysis.
In this phase, the analysis uses the CFG, the data dependencies, and the size

relationships inferred in previous steps to infer a resource usage equation for each
block method in the CFG (possibly simplifying such equations) and obtain closed
form solutions (in general, approximated –upper bounds). Therefore, the objective
of the resource analysis is to statically derive safe upper bounds on the amount
of resources that each of the block methods in the CFG consumes or provides.
The result given by our analysis for the monetary cost of sending the messages
(CellPhone.sendSms) is

CostsendSms(sr0 , 0, sr2 , sr3) ≤ 0

CostsendSms(sr0 , sr1 , sr2 , sr3) ≤ 12× sr1 − 12 + CostsendSms(sr0 , sr1 − 1, sr2 , sr3)

i.e., the cost is proportional to the size of the message list (smsPk in the source, r1

in the CFG). Again, this equation system is solved by a recurrence solver, resulting
in the closed formula CostsendSms(sr0 , sr1 , sr2 , sr3) ≤ 6× s2

r1
− 6× sr1 .

3 Intermediate program representation

Analysis of a Java bytecode program normally requires its translation into an inter-
mediate representation that is easier to manipulate. In particular, our decompilation
(assisted by the Soot [39] tool) involves elimination of stack variables, conversion to
three-address statements, static single assignment (SSA) transformation, and gen-
eration of a Control Flow Graph (CFG) that is ultimately the subject of analysis.
Note that in this representation loops are converted into recursive blocks. The de-
compilation process is an evolution of the work presented in [31], which has been
successfully used as the basis for other (non resource-related) analyses [30]. Our
ultimate objective is to support the full Java language but the current transforma-
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tion has some limitations: it does not yet support reflection, threads, or runtime
exceptions. The following grammar describes the intermediate representation; some
of the elements in the tuples are named so we can refer to them as node.name.

CFG ::= Block+

Block ::= (id:N,sig:Sig,fpars:Id+,annot:expr∗,body:Stmt∗)
Sig ::= (class:Type,name:Id,pars:Type+)

Stmt ::= (id:N,sig:Sig,apars:(Id|Ct)+)

V ar ::= (name:Id, type:Type)

The Control Flow Graph is composed of block methods. A block method is similar
to a Java method, with some particularities: a) if the program flow reaches it,
every statement in it will be executed, i.e, it contains no branching; b) its signature
might not be unique: the CFG might contain several block methods in the same
class sharing the same name and formal parameter types; c) it always includes
as formal parameters the returned value ret and, unless it is static, the instance
self-reference this; d) for every formal parameter (input formal parameter) of the
original Java method that might be modified, there is an extra formal parameter in
the block method that contains its final version in the SSA transformation (output
formal parameter); e) every statement in a block method is an invocation, including
builtins (assignment asg, field dereference gtf, etc.), which are understood as block
methods of the class Builtin.

As mentioned before, there is no branching within a block method. Instead, each
conditional if cond stmt1 else stmt2 in the original program is replaced with an
invocation and two block methods which uniquely match its signature: the first
block corresponds to the stmt1 branch, and the second one to stmt2. To respect
the semantics of the language, we decorate the first block method with the result of
decompiling cond, while we attach cond to its sibling. A similar approach is used in
virtual invocations, for which we introduce as many block methods in the graph as
possible receivers of the call were in the original program. A set of block methods
with the same signature sig can be retrieved by the function getBlocks(CFG, sig).

User specifications are written using the annotation system introduced in Java
1.5 which, unlike JML specifications, has the very useful characteristic of being
preserved in the bytecode. Annotations are carried over to our CFG representation,
as can be seen in Fig. 1.

Example 1 We now focus our attention on the two block methods in Fig. 1, which
are the result of (de)compiling the CellPhone.sendSms method. The input formal
parameters r0, r1, r2, r3 correspond to this, smsPk, enc, and stm, respectively. In
the case of r1, the contents of its fields next and sms are altered by invoking the
stf and accessed by invoking the gtf (abbreviation for setfield and getfield,
respectively) builtin block methods. The output formal parameter r4 contains the
final state of r1 after those modifications. The value returned by the block methods
is contained in r5. Space reasons prevent us from showing any type information
in the CFG in Fig 1. In the case of Encoder.format, for example, we say that
there are two blocks with the same signature because they are both defined in
class Encoder, have the same name (format) and the same list of types of formal
parameters {Encoder,String,String}.
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resourceAnalysis (CFG, r e s ) {
CFG← c l a s s A n a l y s i s (CFG)
A l i a s e s← a l i a s A n a l y s i s (CFG)
mt← i n i t i a l i z e (CFG)
dg←dataDependencyAnalysis (CFG, Al ia s e s , mt)
for (SCC: SCCs)

// in r e v e r s e t o p o l o g i c a l order
mt←genSizeEqs (SCC, mt ,CFG, dg )
mt←genResourceUsageEqs (SCC, res , mt ,CFG)

return mt
}

normalize ( Eqs ) {
for ( s i z e r e l a t i o n p ≤ e1 : Eqs )

do
i f ( exp r e s s i on s appears in e1

and s ≤ e2 ∈Eqs )
r e p l a c e ocur r ence s o f s in e1 with e2

while the re i s change
return Eqs
}

Fig. 2. Generic resource analysis algorithm and normalization.

4 The resource usage analysis framework
We now describe our framework for inferring upper bounds on the usage that the
Java bytecode program makes of a set of resources defined by the application pro-
grammer, as described before. The algorithm in Fig 2 takes as input a Control
Flow Graph in the format described in the previous section, including the user an-
notations that assign elementary costs to certain graph elements for a particular
resource. The user also indicates the set of resources to be tracked by the analysis.
Without loss of generality we assume for conciseness in our presentation a single
resource.

A preliminary step in our approach is a class hierarchy analysis [15,30], aimed at
simplifying the CFG and therefore improving overall precision. More importantly,
we also require the existence of an alias analysis [35,26,11], whose results are used
by a third phase (described below) in which data dependencies between variables
in the CFG are inferred. The next step is the decomposition of the CFG into
its strongly-connected components. After these steps, two different analyses are
run separately on each strongly connected component: a) the size analysis, which
estimates parameter size relationships for each statement and output formal param-
eters as a function of the input formal parameter sizes (Sec. 4.1); and b) the actual
resource analysis, which computes the resource usage of each block method in terms
also of the input data sizes (Sec. 4.2). Each phase is dependent on the previous one.

The data dependency analysis is a dataflow analysis that yields po-
sition dependency graphs for the block methods within a strongly con-
nected component. Each graph G = (V,E) represents data depen-
dencies between positions corresponding to statements in the same block
method, including its formal parameters. Vertexes in V denote positions,

CellPhone.TrimEncoder.format( 1 , 2 , 3 )

java.lang.String.trim( 1 , 2 )

Builtin.asg( 1 , 2 )

Fig. 3:

and edges (s1, s2) ∈ E denote that s2 is depen-
dent on s1 (s1 is a predecessor of s2). We will
assume a predec function that takes a position
dependency graph, a statement, and a parame-
ter position and returns its nearest predecessor in
the graph. Fig. 3 shows the position dependency
graph of the TrimEncoder.format block method.

4.1 Size analysis

We now show our algorithm for estimating parameter size relations based on the
data dependency analysis, inspired by the original ideas of [17,16]. Our goal is
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to represent input and output size relationships for each statement as a function
defined in terms of the formal parameter sizes. Unless otherwise stated, whenever
we refer to a parameter we mean its position.

The size of an input is defined in terms of measures. By measure we mean a
function that, given a data structure, returns a number. Our method is parametric
on measures, which can be defined by the user and attached via annotations to
parameters or classes. For concreteness, we have defined herein two measures, int for
integer variables, and the longest path-length [37,2] ref for reference variables. The
longest path-length of a variable is the cardinality of the longest chain of pointers
than can be followed from it. More complex measures can be defined to handle
other data types such as cyclic structures, arrays, etc. The set of measures will be
denoted by M.

The size analysis algorithm is given in pseudo-code in Fig. 4; its main steps are:

(i) Assign an upper bound to the size of every parameter position of all statements,
including formal parameters, for all the block methods with the same signature
(genSigSize).

(ii) For a given signature, take the set of size inequations returned by (i) and
rename each size relation in terms of the sizes of input formal parameters
(normalize).

(iii) Repeat the first step for every signature in the same strongly-connected com-
ponent (genSizeEqs).

(iv) Simplify size relationships by resolving mutually recursive functions, and find
closed form solutions for the output formal parameters (genSizeEqs).

Intermediate results are cached in a memo table mt, which for every parameter
position stores measures, sizes, and resource usage expressions defined in the L
language.

The size of the parameter at position i in statement stmt, under measure m, is
referred to as size(m, stmt, i). We consider a parameter position to be input if it
is bound to some data when the statement is invoked. Otherwise, it is considered
an output parameter position. In the case of input parameter and output formal
parameter positions, an upper bound on that size is returned by getSize (Fig. 4).
The upper bound can be a concrete value when there is a constant in the referred
position, i.e., when the val function returns a non-infinite value:

Definition 4.1 The concrete size value for a parameter position under a particular
measure is returned by val : M× Stmt × N → L, which evaluates the syntactic
content of the actual parameter in that position:

val(m, stmt, i) =


n if stmt.aparsi is an integer n and m=int

0 if stmt.aparsi is null and m=ref

∞ otherwise

If the content of that input parameter position is a variable, the algorithm
searches the data dependency graph for its immediate predecessor. Since the inter-
mediate representation is in SSA form, the only possible scenarios are that either
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genSizeEqs (SCC, mt ,CFG, dg ) {
Eqs← ∅|SCC|
for ( s i g : SCC)

Eqs [ s i g ]←genS igS i z e ( s i g , mt ,SCC,CFG, dg )
So l s← r ecEqsSo lver ( s imp l i f yEqs ( Eqs ) )
for ( s i g :SCC)

i n s e r t (mt , size , s i g , So l s [ s i g ] )
return mt
}
genSigSize ( s ig , mt ,SCC,CFG, dg ) {

Eqs← ∅
BMs←getBlocks (CFG, s i g )
for (bm:BMs)

Eqs←Eqs ∪ genBlockSize (bm, mt ,SCC, dg )
return normal ize ( Eqs )
}
genBlockSize (bm, mt ,SCC, dg ) {

Eqs← ∅
for ( stmt :bm. body )

I←stmt input parameter p o s i t i o n s
Eqs←Eqs ∪ genInS ize ( stmt , I , mt , dg )
Eqs←Eqs ∪ genOutSize ( stmt , mt ,SCC)

K← bm output formal parameter p o s i t i o n s
Eqs←Eqs ∪ genInS ize (bm,K, mt , dg )
return Eqs
}
genInSize ( elem , Pos , mt , dg ) {

Eqs← ∅
for ( pos : Pos )

m← lookup (mt , measure , elem . s ig , pos )
s←g e t S i z e (m, elem . id , pos , dg )
Eqs←Eqs ∪ {size (m, elem . id , pos )≤s}

return Eqs
}

genOutSize ( stmt , mt ,SCC) {
{i1, . . . , il} ← stmt input p o s i t i o n s
s i g←stmt . s i g
{mi1 , . . . ,mil

} ←{ lookup (mt , measure , s i g , i 1 ) , . . . ,
lookup (mt , measure , s i g , i l)}

{s i1 , . . . ,s il
} ← {size (mi1 , stmt . id , i 1 ) , . . . ,

size (mil
, stmt . id , i l )

Eqs← ∅
O← stmt output parameter p o s i t i o n s
for ( o :O)

mo ← lookup (mt , measure , s i g , o )
i f ( s i g /∈SCC)

S i z e user ← Ao
sig(s i1 , . . . ,s il

)

S i z e alg′ ←max( lookup (mt , size , s i g , o ) )

S i z e alg ←S i z e alg′ (s i1 , . . . ,s il
)

S i z e o ←min( S i z e user , S i z e alg )
else

S i z e o ← Sizeo
sig(mo,s i1 , . . . ,s il

)

Eqs←Eqs ∪ {size (mo , stmt . id , o )≤ S i z e o}
return Eqs
}

getSize (m, id , pos , dg ) {
r e s u l t←val (m, id , i )
i f ( r e s u l t 6=∞)

return r e s u l t
else

i f (∃( elem , posp) ∈ predec ( dg , id , pos ) )
mp ← lookup (mt , measure , elem . s ig , posp )
i f (m=mp )

return size (mp , elem . id , posp )
return ∞
}

Fig. 4. The size analysis algorithm

there is a unique predecessor whose size is assigned to that input parameter position,
or there is none, causing the input parameter size to be unbounded (∞).

Consider now an output parameter position within a block method, case covered
in genOutSize (Fig. 4). If the output parameter position corresponds to a non-recursive
invoke statement, either a size relationship function has already been computed re-
cursively (since the analysis traverses each strongly-connected component in reverse
topological order), or it is provided by the user through size annotations. In the
first case, the size function of the output parameter position can be retrieved from
the memo table by using the lookup operation, taking the maximum in case of several
size relationship functions, and then passing the input parameter size relationships
to this function to evaluate it. In the second scenario, the size function of the out-
put parameter position is provided by the user through size annotations, denoted
by the A function in the algorithm. In both cases, it will able to return an explicit
size relation function.

Example 2 We have already shown in the CellPhone example how a class can be
annotated. The Builtin class includes the assignment method asg, annotated as
follows:

public class B u i l t i n {
@Size{” s i z e ( r e t)<= s i z e ( o ) ”}
public stat ic native Object asg ( Object o ) ;
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// . . . r e s t o f annotated b u i l t i n s
}

which results in equation A1
asg(ref, size(ref, asg, 0)) ≤ size(ref, asg, 0) .

If the output parameter position corresponds to a recursive invoke statement, the
size relationships between the output and input parameters are built as a symbolic
size function. Since the input parameter size relations have already been computed,
we can establish each output parameter position size as a function described in
terms of the input parameter sizes.

At this point, the algorithm has defined size relations for all parameter positions
within a block method.

However, those relations are either constants or given in terms of the immediate
predecessor in the dependency graph. The algorithm rewrites the equation system
such that we obtain an equivalent system in which only formal parameter positions
are involved. This process, called normalization, is shown in Fig. 2

After normalization, the analysis repeats the same process for all block methods
in the same strongly-connected component (SCC). Once every component has been
processed, the analysis further simplifies the equations in order to resolve mutually
recursive calls among block methods within the same SCC in the simplifyEqs procedure.

In the final step, the analysis submits the simplified system to a recurrence
equation solver (recEqsSolver, called from genSizeEqs) in order to obtain approximated
upper-bound closed forms. The interesting subject of how the equations are solved
is beyond the scope of this paper (see, e.g., [41]). Our implementation does provide
a simple built-in solver (an evolution of the solver of the Caslog system [16]) which
covers a reasonable set of recurrence equations such as first-order and higher-order
linear recurrence equations in one variable with constant and polynomial coeffi-
cients, divide and conquer recurrence equations, etc. However, it also includes an
interface to the Parma Polyhedra Library [7] (and previously to other tools such
as Mathematica, Matlab, etc.). Work is also under way to interface with the quite
interesting solver of [1].

Example 3 We now illustrate the definitions and algorithm with an example of
how the size relations are inferred for the two CellPhone.sendSms block methods
(Fig. 1), using the ref measure for reference variables. We will refer to the k-th oc-
currence of a statement stmt in a block method as stmtk, and denote CellPhone.-
sendSms, Encoder.format, and Stream.send by sendSms, format, and send re-
spectively. Finally, as mentioned before, we refer to the size of the input formal
parameter position i, corresponding to variable ri, as sri .

The main steps in the process are listed in Fig. 5. The first block of rows
contains the most relevant size parameter relationship equations for the recursive
block method, while the second block of rows corresponds to the base case. These
size parameter relationship equations are constructed by the analysis by first fol-
lowing the algorithm in Fig. 4, and then normalizing them (expressing them in
terms of the input formal parameter sizes sri). Also, in the first block of rows we
observe that the algorithm has returned 6 × size(ref, format, 1) as upper bound
for the size of the formatted string, max(lookup(mt, size, format, 2)). The result is
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Size parameter relationship equations (normalized)

size(ref, ne, 0) ≤ size(ref, sendSms, 1) ≤ sr1

size(ref, ne, 1) ≤ val(ref, ne, 1) ≤ 0

size(ref, gtf1, 0) ≤ size(ref, ne, 0) ≤ sr1

size(ref, gtf1, 2) ≤ A2
gtf (ref, size(ref, gtf1, 0), ) ≤ sr1 − 1

size(ref, format, 1) ≤ size(ref, gtf1, 2) ≤ sr1 − 1

size(ref, format, 2) ≤ max(lookup(mt, size, format, 2))(size(ref, format, 2))

≤ max(sr1, 6× sr1)(sr1 − 1)

≤ 6× (sr1 − 1)

size(ref, send, 1) ≤ size(ref, format, 2) ≤ 6× (sr1 − 1)

size(ref, gtf2, 0) ≤ size(ref, gtf1, 0) ≤ sr1

size(ref, gtf2, 2) ≤ A2
gtf (ref, size(ref, gtf2, 0), ) ≤ sr1 − 1

size(ref, sendSms, 5) ≤ Sizer5
sendSms(ref, , size(ref, sendSms, 1), , )

≤ Sizer5
sendSms(ref, sr0, sr1 − 1, sr2, sr3)

size(ref, stf1, 0) ≤ size(ref, gtf2, 0) ≤ sr1

size(ref, stf1, 2) ≤ size(ref, sendSms, 5) ≤ Sizer5
sendSms(ref, sr0, sr1 − 1, sr2, sr3)

size(ref, stf1, 3) ≤ A3
stf (ref, size(ref, stf1, 0), , size(ref, stf1, 2))

≤ sr1 + Sizer5
sendSms(ref, sr0, sr1 − 1, sr2, sr3)

size(ref, stf2, 0) ≤ size(ref, stf1, 3) ≤ sr1 + Sizer5
sendSms(ref, sr0, sr1 − 1, sr2, sr3)

size(ref, stf2, 2) ≤ size(ref, format, 2) ≤ 6× (sr1 − 1)

size(ref, stf2, 3) ≤ A3
stf (ref, size(ref, stf2, 0), , size(ref, stf2, 2))

≤ 7× sr1 − 6 + Sizer5
sendSms(ref, sr0, sr1 − 1, sr2, sr3)

size(ref, asg, 0) ≤ size(ref, stf2, 3)

≤ 7× sr1 − 6 + Sizer5
sendSms(ref, sr0, sr1 − 1, sr2, sr3)

size(ref, asg, 1) ≤ A1
asg(ref, size(ref, asg, 0))

≤ 7× sr1 − 6 + Sizer5
sendSms(ref, sr0, sr1 − 1, sr2, sr3)

size(ref, eq, 0) ≤ size(ref, sendSms, 1) ≤ sr1

size(ref, eq, 1) ≤ val(ref, eq, 1) ≤ 0

size(ref, asg, 0) ≤ val(ref, asg, 0) ≤ 0

size(ref, asg, 1) ≤ A1
asg(ref, size(ref, asg, 0)) ≤ 0

Output parameter size functions for builtins (provided through annotations)

A2
gtf(ref, size(ref, gtf, 0), ) ≤ size(ref, gtf, 0)− 1

A1
asg(ref, size(ref, asg, 0)) ≤ size(ref, asg, 0)

A3
stf(ref, size(ref, stf, 0), , size(ref, stf, 2)) ≤ size(ref, stf, 0) + size(ref, stf, 2)

Simplified size equations and closed form solution

Sizer5
sendSms(ref, sr0, sr1, sr2, sr3) ≤

(
0 if sr1 = 0

7× sr1 − 6 + Sizer5
sendSms(ref, sr0, sr1 − 1, sr2, sr3) if sr1 > 0

Sizer5
sendSms(ref, sr0, sr1, sr2, sr3) ≤ 3.5× s2

r1 − 2.5× sr1

Fig. 5. Size equations example

the maximum of the two upper bounds given by the user for the two implementa-
tions for Encoder.format since TrimEncoder.format eliminates any leading and
trailing white spaces (thus the output is at most as bigger as the input), whereas
UnicodeEncoder.format converts any special character into its Unicode equivalent
(thus the output is at most six times the size of the input), a safe upper bound for
the output parameter position size is given by the second annotation.

In the particular case of builtins and methods for which we do not have the
code, size relationships are not computed but rather taken from the user @Size
annotations. These functions are illustrated in the third block of rows. Finally,
in the fourth block of rows we show the recurrence equations built for the output
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genResourceUsageEqs (SCC, res , mt ,CFG) {
Eqs← ∅|SCC|
for ( s i g :SCC)

Eqs [ s i g ]←genSigRU ( s ig , res , mt ,SCC,CFG)
So l s← r ecEqsSo lver ( s imp l i f yEqs ( Eqs ) )
for ( s i g :SCC)

i n s e r t (mt , cost , max( So l s [ s i g ] ) )
return mt
}

genSigRU( s ig , res , mt ,SCC,CFG) {
Eqs← ∅
BMs←getBlocks (CFG, s i g )
for (bm:BMs)

body←bm. body
Costbody ← 0
for ( stmt : body )

Coststmt ←genStmtRU( stmt , res , mt ,SCC)
Costbody ←Costbody + Coststmt

Costbm ←genBlockRU (bm, res , mt)
Eqs←Eqs ∪ {Costbm ≤Costbody}

}

genStmtRU( stmt , res , mt ,SCC) {
{i1, . . . , ik} ← stmt input parameter p o s i t i o n s
{si1 , . . . , sik

} ←
{max( lookup (mt , size , stmt . s i g , i 1 ) ) , . . . ,

max( lookup (mt , size , stmt . s i g , i k ) )}
i f ( stmt . s i g /∈ SCC)

Costuser ← Astmt.sig ( res , s i1 , . . . , s ik
)

Costalg′ ← lookup (mt , cost , res , stmt . s i g )

Costalg ←Costalg′ ( s i1 , . . . , s ik
)

return min( Costalg , Costuser )
else return Cost ( stmt . s ig , res , s i1 , . . . , s ik

)
}

genBlockRU(bm, res , mt) {
{i1, . . . , il} ← bm input formal parameter p o s i t i o n s
{si1 , . . . , sil

} ←
{ lookup (mt , size ,bm. id , i 1 ) , . . . ,

lookup (mt , size ,bm. id , i l )
return Cost (bm. id , res , s i1 , . . . , s il

)
}

Fig. 6. The resource usage analysis algorithm

parameter sizes in the block method and in the final row the closed form solution
obtained.

4.2 Resource usage analysis

The core of our framework is the resource usage analysis, whose pseudo code is
shown in Fig 6. It takes a strongly-connected component of the CFG, including the
set of annotations which provide the application programmer-provided resources and
cost functions, and calculates a resource usage function which is an upper bound on
the usage made by the program of those resources. The algorithm manipulates the
same memo table described in Sec. 4.1 in order to avoid recomputations and access
the size relationships already inferred.

The algorithm is structured in a very similar way to the size analysis (which
also allows us to draw from it to keep the explanation within space limits): for
each element of the strongly-connected component the algorithm will construct an
equation for each block method that shares the same signature representing the
resource usage of that block. To do this, the algorithm will visit each invoke state-
ment. There are three possible scenarios, covered by the genStmtRU function. If the
signatures of caller and callee(s) belong to the same strongly-connected component,
we are analyzing a recursive invoke statement. Then, we add to the body resource
usage a symbolic resource usage function, in an analogous fashion to the case of
output parameters in recursive invocations during the size analysis.

The other scenarios occur when the invoke statement is non-recursive. Either a
resource usage function Costalg for the callee has been previously computed, or there
is a user annotation Costusr that matches the given signature, or both. In the latter
case, the minimum between these two functions is chosen (i.e., the most precise safe
upper bound assigned by the analysis to the resource usage of the non-recursive
invoke statement) or a warning is issued.

Example 4 The call (sixth statement) in the upper-most CellPhone.sendSms

Bytecode 2009 80 ETAPS 2009, York, UK



Resource usage equations

Cost
sendSms

($, sr0, sr1, sr2, sr3) ≤ min(

∞z }| {
lookup(mt, cost, $, ne),

@Cost(”cents”,”0”)=0z }| {
Ane($, sr1, ))

+min(

∞z }| {
lookup(mt, cost, $, gtf),

@Cost(”cents”,”0”)=0z }| {
Agtf ($, sr1, ) )

+min(

0z }| {
lookup(mt, cost, $, format)( , sr1 − 1),

∞z }| {
Aformat($, , sr1 − 1))

+min(

∞z }| {
lookup(mt, cost, $, send),

@Cost(”cents”,”2∗size(r1)”)=12×(sr1−1)z }| {
Asend($, , 6× (sr1 − 1))

+min(

∞z }| {
lookup(mt, cost, $, gtf),

@Cost(”cents”,”0”)=0z }| {
Agtf ($, sr1, ) ) + Cost

sendSms
($, sr0, sr1 − 1, sr2, sr3)

+min(

∞z }| {
lookup(mt, cost, $, stf),

@Cost(”cents”,”0”)=0z }| {
Astf ($, sr1, , ) )

+min(

∞z }| {
lookup(mt, cost, $, stf),

@Cost(”cents”,”0”)=0z }| {
Astf ($, sr1, , ) )

+min(

∞z }| {
lookup(mt, cost, $, asg),

@Cost(”cents”,”0”)=0z }| {
Aasg($, ))

≤ 12× (sr1 − 1) + Cost
sendSms

($, sr0, sr1 − 1, sr2, sr3)

Cost
sendSms

($, sr0, 0, sr2, sr3) ≤ min(

∞z }| {
lookup(mt, cost, $, eq) ,

@Cost(”cents”,”0”)=0z }| {
Aeq($, 0, ))

+ min(lookup(mt, cost, $, asg)| {z }
∞

, Aasg($, 0))| {z }
@Cost(”cents”,”0”)=0

≤ 0

Simplified resource usage equations and closed form solution

Cost
sendSms

($, sr0, sr1, sr2, sr3) ≤
(

0 if sr1 = 0

12 ∗ sr1 − 12 + Cost
sendSms

($, sr0, sr1 − 1, sr2, sr3) if sr1 > 0

Cost
sendSms

($, sr0, sr1, sr2, sr3) ≤ 6× s2
r1 − 6× sr1

Fig. 7. Resource equations example

block method matches the signature of the block method itself and thus it is re-
cursive. The first four parameter positions are of input type. The upper-bound
expression returned by genStmtRU is Cost

sendSms
($, sr0, sr1−1, sr2, sr3). Note that the input

size relationships were already normalized during the size analysis. Now consider
the invocation of Stream.send. The resource usage expression for the statement
is defined by the function Asend($, , 6 × (sr1 − 1)) since the input parameter at
position one is at most six times the size of the second input formal parameter, as
calculated by the size analysis in Fig. 5. Note also that there is a resource anno-
tation @Cost({"cents","2*size(r1)"}) attached to the block method describing
the behavior of Asend and yielding the expression Costuser = 12 × (sr1 − 1). On
the other hand, the absence of any callee code to analyze –the original method is
native– results in Costalg = ∞. Then, the upper bound obtained by the analysis
for the statement is min(Costalg, Costuser) = Costuser.

At this point, the analysis has built a resource usage function (denoted by
Costbody) that reflects the resource usage of the statements within the block. Fi-
nally, it yields a resource usage equation of the form Costblock ≤ Costbody where
Costblock is again a symbolic resource usage function built by replacing each input
formal parameter position with its size relations in that block method. These re-
source usage equations are simplified by calling simplifyEqs and, finally, they are solved
calling recEqsSolver, both already defined in Sec. 4.1. This process yields an (in gen-
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eral, approximate, but always safe) closed form upper bound on the resource usage
of the block methods in each strongly-connected component. Note that given a
signature the analysis constructs a closed form solution for every block method that
shares that signature. These solutions approximate the resource usage consumed in
or provided by each block method. In order to compute the total resource usage of
the signature the analysis returns the maximum of these solutions yielding a safe
global upper bound.
Example 5 The resource usage equations generated by our algorithm for the two
sendSms block methods and the “$” resource (monetary cost of sending the SMSs)
are listed in Fig. 7. The computation is partially based on the size relations in Fig. 5.
The resource usage of each block method is calculated by building an equation such
that the left part is a symbolic function constructed by replacing each parameter
position with its size (i.e., Cost

sendSms
($, sr0, sr1, sr2, sr3) and Cost

sendSms
($, sr0, 0, sr2, sr3) ), and

the rest of the equation consists of adding the resource usage of the invoke statements
in the block method. These are calculated by computing the minimum between the
resource usage function inferred by the analysis and the function provided by the
user. The equations corresponding to the recursive and non-recursive block methods
are in the first and second row, respectively. They can be simplified (third row) and
expressed in closed form (fourth row), obtaining a final upper bound for the charge
incurred by sending the list of text messages of 6× s2

r1 − 6× sr1.

5 Experimental results

We have completed an implementation of our framework (in Ciao [10], using com-
ponents from CiaoPP [23], and with help from the Soot tool [39], as mentioned
before), and tested it for a representative set of benchmarks and resources. Our
experimental results are summarized in Table 1. Column Program provides the
name of the main class to be analyzed. Column Resource(s) shows the resource(s)
defined and tracked. Column ts shows the time (in milliseconds) required by the size
analysis to construct the size relations (including the data dependency analysis and
class hierarchy analysis) and obtain the closed form. Column tr lists the time taken
to build the resource usage expressions for all method blocks and obtain their closed
form solutions. t provides the total times for the whole analysis process. Finally,
column Resource Usage Func. provides the upper bound functions inferred for
the resource usage. For space reasons, we only show the most important (asymp-
totic) component of these functions, but the analysis yields concrete functions with
constants.

Regarding the benchmarks we have covered a reasonable set of data-structures
used in object-oriented programming and also standard Java libraries used in real
applications. We have also covered an ample set of application-dependent resources
which we believe can be relevant in those applications. In particular, not only have
we represented high-level resources such as cost of SMS, bytes received (including
a coarse measure of bandwidth, as a ratio of data per program step), and files left
open, but also other low-level (i.e., bytecode level) resources such as stack usage or
energy consumption. The resource usage functions obtained can be used for several
purposes. In program Files (a fragment characteristic of operating system kernel
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Program Resource(s) ts tr t Resource Usage Func.

BST Heap usage 250 22 367 O(2n) n ≡ tree depth

CellPhone SMS monetary cost 271 17 386 O(n2) n ≡ packets length

Client Bytes received and 391 38 527 O(n) n ≡ stream length

bandwidth required O(1) —

Dhrystone Energy consumption 602 47 759 O(n) n ≡ int value

Divbytwo Stack usage 142 13 219 O(log2(n)) n ≡ int value

Files Files left open and 508 53 649 O(n) n ≡ number of files

Data stored O(n×m) m ≡ stream length

Join DB accesses 334 19 460 O(n×m) n, m ≡ records in tables

Screen Screen width 388 38 536 O(n) n ≡ stream length

Table 1
Times of different phases of the resource analysis and resource usage functions.

code) we kept track of the number of file descriptors left open. The data inferred for
this resource can be clearly useful, e.g., for debugging: the resource usage function
inferred in this case (O(n)) denotes that the programmer did not close O(n) file
descriptors previously opened. In program Join (a database transaction which
carries out accesses to different tables) we decided to measure the number of accesses
to such external tables. This information can be used, e.g., for resource-oriented
specialization in order to perform optimized checkpoints in transactional systems.
The rest of the benchmarks include other definitions of resources which are also
typically useful for verifying application-specific properties: BST (a generic binary
search tree, used in [4] where a heap space analysis for Java bytecode is presented),
CellPhone (extended version of program in Figure 1), Client (a socket-based client
application), Dhrystone (a modified version of a program from [25] where a general
framework is defined for estimating the energy consumption of embedded JVM
applications; the complete table with the energy consumption costs that we used
can be found there), DivByTwo (a simple arithmetic operation), and Screen (a
MIDP application for a cellphone, where the analysis is used to make sure that
message lines do not exceed the phone screen width). The benchmarks also cover
a good range of complexity functions (O(1), O(log(n), O(n), O(n2) . . . , O(2n), . . .)
and different types of structural recursion such as simple, indirect, and mutual.

6 Conclusions

We have presented a fully-automated analysis for inferring upper bounds on the
usage that a Java bytecode program makes of a set of application programmer-
definable resources. Our analysis derives a vector of functions, one for each defined
resource. Each of these functions returns, for each given set of input data sizes, an
upper bound on the usage that the whole program (and each individual method)
make of the corresponding resource. Our approach allows the application program-
mer to define the resources to be tracked by writing simple resource descriptions
via source-level annotations, The current results suggest that the proposed analysis
can obtain non-trivial bounds on a wide range of interesting resources in reasonable
time. Our approach allows using the annotations also for a number of other pur-
poses such as stating the resource usage of external methods, which is instrumental
in allowing modular composition and thus scalability. In addition, our annotations
allow stating the resource usage of any method for which the automatic analysis
infers a value that is not accurate enough to prevent inaccuracies in the automatic
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inference from propagating. Annotations are also used by the size and resource
usage analysis to express their output. Finally, the annotation language can also
be used to state specifications related to resource usage, which can then be proved
or disproved based on the results of analysis following, e.g., the scheme of [24,5,22]
thus finding resource bugs or verifying the resource usage of the program.
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Abstract

Points-to analysis is a prerequisite of program verification and static analysis on Java programs. It is known
that call graph is typically constructed on-the-fly when points-to analysis proceeds for a better precision.
In this work, we propose an ahead-of-time yet context-sensitive points-to analysis for Java as all-in-one
weighted pushdown model checking. The analysis is context-sensitive in the sense that, (i) method calls
and returns match with each other (a.k.a., valid paths); and (ii) targets of dynamic dispatch are analyzed
separately for different calling contexts (a.k.a., context-sensitive call graph). The insight of our approach
is that, by encoding dataflow as weights, invalid control flows that violate Java semantics on dynamic
dispatch are detected as those carrying conflicted dataflow. Our analysis is presented as field-sensitive and
flow-sensitive. Flow-insensitivity is shown to be easily obtained as a hierarchy considering efficiency and
concurrent behaviors. Due to the lack of control flow structure and the explicit stack-based design, program
analysis on bytecode is not an easy matter. We implemented the analysis in the framework of Soot compiler,
and utilized the Weighted PDS Library as the back-end analysis engine. The analysis works on Jimple, a
typed three-address intermediate representation of bytecode supported by Soot. The results of the analysis
can be encoded into the class file as attributes for the further analysis or verification on bytecode.

Keywords: Points-to Analysis, Weighted Pushdown Model Checking, Java

1 Introduction

Points-to analysis [3] for Java is to detect the set of heap objects, i.e., instances of
classes or arrays, possibly referred to by reference variables at run-time. Many ap-
plications such as program understanding, program verification, and static analysis
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the Japanese Ministry of Education, Culture, Sports, Science and Technology.
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depend on points-to analysis to reason the underlying control/data flow of Java pro-
grams. Due to dynamic object-oriented features like dynamic dispatch 4 , points-to
analysis is mutually dependent to call graph construction. Thus we have choices of
constructing call graph either on-the-fly as the points-to sets of call site receivers are
computed, or ahead-of-time based on syntactical information of the program such
as CHA [21] and RTA (Rapid Type Analysis) [22]. The former essentially enjoys a
higher precision and is the choice of most of points-to analysis algorithms.

This paper presents an ahead-of-time yet context-sensitive points-to analysis for
Java as all-in-one WPDMC (weighted pushdown model checking). Though it is well
understood that program analysis can be regarded as model checking of abstract
interpretation [1], model checking based approach to a context-sensitive points-
to analysis is not straightforward. We limit our focus to providing the following
context-sensitivities in the analysis, such that (i) method calls and returns match
with each other (a.k.a., valid paths), which is guaranteed by encoding the program as
a pushdown system; and (ii) targets of dynamic dispatch are analyzed separately for
different calling contexts (a.k.a., context-sensitive call graph). Our approach to (ii)
is, by further encoding dataflow as weights, invalid control flows that violates Java
semantics on dynamic dispatch are detected as those carrying conflicted dataflow.
These context-sensitivities are recently shown to be crucial to a precise points-to
analysis in practice [5,18], as illustrated by Example 1.1. Our analysis is also flow-
sensitive and field-sensitive. Concerning efficiency and concurrent behaviors of Java
programs, points-to analysis is typically designed as flow-insensitive. One smart idea
is combining SSA (Static Single Assignment) and complete flow insensitivity [7]. We
briefly discussed how to easily obtain flow-insensitivity as a hierarchy.

Example 1.1 We denote by ol an abstract heap object that is allocated at the
program line l, and by 7→ the mapping relation afterwards. An analysis will pre-
cisely compute {c 7→ o3, d 7→ o5} if it obeys to valid paths, and will furthermore
erroneously infer {c 7→ o5, d 7→ o3} otherwise. An analysis will precisely compute
{o3.f 7→ o15, o5.f 7→ o20} if a context-sensitive call graph is constructed, and will
furthermore erroneously infer {o3.f 7→ o20, o5.f 7→ o15} otherwise.

1. public class Main { 12. public class A {
2. public static void main(String[] args) { 13. Object f;

3. A a = new A(); 14. public void set() {
4. A c = foo(a); 15. this.f = new Integer(0);

5. A b = new B(); 16. }
6. A d = foo(b); 17. }
7. } 18. public class B extends A {
8. public static A foo(A x) { 19. public void set() {
9. x.set(); 20. this.f = new String();

10. return x; } 21. }
11. } 22. }

Due to the lack of control flow structure and explicit operand stack-based design,
static analysis on bytecode is not an easy matter. We thus design and implement
the analysis as a sub-phase of the compilation procedure in the Soot framework.
Soot is an open-source compilation/optimization framework for Java, which has

4 In this paper, we limit our focus to single dynamic dispatch only. Multiple dynamic dispatch, e.g.,
reflection in Java, demands non-trivial extension and thus independent discussion.
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Fig. 1. Points-to Analysis on Jimple in the Soot Framework

been originally designed to simplify the process of developing new optimizations for
Java bytecode and supports three kinds of intermediate representations of bytecode.
As shown in Figure 1, the Java source code (bytecode) is firstly compiled into the
Jimple [25] code, which is a typed three-address intermediate representation. Our
analysis PTA is then performed on the Jimple code, and the analysis results can be
encoded into the class file as attributes for any kind of later use. It can be useful for
other occasions to perform complicated static analysis on an intermediate language
like Jimple and annotate the class file with analysis results.

The remainder of the paper is organized as follows: Section 2 briefly introduces
weighted pushdown model checking. Section 3 formalizes our abstraction and mod-
elling on heap operations. Section 4 presents our ahead-of-time points-to analysis
as all-in-one weighted pushdown model checking. The skeleton of holding soundness
property is given, and the prototype implementation is shown. Section 5 compares
related work and Section 6 concludes this paper with a discussion on future work.

2 Background

2.1 Weighted Pushdown Model Checking

Definition 2.1 A pushdown system P = (Q, Γ, ∆, q0, w0) is a pushdown au-
tomaton regardless of input, where Q is a finite set of states called control loca-
tions, and Γ is a finite set of stack alphabet, and ∆ ⊆ Q × Γ × Q × Γ∗ is a finite
set of transition rules, and q0 ∈ Q and w0 ∈ Γ∗ are the initial control location and
stack contents respectively. We denote the transition rule ((q1, w1), (q2, w2)) ∈ ∆
by 〈q1, w1〉 →֒ 〈q2, w2〉. A configuration of P is a pair 〈q, w〉, where q ∈ Q and
w ∈ Γ∗. ∆ defines the transition relation ⇒ between pushdown configurations such
that if 〈p, γ〉 →֒ 〈q, ω〉, then 〈p, γω′〉 ⇒ 〈q, ωω′〉, for all ω′ ∈ Γ∗.

A pushdown system is a finite transition system carrying an unbounded stack.
A weighted pushdown system extends a pushdown system by associating a weight
to each transition rule. The weights come from a bounded idempotent semiring.

Definition 2.2 A bounded idempotent semiring S = (D,⊕,⊗, 0, 1) consists of
a set D (0, 1 ∈ D) and two binary operations ⊕ and ⊗ on D such that

(i) (D,⊕) is a commutative monoid with 0 as the unit element, and ⊕ is idempo-
tent, i.e., a⊕ a = a for a ∈ D;

(ii) (D,⊗) is a monoid with 1 as the unit element;
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(iii) ⊗ distributes over ⊕, i.e., ∀a, b, c ∈ D, a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) and
(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c);

(iv) ∀a ∈ D, a⊗ 0 = 0⊗ a = 0;

(v) The partial ordering ⊑ is defined on D such that ∀a, b ∈ D, a ⊑ b iff a⊕ b = a,
and there are no infinite descending chains on D wrt ⊑.

Remark 2.3 As stated in Section 4.4 in [8], the distributivity of ⊕ can be loosened
to a⊗ (b⊕ c) ⊑ (a⊗ b)⊕ (a⊗ c) and (a⊕ b)⊗ c ⊑ (a⊗ c)⊕ (b⊗ c). The associativity
of ⊗ can be loosened too, as long as both (a⊗ b)⊗ c and a⊗ (b⊗ c) conservatively
approximates the program execution when applied to program analysis.

Definition 2.4 A weighted pushdown system is a triple W = (P,S, f), where
P = (Q, Γ, ∆, q0, w0) is a pushdown system, S = (D,⊕,⊗, 0, 1) is a bounded idem-
potent semiring, and f : ∆ → D is a function that assigns a value from D to each
rule of P.

Definition 2.5 Consider a weighted pushdown system W = (P,S, f), where P =
(Q, Γ, ∆, q0, w0) is a pushdown system, and S = (D,⊕,⊗, 0, 1) is a bounded idem-
potent semiring. Assume σ = [r0, ..., rk] to be a sequence of pushdown transition
rules, where ri ∈ ∆(0 ≤ i ≤ k), and v(σ) = f(r0) ⊗ ... ⊗ f(rk). Let path(c,c′)
be the set of all rule sequences that transform configurations from c into c′. The
generalized pushdown reachability problem(GPR) is to find

δ(c, C) =
⊕

{v(σ)|σ ∈ path(c, c′), c′ ∈ C}

for c ∈ Q× Γ∗ and a set C(⊆ Q× Γ∗) of regular configurations.

The GPR can be easily extended to answer the classic “meet-over-all-valid-
paths” problem in program analysis. Efficient algorithms for solving GPR are de-
veloped based on the property that the regular set of pushdown configurations is
closed under forward and backward reachability [8]. There are two off-the-shelf
implementations of weighted pushdown model checking algorithms, Weighted PDS
Library 5 , and WPDS+ 6 . We apply the former as the back-end analysis engine
in the prototype implementation.

2.2 Program Analysis as WPDMC

When designing a program analysis as WPDMC, the intuition behind ⊗ and ⊕ is:

• A weight function models a transfer function which typically represents the data
flow changes for one-step program execution;

• f ⊕ g represents the merging of data flow at the meet of two control flows;
• f ⊗ g represents the sequential composition of abstract state transformers;
• 1 implies that an execution step does not change the program state; and
• 0 implies that the program execution is interrupted by an error.

5 http://www.fmi.uni-stuttgart.de/szs/tools/wpds/
6 http://www.cs.wisc.edu/wpis/wpds++/
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Table 1
Syntactical Notations for References

f ∈ F Name constants of instance fields

v ∈ RefVar Local variables and static fields

v[i] ∈ RefArr Array references (i ∈ Z+
0 )

v, v[i], v.f ∈ Vref RefVar ∪ RefArr ∪ RefVar × F
v, o[i], o.f ∈ Vdiref RefVar ∪ O × Z+

0 ∪ O × F

Recall the usual encoding of programs as finite model checking, program states,
i.e., the product of global variables, local variables and program execution points,
are encoded as states of finite automata. For pushdown model checking, the push-
down stack can simulate the runtime stack of program execution. For instance,
the pushdown stack can be encoded to store calling contexts for procedure calls,
just like the program execution on stack machine. In this paper, we will follow the
convention defined in Definition 2.6.

Definition 2.6 Define an interprocedural control flow graph G = (N, E, n0), where
N = Ni ∪Nc ∪Ne is the set of nodes, with Ni, Nc, Ne as the sets of internal nodes,
call sites, and method exits, respectively. E = Ei ∪Ec ∪Ee is the set of edges with
Ei ⊆ Ni × N, Ec ⊆ Nc × Ni, Ee ⊆ Ne × Ni, where Ei, Ec, and Ee are the sets
of internal edges, call edges, and return edges, respectively. n0 ∈ N is the unique
entry node of G. We denote by Nr ⊆ Ni the set of return points of method calls.
Let assign : Nc → Nr be the function that associates with each call site from Nc

with a distinguished return point in Nr, Nr = {nr | nr = assign(nc), nc ∈ Nc}.
Definition 2.7 The encoding of an interprocedural control flow graph G =
(N, E, n0) as a pushdown system P = (Q, Γ, ∆, q0, w0) is defined as follows

• Q is a singleton set denoted by {·};
• Γ = N with w0 = n0;
• ∆ is constructed as follows,

〈·, ni〉 →֒ 〈·, n′i〉 if (ni, n
′
i) ∈ Ei

〈·, ni〉 →֒ 〈·, ncnr〉 if (ni, nc) ∈ Ec, and nr = assign(nc) ∈ Nr

〈·, ne〉 →֒ 〈·, ǫ〉 if (ne, ni) ∈ Ee

3 Modelling and Abstraction

3.1 Semantics of Heap Operations

Definition 3.1 Define O be the set of heap objects in the concrete domain,
where ⊤o ∈ O is the greatest element and represents any objects; ⊥o ∈ O is the
least element and represents no objects (i.e., null reference). Elements in O except
⊤o and ⊥o are incomparable.

We take Jimple, a three-address intermediate representation of Java, as our
target language, since it is syntactically much simpler than either Java or Bytecode.
Table 1 prepares notations for, (i) the set of references Vref that is syntactically
allowed in Jimple; and (ii) the set of references Vdiref in the semantic domain of
heap environments (Definition 3.2). Static fields are treated in the same way with
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local variables, since they can be syntactically identified as well and we limit our
focus to single-thread Java programs in the presentation.

Definition 3.2 A heap environment henv is a mapping from Vdiref to O.
The set of heap environments is denoted by Henvcon. The evaluation function
evalcon : Henvcon → Vref → O on reference variables is defined as:

evalcon(henv, v) = henv(v)

evalcon(henv, v[i]) = henv(henv(v)[i])

evalcon(henv, v.f) = henv(henv(v).f)
Let hinit be the initial heap environment such that, for each r ∈ Vdiref ,
evalcon(hinit, r) = ⊥o (null reference).

Let Loc be the set of program locations. Since we only consider single thread
Java program here, the next program location at each execution step is uniquely
determined. We informally refer it as next(l) for l ∈ Loc. Later it will be discussed
how to leverage the analysis to a flow-insensitive counterpart regarding concurrency.

Definition 3.3 Define an transition system OS = (States, sinit,→) to represent
the Java semantics on heap, where

• States ⊆ (Loc × Henvcon) is a set of pairs of a program location and a heap
environment,

• sinit is the initial state, which is a pair of the program entry l0 and hinit;
• → ⊆ States × States is the set of operational semantic rules, and →∗ denotes

the transitive closure of →.

A transition rule 〈l, henv〉 → 〈next(l), τ(henv)〉 for typical pointer assignment
statements at l ∈ Loc is shown in Table 2, where

• the function ν(henv, T) generates a fresh heap object of type T in O; and
• for r, r′ ∈ Vdiref , o ∈ O,

(henv⊙ [r 7→ o])r′ =

{
o if r = r′

henv(r) otherwise

Definition 3.4 The composition of heap environment transformers is de-
fined by the standard η-expansion, such that, for exph1, exph2 ∈ ExpHenv,

(λhenv. exph2) ◦ (λhenv. exph1) =η λh. (λhenv. exph2)(λhenv. exph1)h

=β λh. exph2[henv := exph1[henv := h]]
The notation E[h := E′] means the expression E with E′ substituted for free oc-
currences of h.

Definition 3.5 Let M be the set of method identifiers, and let T be the set of ref-
erence types. Let any = type(⊤o) and none = type(⊥o). For t, t′ ∈ T \{any, none}
and m ∈M, t′ conflicts with t with respect to the method m if and only if, (i) t′ 6=
t and t′ does not inherit t, or (ii) t′ inherits t with redefining m. Otherwise, we say t′

is compatible with t with respect to the method m. Furthermore, t is compatible
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Table 2
Heap Environment Transformer

Statement Heap Environment Transformer

x = new T τ = λhenv.henv⊙ [x 7→ ν(henv, T)]

x = y τ = λhenv.henv⊙ [x 7→ henv(y)]

x = y[n] τ = λhenv.henv⊙ [x 7→ henv(henv(y)[n])]

x[n] = y τ = λhenv.henv⊙ [henv(x)[n] 7→ henv(y)]

x = y.f τ = λhenv.henv⊙ [x 7→ henv(henv(y).f)]

y.f = x τ = λhenv.henv⊙ [henv(y).f 7→ henv(x)]

x = return y τ = λhenv.henv⊙ [x 7→ henv(y)]

x.m(r0, ..., rl) τ = τ0 ◦ τ1 ◦ ... ◦ τk

where τ1, ..., τk ∈ Fun,

Fun = {λhenv.henv⊙ [argi 7→ henv(mi)] |
ri(0 ≤ i ≤ l) are arguments of reference type }
τ0 = λhenv.henv⊙ [this 7→ henv(x)]

The method m to be invoked is from the class with which the

type of henv(x) is compatible with respect to the method m

(Definition 3.5, i.e., the basic procedure of dynamic dispatch)

with any, for each t in T and vice versa; none conflicts with t, for each t in T
and vice versa.

3.2 Abstraction

There are varieties of infinities to be abstracted away for a tractable analysis, such as
the nesting of array structures, method invocations, field reference, and the number
of allocated heap objects. We take the following abstractions in the analysis,

• An unique abstract heap object models objects allocated at each heap alloca-
tion site, and is identified by its type and program line number (Definition 3.6).
Therefore, the number of abstract heap objects are syntactically bounded;

• The indices of arrays are ignored, such that members of an array are not distin-
guished. We denote by [[v]] the representative for array references v[i]. References
with nested [[ ]] refer to multi-array access. We denote {[[o]] | o ∈ Obj} by [[Obj]].

Note that, after abstracting heap objects to be a finite set, the nesting of either
field references or array references are correspondingly finite yet unbounded. Since
local variables have a unique counterpart representation in the analysis, we will
reuse notations in Table 1 afterwards when it is clear from the context.

Definition 3.6 Define abstract heap objects Obj = {⌈t, l⌉ | t ∈ T , l ∈ Loc} ∪
{⊤obj,⊥obj}, where ⊤obj is the greatest element and ⊥obj is the least element.
Other elements in Obj except ⊤obj and ⊥obj are incomparable.

Definition 3.7 An abstract heap environment henv is a mapping from Vdiref

to P(Obj), where P is the powerset operator. The set of abstract heap environ-
ments is denoted by Henvabs. The evaluation function evalabs : Henvabs → Vref →
P(Obj) on reference variables in the abstract domain is defined as:

evalabs(henv, v) = henv(v)

evalabs(henv, [[v]]) = {henv([[o]]) | o ∈ evalabs(henv, v)}
evalabs(henv, v.f) = {henv(o.f) | o ∈ evalabs(henv, v)}
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Table 3
Abstract Heap Environment Transformer ExpFun

Statement Abstract Heap Environment Transformer

x = new T λhenv.henv • [x 7→ ⌈t, l⌉]
x = y λhenv.henv • [x 7→ henv(y)]

x = y[n] λhenv.henv • [x 7→ henv([[henv(y)]])]

x[n] = y λhenv.henv • [[[henv(x)]] 7→ henv(y)]

x = y.f λhenv.henv • [x 7→ henv(henv(y).f)]

y.f = x λhenv.henv • [henv(y).f 7→ henv(x)]

Let hinit be the abstract initial heap environment such that evalabs(hinit, r) = ⊥obj

for each r ∈ Vref .

Abstract heap environment transformers for typical pointer assignment state-
ments are shown in Table 3, where ⌈t, l⌉ ∈ Obj, and for r, r′ ∈ Vdiref , o ∈ Obj

(henv • [r 7→ o])r′ =


{o} if r = r′ /∈ [[Obj]]
henv(r′) ∪ {o} if r = r′ ∈ [[Obj]]
henv(r′) otherwise

4 Points-to Analysis as WPDMC

4.1 The Design of Weight Space

By encoding the program as a pushdown system, we are provided with context-
sensitivity regarding valid pathes. To construct a context-sensitive call graph during
the analysis, we enrich the notion of valid paths, such that valid paths that violate
type requirements of dynamic dispatch are also regraded as invalid. By encoding
dataflow as weights, an invalid control flow is detected as that carrying conflicted
dataflow, and combining weights along the control flow will result in the weight 0.

Definition 4.1 Define abstract heap environment transformers ExpFun as,

ExpFun ::= λhenv. ExpHenv

ExpHenv ::= henv | ExpHenv • ExpMap

ExpMap ::= [Expf 7→ Expt]

Expf ::= v | Expt.f | Arrf

Expt ::= ⌈t, l⌉ | henv(v) | henv(Expt.f) | Arrt

Arrf ::= [[Expt]]

Arrt ::= henv([[Expt]])

For this purpose, the basic weight functions, i.e., the abstract heap environment
transformers (Definition 4.1), are extended by pairing path constraints (Definition
4.2). We denote by (s, t ↑ m) a path constraint (s, t, m) ∈ PathCons, which intends
that the dynamic dispatch of a call edge demands the runtime type of the heap
object pointed to by s to be compatible with the type t w.r.t. the method m.
This judgement on types should exactly obey to (such as Definition 3.5) or soundly
approximates the Java semantics for dynamic dispatch.

Definition 4.2 Define a set of path constraints PathCons ⊆ V × T ×M, where
V ::= v | V.f | [[V]] is the set of references that syntactically allows nested field
references and array structures.
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Table 4
Abstract Heap Environment Transformer with Path Constraints

x.m(r0, ..., rl) (τ0 ◦ τ1 ◦ ... ◦ τk, {(x, t ↑ m)})
where τ1, ..., τk ∈ Fun,

Fun = {λhenv.henv • [argi 7→ henv(ri)] |
ri(0 ≤ i ≤ l) are arguments of reference type }
τ0 = λhenv.henv • [this 7→ henv(x)]

The evaluation function evalabs is extended as evalabs : Henvabs → V ∪ Obj →
P(Obj), such that for henv ∈ Henvabs, o ∈ Obj

evalabs(henv, o) = {o} evalabs(henv, v) = henv(v)

evalabs(henv,V.f) = {henv(o.f) | o ∈ evalabs(henv,V)}
evalabs(henv, [[V]]) = {henv([[o]]) | o ∈ evalabs(henv,V)}

Definition 4.3 Define Ref: ExpFun → V → P(Expt) such that for τ = λhenv.
ExpHenv • [vf 7→ vt] and τ ′ = λhenv. ExpHenv ∈ ExpFun,

Ref(τ, v) =


{vt} if vf = v /∈ Arrf
Ref(τ ′, v) ∪ {vt} if vf = v ∈ Arrf
Ref(τ ′, v) otherwise

Ref(τ,V.f) = {Ref(τ, vt′.f) | vt′ ∈ Ref(τ,V)}
Ref(τ, [[V]]) = {Ref(τ, [[vt′]]) | vt′ ∈ Ref(τ,V)}

Table 4 shows the abstraction of virtual method invocations. The heap envi-
ronment transformer for the virtual call edge is paired with a singleton set, which
specifies the expected runtime type t for the call site receiver to follow this call path.
Transformers for other program statements are paired with an empty set ∅ initially.

Definition 4.4 Define Ref−1 : P(Expt) → P(V ∪ Obj) such that Ref−1(V) =⋃
vt∈V Ref−1({vt}) for V ⊆ Expt, where

Ref−1({⌈t, l⌉}) = {⌈t, l⌉}
Ref−1({henv(v)}) = {v}
Ref−1({henv(Expt.f)}) = {Ref−1({Expt}).f}
Ref−1({henv([[Expt]])}) = {[[Ref−1({Expt})]]}

Definition 4.5 Define trace : ExpFun → V → P(V ∪ Obj) such that trace =
Ref−1 ◦ Ref.
Example 4.6 Let τ = λhenv.henv • [x 7→ henv(y)] • [henv(z).f 7→ o]. Then
trace(τ, x.f) = y.f , trace(τ, z.f) = o, and trace(τ, y) = y.

Definition 4.7 Let c ⊆ PathCons and τ ∈ Expfun. For (s, t ↑ m) ∈ c,

judge(c, τ) =


error if there exits (s, t ↑ m) ∈ c s.t.

judge({(s, t ↑ m)}, τ) = error⋃
(s,t↑m)∈c judge({(s, t ↑ m)}, τ) otherwise
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judge({(s, t ↑ m)}, τ)

=



error if trace(τ, s) ⊆ Obj and for all o ∈ trace(τ, s),
type(o) conflicts with t w.r.t. m

φ if there exists o ∈ trace(τ, s) for o ∈ Obj and
type(o) is compatible with t w.r.t. m⋃

s′∈trace(τ,s){(s′, t ↑ m)} otherwise

Definition 4.7 defines judgements on path constraints when composing the ex-
tended weights.

• The first case says, error returns if the current abstract heap environment is
known not to satisfy the path constraints on s. This case results in the weight 0
and the related control flow is thus excluded from the analysis result.

• The second case says, a known satisfied constraint will not be included into the
newly generated path constraints for efficiency.

• The last case says, new path constraints are generated when the judgement on
path constraints is pending at the moment.

Definition 4.8 Define a semiring Se = (De, ⊕e,⊗e, 0e, 1e), such that

• De = P(D), where D = {(f, c) | f ∈ ExpFun, c ⊆ PathCons}
• 0e = ∅ and 1e = {(λhenv.henv, ∅)}
• w1 ⊗e w2 = { p1 ⊗ p2 | p1 = (func1, c1) ∈ w1, p2 = (func2, c2) ∈ w2 }

(func1, c1)⊗ (func2, c2) =

{
0e if jpc = error

(func2 ◦ func1, c1 ∪ jpc) otherwise

where jpc = judge(c2, func1), w1, w2 ∈ De.
• w1 ⊕e w2 = w1 ∪ w2 for w1, w2 ∈ De

Remark 4.9 Both the associativity of ⊗ and the distributivity of ⊕ over ⊗
hold. Since the nesting of field references and array structures is finite yet un-
bounded, a bound can be given on their nested depth for efficiency. That is,
a field or array reference nested deeper than the given bound will be regarded
as pointing to anywhere(i.e., ⊤obj), as illustrated in Example 4.10. As a result,
(w0 ⊗ w1)⊗ w2 ⊑ w0 ⊗ (w1 ⊗ w2) for w0, w1, w2 ∈ D.

Example 4.10 If we limit the nesting of field references to the depth 1, the anal-
ysis of the Java code fragment “x.f = w; y = x.f ; z = y.g;” returns the weight
λhenv.henv • [henv(x).f 7→ henv(w)] • [y 7→ henv(w)] • [z 7→ henv(henv(w).g)] by
(w0⊗w1)⊗w2, and λhenv.henv•[henv(x).f 7→ henv(w)]•[y 7→ henv(w)]•[z 7→ ⊤obj]
by w0 ⊗ (w1 ⊗ w2).

Remark 4.11 The points-to analysis presented above is flow-sensitive. It is easy
to obtain parameterized flow-sensitivity as a hierarchy by loosening the following
dimensions in the weight space design, (i) whether the points-to target of a reference
is changed by a new assignment on it. For this purpose, • is reinterpreted as the
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union extension on maps for all references; and (ii) whether the ordering of the
composition of heap environment transformers is kept on a sequence of program
codes. Apart from (i), the ⊗e operation on weights w1, w2 is extended as w1 ⊗e w2

= {λhenv.henv • p1 ⊗ p2(henv) • p2 ⊗ p1(henv) | p1 ∈ w1, p2 ∈ w2}.
Definition 4.12 For a program starting with the entry point l0 ∈ Loc, let W =
(P, Se, f) be the weighted pushdown system encoded from it by Definition 2.6, and
let Ret be the set of return points introduced for method invocations. The points-to
analysis on the reference r ∈ Vref at the program point l ∈ Loc ∪ Ret is defined as

pta(r, C) = evalabs(δ(c, C)(hinit), r)

where δ(c, C) is from Definition 2.5 with c = 〈·, l0〉 and C = 〈·, l.(Ret)∗〉.

We take C = 〈·, l.(Ret)∗〉 to represent all possible pushdown configurations as
an approximation, when l is the top-most stack symbol. Therefore, pta computes
points-to information along all paths leading from the program’s entry point to the
program point l of concern.

4.2 Soundness

Since ⊕ operation conservatively combines all possible dataflow in the analysis, we
turn to the following two steps to show that our analysis is sound (Theorem 4.18),
(i) the analysis on any sequential execution path infers sound points-to results based
on abstract interpretation (Theorem 4.16), and (ii) if some control flow is removed
during the analysis, it is invalid indeed in the concrete execution, which is witnessed
by Lemma 4.17.

Definition 4.13 Let type : O → T and loc : O → Loc be functions that return
the type and the allocation site of a heap object, respectively. The abstraction
on heap objects α : O → Obj is defined as follows,

• α(o) = (t, l) for o ∈ O \ {⊤o,⊥o}, t = type(o) ∈ T , l = loc(o) ∈ Loc; and
• α(⊤o) = ⊤obj and α(⊥o) = ⊥obj

The concretization is denoted by γ = α−1 : Obj→ P(O). The powerset extensions
of α and γ are denoted by αo : P(O) → P(Obj) and γo : P(Obj) → P(O).

Definition 4.14 For the program entry l0 and the program point l ∈ Loc ∪ Ret,
let 〈l0, hinit〉 →∗ 〈l, henv〉. For r ∈ Vref at l and C = 〈·, l.(Ret)∗〉, pta(r, C) is sound
if α0(evalcon(henv, r)) ⊆ pta(r, C).

Definition 4.15 For abstract environment transformers f1, f2 ∈ ExpFun, x ∈ Vref

and henv ∈ Henvabs, f1 < f2 if evalabs(f1(henv), x) ⊇ evalabs(f2(henv), x).

Theorem 4.16 For a Jimple statement s ∈ Stmt, let f be the heap environment
transformer of s, and fabs be the abstract heap environment transformer of s. Then,
fabs < αo ◦ f ◦ γo.

Theorem 4.16 is proved by a case analysis on the Jimple statement s.
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Lemma 4.17 For w1, w2 ∈ D, and (τ, c) ∈ w1, (τ ′, c′) ∈ w2, henv ∈ Henvabs, and
(s, t ↑ m) ∈ c′, ⋃

s′∈trace(τ,s)

evalabs(henv, s′) ⊇ evalabs(τ(henv), s)

Lemma 4.17 says that, the result of back-tracing by trace soundly comprise
all the contributed path constraints. As illustrated in Figure 2, the analysis is
performed on an operational transition sequence, where “• −→ •” represents an
operational transition in one step, and w1 and w2, respectively, denote the resulting
weight by composing transitions marked with the dotted line. By Lemma 4.17,
to check the points-to targets of s on τ(henv) amounts to check that of all s′ ∈
trace(τ, s) on henv.

henv τ(henv) τ ′ ◦ τ(henv)
b b b b b b

(τ,c)∈w1
(τ ′,(s,t↑m))∈w2

Fig. 2. Sound Tracing on Path Constrains

Theorem 4.18 (Soundness) For r ∈ Vref at l ∈ Loc ∪ Ret and C = 〈·, l.(Ret)∗〉,
pta(r, C) is sound.

4.3 Prototype Implementation

We implemented the analysis algorithm as a prototype in the Soot framework. As
shown in Figure 3, it starts off preprocessing from Java sources (or bytecode) to
Jimple codes by Soot. Soot provides facilities of call graph construction and points-
to analysis at various levels of precision. We borrow the most imprecise analysis
CHA (Class Hierarchy Analysis) [21] to produce a preliminary call graph for the
ahead-of-time analysis. A weighted pushdown system designed for the ahead-of-
time points-to analysis is then constructed from the Jimple code. The analysis
is finally performed by calling the Weighted PDS Library on the model, during
which the invalid control flows are removed from the analysis results on-demand.
Note that, during the encoding of programs as a weighted pushdown system, extra
variables will be introduced in RefVar to denote formal parameters and return
values of reference type. For program statements whose execution does not change
heap states, their corresponding heap environment transformers are thus identity
function λhenv.henv, such as the conditional branching statement.

Definition 3.5 defines rules for judging whether a type t conflicts or
compatible with a type t′. For simplicity at the first stage, the case (ii) is not
provided in the prototype implementation and will be included in the later ver-
sion. The right-hand-side of Figure 3 shows the points-to result of analyzing
Example 1.1. The analysis returns two abstract heap environment transformers.
f1 gives the precise dataflow summary of this program following the control flow
“4 → 9 → 15 → 6 → 9 → 20”, which precisely infers that {o3 7→ o15, o5 7→ o20}. f0

is a dataflow summary of the invalid call path “6 → 9 → 15” due to excluding the
case (ii) above.
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Fig. 3. The Prototype Framework and Running Profiles

5 Related Work

Points-to analysis for Java has been an active field over the past decade. We limit
our discussion primarily to recent advances especially related to context-sensitive
points-to analysis.

One of the pioneer work in this field is Andersen’s points-to analysis for C [13]. It
is a subset-based, flow-insensitive analysis implemented via constraint solving, such
that object allocations and pointer assignments are described by subset constraints,
e.g. x = y induces pta(y) ⊆ pta(x). The scalability of Andersen’s analysis has been
greatly improved by more efficient constraint solvers [14,15]. Andersen’s analysis
was introduced to Java by using annotated constraints [16].

Reps, et al. present a general framework for program analysis based on CFL-
reachability [11]. A points-to analysis for C is shown by formulating pointer assign-
ments as productions of context-free grammars. Borrowing this view, Sridharan,
et al. formulated Andersen’s analysis for Java in a demand-driven manner [17].
The analysis targets on applications with small time and memory budgets. A key
insight of their algorithm is that a field read action is supposed to be preceded by
a field write action, so-called balanced-parentheses problem. An improved context-
sensitive analysis is later proposed by refining call paths as a balanced-parentheses
problem as well [18]. The lost precision is retained by further refinement procedures.
The demand-driven strategy, as well as the refinement-based algorithm makes this
analysis scale.

A scalable context-sensitive points-to analysis for Java is presented in [19]. Pro-
grams and analyses are encoded as the set of rules in logic programs Datalog. The
context-sensitivity is obtained by cloning a method for each calling context, and by
regarding loops as equivalent classes. The BDD (Binary Decision Diagram) based
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implementation, as well as approximation by collapsing recursions, make the anal-
ysis scale. As shown in [5], there are usually rich and large loops within the call
graph, and thus much precision is lost by collapsing loops.

Spark[23] is a widely-used testbed for experimenting with points-to analysis for
Java. It supports both equality and subset-based analysis, provides various algo-
rithms for call graph construction (such as CHA, RTA, and an on-the-fly algorithm),
and enables variations on field-sensitivity. The BDD-based implementation of the
subset-based algorithms further improves the efficiency of operations on points-to
sets [24]. Our analysis also borrows its CHA for a preliminary call graph. A recent
empirical study compares precision of subset-based points-to analyses with various
abstractions on context-sensitivity [5].

One stream of research examines calling contexts in terms of sequences of objects
on which methods are invoked, called object-sensitivity [20]. Similar to call-site
strings based approach, the sequence of receiver objects can be unbounded and
demands proper approximations, like k-CFA [6]. [5] also concludes that a context-
sensitive points-to analysis in terms of object-sensitivity excels at precision and is
even more likely to scale by experimental studies.

Concerning scalability for context-sensitive points-to analysis, some analysis uti-
lizes BDD as the underlying data structure [23,19], others only compute results that
sufficiently meet the client’s needs, so-called client-driven and demand-driven man-
ner [4,18]. These strategies are also applicable to our analysis in this paper.

6 Conclusions

This paper presents context-sensitive points-to analysis for Java as all-in-one
weighted pushdown model checking. The notion of valid paths are enriched such
that dataflow along each valid path need further satisfy type requirements for dy-
namic dispatch. The ahead-of-time analysis is formalized as one run of weighted
pushdown model checking, which enjoys context-sensitivities regarding both call
graph and valid paths. The proposed points-to analysis is implemented as a proto-
type, with Soot as the preprocessor from Java to Jimple and Weighted PDS library
as the model checking engine.

The time complexity in general case specific to our analysis is Θ(|∆| · |D| · |T⊕| ·
|T⊗|). |D| is the cardinality of the weight space. |∆| is up to the program size by
encoding. |T⊕| and |T⊗| are the prices for each weight operation. At present, the
tentative experiments are restricted to small examples, due to the weight package is
implemented based on linked list for a fast prototyping. Our next step is to prepare
a weight package based on CrocoPat [26], a high level BBD package.
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Abstract

In an earlier work, a termination analyzer for Java bytecode was developed that translates a Java bytecode
program into a constraint logic program and then proves the termination of the latter. An efficiency
bottleneck of the termination analyzer is the construction of a proof of termination for the generated
constraint logic program, which is often very large in size. In this paper, a set of program simplifications are
presented that reduce the size of the constraint logic program without changing its termination behavior.
These simplifications remove program clauses and/or predicate arguments that do not affect the termination
behavior of the constraint logic program. Their effect is to reduce significantly the time needed to build the
termination proof for the constraint logic program, as our experiments show.
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1 Introduction

Termination analysis attempts to prove that programs terminate. Since termina-
tion of Turing-equivalent programming languages is undecidable [18], termination
analysis only succeeds for a (hopefully large) class of programs, although many
terminating programs are not proved to terminate. Despite this limitation, it is in-
creasingly important in software technology, since proofs of termination add value
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to software downloaded from insecure networks into computers or cellular phones:
the user wants a proof that that software will actually terminate and yield a result
or otherwise he will not use it and pay for it.

Termination analyses have been developed for logic [8,10,7], functional pro-
grams [14] and term rewrite systems [11], whose semantics is relatively simple and
well understood. More recently, termination analysis has been applied to imperative
programs, dealing with primitive values only [9,15], lists [13,6,5,4] or any dynamic
data-structure [17]. In all cases, termination is typically proved by showing that
some well-founded measure decreases along loops and recursion, so that divergence
cannot occur. This measure can be the value of a variable of primitive type, the
length of a list, the maximal path of pointers reachable from a given variable [16]
or a mix of such values. When generic data structures are considered, the shape of
the computer memory must be somehow approximated, since destructive updates
mute dynamic data through shared pointers. Possibly cyclical data structures must
be detected, since iterations over them might diverge.

In [17], a termination analysis is defined working for any sequential Java bytecode
program [12], dealing with any dynamic data structure, possibly cyclical and shared.
Since Java is compiled into Java bytecode, that technique can also be used for
termination analysis of Java. It works by translating the Java bytecode program
into a constraint logic program (CLP) expressing size relationships between program
variables at different program points. It has been proved in [17] that if the CLP
program terminates then the original Java bytecode program terminates. Hence
all techniques for termination analysis of CLP can be used to prove termination of
Java and Java bytecode. In [17], the BinTerm termination prover is used to that
purpose. Experiments scale to programs of up to 1000 methods. Although this is
already an impressive result, it must be acknowledged that the analysis is expensive
in terms of the time needed to build the proof of termination.

In this paper we contribute to the termination analysis of Java and Java bytecode
programs. Namely,

• we present a set of simplifications of the CLP programs generated by the ter-
mination analysis in [17]. They transform the program by removing clauses or
variables, yet preserving its behaviour w.r.t. termination;

• we prove those transformations correct;
• we experiment with those transformations and show them effective: they reduce

by orders of magnitude the cost of finding a termination proof for the CLP pro-
grams.

These techniques are now embedded in the termination prover for Java bytecode
available at the address http://julia.scienze.univr.it/termination.

Although some of our simplifications are, often implicitly, used in the termination
analysis of programs, this is not the case for others. Namely, the restriction to only
those clauses that form a loop in the code (Subsection 4.1) cannot be applied to
other frameworks, such as the termination analysis of logic programs, since one
needs the removed clauses there, in order to take care of instantiation patterns due
to the presence of logical variables (which do not exist in our setting). Also the
simplifications based on removing variables which are irrelevant for termination are
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public class List<X> {
private X head; private List<X> tail;
public List(X[] values) { this(values,0); }
public List(X h, List<X> t) { head = h; tail = t; }
private List(X[] values, int l) {

while (l < values.length && values[l] == null) l++;
if (l < values.length) {

this.head = values[l];
if (l + 1 < values.length)

this.tail = new List<X>(values,l + 1);
}

}
public List<X> append(List<X> other) {

if (tail == null) return new List<X>(head,other);
else return new List<X>(head,tail.append(other));

}
public void afterInteger() { afterIntegerAux(false); }
private void afterIntegerAux(boolean wasInteger) {

if (head instanceof Integer) {
if (tail != null) tail.afterIntegerAux(true);

} else {
if (tail != null) tail.afterIntegerAux(false);
if (wasInteger) head = null;

}
}
public String toString() {

if (tail == null) return "* ";
else if (head instanceof Integer) return "* " + tail.tail.toString();
else return "* " + tail.toString();

}
public static void main(String[] args) {

Object[] vs = { new Object(),3,3.14,null,new List<Integer>(3,null) };
List<Object> list1 = new List<Object>(vs);
List<Object> list2 = new List<Object>(vs);
list2.afterInteger();
String s = list1.append(list2).toString();

}
}

Fig. 1. An example Java program.

new (Subsection 4.4). Moreover, we present all such simplifications together and
prove them correct in a uniform setting, which was not the case before. Furthermore,
we experiment with their effects on the termination analysis of real, large software,
which was never the case before; in particular, those simplifications have never been
applied to the termination analysis of Java bytecode.

2 Our Running Example

Consider the Java program in Figure 1. It implements a generic list of elements of
type X. Two constructors are available. The first builds a list from head and tail;
the second builds recursively a list from an array. The method append concatenates
two lists this and other. The method afterInteger writes null after all elements
of the lists of type Integer. Method toString() yields a String representing the
list elements as asterisks, but does not represent the elements that follow an object
of type Integer. All these methods are recursive. Method main builds some lists
and calls the previous methods.

We compile this program into Java bytecode and analyse the bytecode as in [17].
Our system tells us that the program terminates. We refer to [17] for the detailed
description of how our system works. Here, we briefly give an intuition. First, the
Java bytecode is transformed into a graph of basic blocks [1], as done in Figure 2 for
method append. Recursion is made explicit by linking each method call to the be-
ginning of the called method(s), as we do for block 6560 in Figure 2. The makescope
τ pseudo-bytecode creates the activation stack for a method with arguments of type
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τ . The catch pseudo-bytecode marks the beginning of a default exception handler
which throws back all exceptions to the caller. Bytecodes inside each block are ab-
stracted into a linear constraint c over-approximating the path-length of each local
variable and stack element at its beginning and at its end [16]. For instance, for block
6391 we have c = {IS0− OS1 = 0, IL1− OS4 = 0, IS0− OS0 = 0, IL1− OL1 = 0,
IL0− OL0 = 0, OS3 ≥ 0, OS2 ≥ 0, IL0− OS3 ≥ 1, IL0− OS2 ≥ 1}. The variables ISn
stand for the path-length of the nth stack element at the beginning of the block;
OSn for their path-length at the end of the block; ILn and OLn are the same for the
nth local variable. This constraint is then used to build CLP clauses. In principle,
there is a CLP clause for each arrow in the graph of basic blocks. Let blocki be
a predicate expressing the path-length of the variables in scope at the beginning of
block i. Its arity depends on which local variables and stack elements are in scope
at the beginning of block i. We build clauses

block6391(IL0, IL1, IS0) : −c, block6392(OL0, OL1, OS0, OS1, OS2, OS3, OS4).

block6391(IL0, IL1, IS0) : −c, block6560(OL0, OL1, OS0, OS1, OS2, OS3, OS4).
(1)

since two arrows connect block 6391 with blocks 6392 and 6560. Two local variables
L0 and L1 are in scope there (L0 implements this and L1 implements other). At
the beginning of block 6391 there is only one stack element S0, while there are 5 at
its end. Those clauses form a CLP program whose termination entails that of the
original Java bytecode program [17]. The clauses of that program have exactly one
predicate on their right.

Although the program in Figure 1 is relatively small, the number of arrows in
its graph of basic blocks is quite large: the resulting CLP program consists of 297
clauses. The aim of the present paper is to introduce simplification techniques for
such CLP programs which shorten the termination proofs. Next sections formalize
our notion of CLP programs and show how these programs can be simplified.

3 CLP over Linear Integer Constraints

We formalise here the CLP programs of the previous section. Namely, they are
sets of predicates, each defined by a set of clauses. We require that predicates are
named blockx or entryx. Predicates are not distinguished by their arity. That
is, two different predicates must be distinct identifiers. For our purposes, clauses
arise from arrows in the graph of basic blocks, so we can assume them to have the
form p(i) :- c, q(o), where i and o are disjoint sequences of distinct variables and
c is a linear integer constraint on i and o. This is similar to [8] and more general
than [3], where binary clauses express size-change graphs, although a more limited
form of constraints is used there. Each local variable or stack element v in the
bytecode program induces an input variable iv and an output variable ov in the
CLP program. The sequence i consists of only input variables and o of only output
variables. For each clause in the program, we refer to three sets of variables V , I

and O; they are the sets of bytecode variables, induced input variable and induced
output variables, respectively.
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calls from other methods

block 6386

load 0 of type List

getfield private List.tail:List

block 6396

if_null List

new List

block 6387

if_nonnull List

new List

block 6399

call List(Object,List)

block 6400

return List

block 6388

catch

block 6559

makescope List,Object,List

code of public List(Object,List)

block 6398

dup List

load 0 of type List

getfield private List.head:Object

load 1 of type List

block 6389

throw Throwable

block 6391

dup List

load 0 of type List

getfield private List.head:Object

load 0 of type List

getfield private List.tail:List

load 1 of type List

block 6560

makescope List,List

block 6392

call List.append(List):List

block 6394

call List(Object,List)

block 6393

catch

block 6395

return List

Fig. 2. The basic blocks for the method append in Figure 1.

Definition 3.1 [Valuation] A valuation θ is a map from a finite set of variables into
integers. Let v = v1v2 · · · vk be a sequence of variables and val = val1val2 · · · valk ∈
Zk. We write [v1 7→ val1, . . . , vk 7→ valk] or [v 7→ val ] for the valuation θ which is
such that θ(vi) = val i for all i = 1, . . . , k and is undefined elsewhere. Let c be a
constraint; then cθ is c where each variable v is replaced by θ(v). This notation is
extended to any syntactical object, such as sequences of variables and predicates.
The valuation θ is a solution of c if cθ is equivalent to true. Let p be a predicate;
then c[p(v) 7→ p(val)] stands for c[v 7→ val]. 2
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We define now the operational semantics for CLP over linear integer constraints.
It expresses the fact that variables stand for the path-length of concrete data struc-
tures in the memory of the system and hence can be undefined but not free, in the
sense of logic programming.

Definition 3.2 [Operational Semantics of our CLP Language] Let p, q be
predicates and m, n ∈ Z∗. We say that q(n) is derived from p(m) using clause
C = (p(i) :- c, q(o)), written p(m) →C q(n), if there is a solution θ of c[i 7→ m]
such that q(n) = q(o)θ. Clause C in p(m) →C q(n) is often omitted unless nec-
essary. A derivation of p0(n0) is p0(n0) → p1(n1) → · · · → pk(nk) such that
pi+1(ni+1) is derived from pi(ni) for all 0 ≤ i < k. A resolution is a maximal
derivation. 2

The above operational semantics lets us formalise the notion of termination. It
uses a partition of the predicates of the program in strongly-connected components.
Namely, for every clause p(i) :- c, q(o), we let p ≤ q. Then predicates p0 and
p1 belong to the same strongly-connected component if and only if p0 ≤∗ p1 and
p1 ≤∗ p0 where ≤∗ is the reflexive and transitive closure of ≤. This means that
they are part of the same loop. A predicate q is an entry if it occurs in a clause
q(n) :- c, s(m) with q and s in the same strongly-connected component (i.e., in a
loop) and also in a clause t(v) :- c, q(w) with q and t in different strongly-connected
components. We assume that entries are named entryx. From now on, when we
say that a predicate is an entry of a CLP program, we mean that its name is entryx
for some x.

Definition 3.3 [Termination] An entry p terminates in a program P if, for every
n ∈ Z∗, all resolutions of p(n) by using the clauses of P , with predicates in the
strongly-connected component of p, are finite. Otherwise, p is said to diverge. Let
P1 and P2 be programs. P1 terminates more than P2, and we write P1 ⊒ P2,
if whenever an entry of P1 terminates in P1, it also terminates in P2. They are
termination-equivalent, and we write P1 ≡ P2, if P1 terminates more than P2 and
vice versa. 2

Note that if p is not defined in P then it terminates in P since its derivations
have length 1. The notion of P1 terminating more than P2 entails that a proof of
termination for the predicates of P2 is also a proof of termination for the predicates
of P1.

Definition 3.3 formalizes a loop-local termination. This means that an entry
terminates if it terminates by using the predicates of the loop where it occurs. This
is importamnt to report a feedback to the user about which loop of which method
might introduce the non-termination, without considering entries that diverge just
because the computation, after executing the loop where the entry occurs, continues
into another loop that diverges. Entries can also be used to improve the precision
of the analysis by computing call-patterns from them to the other blocks [17]. We
do not discuss this optimization here.

Next section presents a set of program transformations that simplify a CLP
program P into a smaller program Ps. It will always be the case that P and Ps are
termination-equivalent.
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4 Program Simplifications

4.1 Removing clauses outside loops

In graphs such as that in Figure 2, arrows outside loops cannot be executed during a
divergent computation, which stays inside the same strongly-connected component
of the entry where it is started (Definition 3.3). Hence it seems reasonable to remove
any clause that is not part of a loop i.e., such that its head and tail do not belong
to the same strongly-connected component of blocks. For instance, only the second
clause in (1) is generated.

The following result formalizes of well-known technique used in many termi-
nation analyzers. It allows us to prove termination for the loops of the program.
A clause p(n) :- c, q(m) occurs in a loop if p and q are inside the same strongly-
connected component of predicates.

Proposition 4.1 (Correctness of clauses outside loops removal) Let P be a
program and Ps be the same program deprived of those clauses that do not occur in
a loop. Then P ≡ Ps. 2

Proof. We have Ps ⊒ P since Ps ⊆ P . It remains to prove P ⊒ Ps. Programs P

and Ps have the same set of entries. Let q be an entry. If q terminates in P then
it terminates in Ps since the latter has less clauses than P . If q diverges in P then
there is an infinite derivation using only predicates inside the strongly-connected
component of q. Hence only clauses in Ps are used by that derivation, so that q

diverges in Ps. 2

If we apply this simplification to the CLP program derived from the Java pro-
gram in Figure 1, the number of clauses decreases from 297 to 12 and the time
needed to prove all the entries terminating is 2.72 seconds.

Because of this simplification, from now on we assume that each predicate is
only used in its strongly-connected component. Hence termination according to
Definition 3.3 corresponds, from now on, to termination by using all the clauses of
the program.

4.2 Removing clauses by unfolding

If a program contains clauses p(m) :- c1, q(n) and q(v) :- c2, s(w), we can unfold
them into the clause p(m) :- c1 ∧ c2 ∧ n = v, s(w) (we assume without loss of
generality that clauses are renamed so that they do not share variable). If this is
done systematically, for all occurrences of q on the right of the clauses of P , and
the clauses defining q are later removed, we say that we unfold q away from P .
The result is a program with less predicates but potentially more clauses than P .
However, subsequent simplifications will usually remove most of them, so that this
simplification is useful in practice.

Proposition 4.2 (Correctness of unfolding away of a predicate) Let P be a
program and q a non-entry predicate in P with no clause of the form q(n) :- c, q(m).
Let Ps be P where q has been unfolded away. Then P ≡ Ps. 2
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Proof. Programs P and Ps have the same set of entries. Let p be an entry of
Ps. If p diverges in Ps then there is an infinite derivation d for p in Ps. Some
steps of this derivation might use clauses derived from unfolding r(m) :- c1, q(n)
with q(v) :- c2, s(w). We can replace those steps in d with two steps using those
two clauses instead. The result is an infinite derivation for p that uses clauses of
P . Hence p diverges in P . Conversely, if p diverges in P then there is an infinite
derivation d for p in P . If a clause such as r(m) :- c1, q(n) is used during that
derivation, then the subsequent step must use a clause of the form q(v) :- c2, s(w).
Hence those two steps can be merged in d into a unique step that uses the unfolded
clause r(m) :- c1 ∧ c2 ∧n = v, s(w). The resulting infinite derivation does not refer
to q anymore and uses clauses in Ps. Hence p diverges in Ps. 2

Note that Proposition 4.2 does not allow us to unfold away the entries to loops,
whose termination is used to tell if each given loop terminates.

If we apply this simplification to the CLP program obtained at the end of Sub-
section 4.1, the number of clauses decreases from 12 to 8 and the time needed to
prove all the entries terminating goes down from 2.72 to 1.48 seconds (including the
time for unfolding).

4.3 Removing unsupported or subsumed clauses

By removing unsupported clauses i.e., clauses that call undefined predicates, we
maintain the termination-equivalence of programs, since unsupported clauses cannot
be used to build an infinite derivation.

Example 4.3 Let P = {C1, C2, C3} with C1 = (entry1(ix) := ix = ox, q(ox)),
C2 = (q(ix) :- ix = ox+1, entry1(ox)) and C3 = (q(ix) :- ix ≥ ox, r(ox)). Predicate
r is not defined in P and hence clause C3 is unsupported. Thus P is termination-
equivalent to P ′ = {C1, C2}. 2

Proposition 4.4 (Correctness of unsupported clause removal) Let P be a
program and Ps be P deprived of unsupported clauses. Then P ≡ Ps. 2

Proof. Any divergent resolution in Ps is also a divergent resolution in P since Ps

has less clauses than P . Any divergent resolution in P is also a divergent resolu-
tion in Ps since a divergent resolution in P cannot use any unsupported clause, or
otherwise it would be finite. 2

Another simplification consists in removing subsumed clauses (see also [8]). Let
for instance C1 = (p(i) :- c1, q(o)) and C2 = (p(i) :- c2, q(o)). We say that C2

subsumes C1 iff c1 |= c2 (c1 entails c2). Note that C1 and C2 only differ in the
constraint part.

Example 4.5 The program obtained at the end of Subsection 4.2 contains clauses

entry3899(IL0):-OL0 >= 0,IL0 - OL0 >= 1,IL0 >= 2,entry3899(OL0).
entry3899(IL0):-OL0 >= 0,IL0 - OL0 >= 2,entry3899(OL0).

The second clause subsumes the first which can hence be removed. 2

Proposition 4.6 (Correctness of subsumed clause removal) Let P be a pro-
gram and Ps be P deprived of subsumed clauses. Then P ≡ Ps. 2
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Proof. Any divergent resolution in Ps is also a divergent resolution in P since
Ps has less clauses than P . Hence it is enough to prove that for any divergent
resolution in P there is a divergent resolution in Ps. To that purpose, we prove that
if C1 = (p(i) :- c1, q(o)) is subsumed by C2 = (p(i) :- c2, q(o)) then p(m) →C1 q(n)
implies p(m) →C2 q(n) for any p, q, m and n, which entails that any derivation
step using C1 can be replicated by using C2. Assume hence that p(m) →C1 q(n).
Then there is a solution θ of c1[i 7→ m] such that n = oθ. Since c1 |= c2, θ is also
a solution of c2[i 7→ m] and hence p(m) →C2 q(n). 2

If we apply these simplifications to the CLP program obtained at the end of
Subsection 4.2, the number of clauses decreases from 8 to 7 and the time needed
to prove all the entries terminating goes down from 1.48 to 1.25 seconds (including
the time to apply all the simplifications discussed up to now).

4.4 Removing variables

By removing an argument from the clauses of a CLP program, the time needed to
build a termination proof of the program decreases, since less arguments means less
variables in the data structure implementing the linear constraints and hence better
efficiency. Moreover, by removing variables there are chances that distinct clauses
get merged because one subsumes another (Subsection 4.3).

Let c be a constraint and let cv = ∃−{iv,ov}.c and c−v = ∃{iv,ov}.c. The constraint
cv is the v-dedicated part of c since it constrains variables iv and ov only; the
constraint c−v is the v-independent part of c since it does not constrain iv nor ov

but only the other variables. Let us define an operation that removes a variable
from a predicate, thus reducing its arity:

p(iv1, . . . , ivn)⊖ v =

{
p(iv1, . . . , ivi−1, ivi+1, . . . , ivn) if v ≡ vi

p(iv1, . . . , ivn) otherwise.

Let us define p(ov1, . . . , ovn)⊖ v similarly. The transformation

Comp−v = {p(i)⊖ v :- c−v, q(o)⊖ v | p(i) :- c, q(o) ∈ Comp}

removes v from a strongly-connected component Comp.
Removal of a variable from a strongly-connected component preserves divergent

entries but might introduce more divergent entries.

Proposition 4.7 Let p0 be an entry diverging in Comp. Then p0 also diverges in
Comp−v. 2

Proof. Since p0 diverges in Comp, there is an infinite resolution

p0(n0) → p1(n1) → p2(n2) → · · · → pk(nk) → · · ·

with pj(ij) :- cj , pj+1(oj) ∈ Comp, pj+1(nj+1) = pj+1(oj)θj and θj solution of
cj [ij 7→ nj ]. Hence pj(ij)⊖ v :- c−v

j , pj+1(oj)⊖ v ∈ Comp−v and θj is a solution of
c−v
j [ij 7→ nj ] since cj |= c−v

j . Then θj is a solution of c−v
j [pj(ij)⊖ v 7→ pj(nj)⊖ v]
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since c−v
j is v-independent. Thus,

(pj+1(oj)⊖ v)θj = pj+1(oj)θj ⊖ v = pj+1(nj+1)⊖ v

and we can build the following infinite resolution of p0(n0)⊖ v in Comp−v

p0(n0)⊖ v → p1(n1)⊖ v → p2(n2)⊖ v → · · · → pk(nk)⊖ v → · · ·

so that p0 diverges in Comp−v. 2

In general, Comp is not termination-equivalent to Comp−v.

Example 4.8 Consider the strongly-connected component

Comp =

 entry1(ix, iy) :- ix ≥ 0, oy = ix, ox = iy, q(ox, oy)

q(ix, iy) :- ox = iy − 1, oy = ix, entry1(ox, oy)


The entry entry1 terminates in Comp since the value of x decreases in every two
other step and is bounded from below by 0. By removing x from Comp we get

Comp−x =

 entry1(iy) :- true, q(oy)

q(iy) :- true, entry1(oy)


Now entry1 does not terminate in Comp−x. 2

The following subsections identify special cases when removal of a variable main-
tains the termination-equivalence. A common condition is that the variable is iso-
lated from other variables.

Definition 4.9 A variable v is isolated in a strongly-connected component Comp

if, for every clause p(i) :- c, q(o) ∈ Comp, we have c = cv ∧ c−v. 2

Example 4.10 Neither x nor y is isolated in the component Comp of Example 4.8.
Instead, both x and y are isolated in the component

Comp =

 entry1(ix, iy) :- ix ≥ 0, ox = ix, oy = iy − 1, q(ox, oy)

q(ix, iy) :- ox = ix− 1, oy = iy, entry1(ox, oy)


2

4.5 Removing right-open/left-open variables

In this subsection we show a first example of a removal of variables for which the
converse of Proposition 4.7 holds.

Definition 4.11 [Right or left-open variable] An isolated variable v in a strongly-
connected component Comp is right-open if, for every p(i) :- c, q(o) ∈ Comp, we
have that cv is either true or iv = ov, or ov ≥ const , ov = const or ov ≤ const (or
equivalent) , where const is an integer constant. Left-openness is defined analogously
by switching ov with iv in the definition of right-openness. 2
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Example 4.12 The program obtained at the end of Subsection 4.3 contains the
component

entry3880(IL0,IL1):-IL1 - OL1 = 0,OL0 >= 0,IL0 >= 2,IL0 - OL0 >= 1,
entry3880(OL0,OL1).

where variable L1 is both left- and right-open and can hence be removed obtaining
the component

entry3880(IL0):-OL0 >= 0,IL0 >= 2,IL0 - OL0 >= 1,entry3880(OL0).

L1 would still be left-open if there were an extra constraint IL1 >= 3. It would not
be left-open anymore if there were also an extra constraint OL1 >= 7. 2

Consider a resolution of p0(n0) in a strongly-connected component Comp where
v is right-open. Let p(ij) :- cj , q(oj) be the clause used at the jth resolution step.
If cv

j is iv = ov then the jth step simply copies the value of v from pj to pj+1.
Otherwise, the value of v in pj is not related to that in pj+1: any value satisfying
the v-dedicated part cv

j of cj may be picked up for v in pj+1; such a value exists
always due to the limited form of cv

j . This means that v does not contribute to the
termination of the predicates in Comp and can hence be removed. This is formally
proved below.

Proposition 4.13 (Correctness of left- or right-open variable removal) Let
v be right- or left-open in a strongly-connected component Comp. If an entry di-
verges in Comp−v then it diverges in Comp. 2

Proof. We only prove the case when v is right-open. The case when v is left-open is
symmetrical. Let hence p0 be a divergent entry in Comp−v. Then there is m0 ∈ Z

and an infinite resolution of p0(m0) in Comp−v, which we write as

d0 →C0 d1 →C1 d2 →C2 · · · → dℓ →Cℓ dℓ+1 · · ·

where every clause p(i) ⊖ v :- c−v, q(o) ⊖ v used in each portion dℓ, for ℓ ≥ 0, is
obtained from a clause p(i) :- c, q(o) ∈ Comp with cv = (iv = ov) and each Cℓ

is obtained from a clause C ′
ℓ = (pℓ(iℓ) :- cℓ, qℓ(oℓ)) ∈ Comp with cv

ℓ different from
iv = ov. Let xℓ ∈ Z be such that, for every ℓ > 0, {ov 7→ xℓ+1} is a solution of
cv
ℓ (hence x0 is completely free). Let p(m) be a call in Comp−v and x ∈ Z. Then

we define p(m)⊕v [x] as the call in Comp obtained from p(m) by putting x at the
position for v in the predicate p of Comp. It suffices to prove that there is an infinite
resolution of p0(m0)⊕v [x0] in Comp. Assume that

dℓ = (pℓ,0(mℓ,0) → · · · pℓ,j(mℓ,j) → pℓ,j+1(mℓ,j+1) · · · → pℓ,fℓ
(mℓ,fℓ

))

with p0,0 = p0 and m0,0 = m0. Let pℓ,j(nℓ,j) = pℓ,j(mℓ,j)⊕v [xℓ] for each 0 ≤ j ≤ fℓ.
Since pℓ,j(mℓ,j) → pℓ,j+1(mℓ,j+1), there is pℓ,j(i) :- (iv = ov)∧ c, pℓ,j+1(o) ∈ Comp

such that pℓ,j(i) ⊖ v :- c, pℓ,j+1(o) ⊖ v ∈ Comp−v and there is a solution θ of
c[pℓ,j(i) ⊖ v 7→ pℓ,j(mℓ,j)] such that pℓ,j+1(mℓ,j+1) = (pℓ,j+1(o) ⊖ v)θ. Since c is
v-independent, θ ∪ {iv 7→ xℓ, ov 7→ xℓ} is a solution of (iv = ov) ∧ c[i 7→ nℓ,j ] and
(θ ∪ {iv 7→ xℓ, ov 7→ xℓ})(pℓ,j+1(o)) = (pℓ,j+1(o) ⊖ v)θ ⊕v [xℓ] = pℓ,j+1(mℓ,j+1) ⊕v
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[xℓ] = pℓ,j+1(nℓ,j+1). Thus, pℓ,j(nℓ,j) → pℓ,j+1(nℓ,j+1) for 0 ≤ j ≤ fℓ − 1 and

d′ℓ = (pℓ,0(nℓ,0) → · · · pℓ,j(nℓ,j) → pℓ,j+1(nℓ,j+1) · · · → pℓ,fℓ
(nℓ,fℓ

))

is a derivation in Comp. We show now that pℓ,fℓ
(nℓ,fℓ

) →C′
ℓ pℓ+1,0(nℓ+1,0) so that

we obtain an infinite resolution d′0 → d′1 → · · · d′ℓ → d′ℓ+1 → · · · in Comp. Since
pℓ,fℓ

(mℓ,fℓ
) →Cℓ pℓ+1,0(mℓ+1,0), we know that pℓ = pℓ,fℓ

, qℓ = pℓ+1,0 and there
is a solution θ of c−v

ℓ [pℓ(iℓ) ⊖ v 7→ mℓ,fℓ
] such that qℓ(mℓ+1,0) = (qℓ(oℓ) ⊖ v)θ.

Then θ ∪ {iv 7→ xℓ, ov 7→ xℓ+1} is a solution of c−v
ℓ [iℓ 7→ nℓ,fℓ

], since c−v
ℓ is v-

independent, and it is also a solution of cv
ℓ [iℓ 7→ nℓ,fℓ

] and hence of cℓ[iℓ 7→ nℓ,fℓ
]

since cv
ℓ [iℓ 7→ nℓ,fℓ

] = cv
ℓ [iv 7→ xℓ] = cv

ℓ and cv
ℓ contains only ov and {ov 7→ xℓ+1} is

a solution of cv
ℓ . Also, qℓ(oℓ)(θ ∪ {iv 7→ xℓ, ov 7→ xℓ+1}) = (qℓ(oℓ)⊖ v)θ⊕v [xℓ+1] =

qℓ(mℓ+1,0)⊕v [xℓ+1] = qℓ(nℓ+1,0). Hence pℓ,fℓ
(nℓ,fℓ

) →C′
ℓ pℓ+1,0(nℓ+1,0). 2

If we apply this simplification to the CLP program obtained at the end of Sub-
section 4.3, the number of clauses goes down from 7 to 6 (because of entailment
checks) and there are less arguments in predicates. The time needed to prove all
the entries terminating goes down from 1.25 to 1.02 seconds (including the time to
apply all the simplifications discussed up to now).

4.6 Removing uniform variables

Even if an isolated variable is neither left-open nor right-open, it can still be removed
when there is a fixed value that can be put in that variable throughout an infinite
resolution. Such a variable is called uniform.

Definition 4.14 [Uniform variable] An isolated variable v is uniform in a strongly-
connected component Comp if there is x ∈ Z such that, for every p(i) :- c, q(o) ∈
Comp, the valuation {iv 7→ x, ov 7→ x} is a solution of cv (note that cv may contain
more than one constraint). 2

Example 4.15 The program obtained at the end of Subsection 4.5 contains the
component:

block3853(IL0,IL1,IL2):-IL2 - OL2 = -1,IL1 - OL1 = 0,IL0 - OL0 = 0,
IL1 - IL2 >= 1,block3853(OL0,OL1,OL2).

block3853(IL0,IL1,IL2):-IL2 - OL2 = -1,IL1 - OL1 = 0,OL0 = 1,
IL1 - IL2 >= 2,entry3849(OL0,OL1,OL2).

entry3849(IL0,IL1,IL2):-IL2 - OL2 = 0,IL1 - OL1 = 0,IL0 - OL0 = 0,
IL0 >= 1,block3853(OL0,OL1,OL2).

By taking x = 1, we conclude that L0 is uniform. 2

Example 4.16 Uniform variables and left- or right-open variables are different
concepts. For instance, variable L0 is uniform in the component of Example 4.15
but it is not left-open nor right-open. Conversely, variable x is left-open in the
component

entry1(ix, iy) :- iy ≥ 0, ox = ix, ix ≥ 3, oy = iy − 1, p(ox, oy)
p(ix, iy) :- ox = ix, ix ≤ 0, oy = iy, entry1(ox, oy)

Bytecode 2009 114 ETAPS 2009, York, UK



but it is not uniform there. 2

This proposition justifies the removal of a uniform variable from a strongly-
connected component.

Proposition 4.17 (Correctness of a uniform variable removal) Let a vari-
able v be uniform in a strongly-connected component Comp. If an entry diverges in
Comp−v then it diverges Comp. 2

Proof. Let x ∈ Z as in Definition 4.14. From an infinite resolution in Comp−v,
we can construct an infinite resolution in Comp by simply inserting x into each call
at the position of variable v. 2

If we apply this simplification to the CLP program obtained at the end of Subsec-
tion 4.5, the number of clauses remains 6 but there are less arguments in predicates.
The time needed to prove all the entries terminating goes down from 1.02 to 0.67
seconds (including the time to apply all the simplifications).

5 Experiments

Figure 3 reports the results of our termination analysis and the effects of our sim-
plifications on the time needed to build a proof of termination for the entries of the
program. Ackermann is an implementation of the traditional Ackermann function.
BubbleSort is an implementation of the bubblesort algorithm on arrays. NQueens
is a program that solves the n-queens problem by using a library for binary decision
diagrams, included in the analysis. JLex is a lexical analyzers generator. Kitten
is a didactic compiler for simple object-oriented programs. Our experiments have
been performed on a Linux machine based on a 64 bits dual core AMD Opteron
processor 280 running at 2.4Ghz, with 2 gigabytes of RAM and 1 megabyte of cache,
by using Sun Java Development Kit version 1.5 and SICStus Prolog version 3.12.8.
For each program, we report the number of methods (without the Java libraries)
and the time for building a proof of termination with the original, unlocalized tech-
nique of [17] and with the successive application of more and more simplifications,
described in this paper (the time for the simplifications is included). The header
of each column reports the subsection where the simplification is described. The
original technique failed to conclude the analysis after 15 minutes for NQueens, JLex
and Kitten. In general, more simplifications means better efficiency. This relation
is not always true. For instance, building a proof of termination for JLex takes
228.51 seconds if only the simplification of Subsection 4.1 is applied. If also the
simplification of Subsection 4.2 is applied, this time increases to 335.85. We explain
this behaviour with the fact that simplifications have a cost. Moreover, when the
program is too complex, BinTerm uses timeouts, which makes the construction of
the proof faster. However, the precision of the proof decreases with the number of
timeouts. Hence, below each program, we report the number of methods proved to
terminate. This number increases with the number of simplifications applied to the
CLP program, since less timeouts are triggered.
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program meth. original 4.1 4.2 4.3 4.5 4.6

Ackermann 5 7.11 0.21 0.21 0.21 0.21 0.21

precision 5 5 5 5 5 5

BubbleSort 5 19.07 1.55 0.71 0.71 0.49 0.49

precision 3 4 5 5 5 5

NQueens 222 - 210.31 156.32 92.29 47.77 34.34

precision - 171 171 171 171 171

JLex 137 - 228.51 335.85 374.82 121.95 81.21

precision - 84 87 102 102 102

Kitten 947 - 200.39 226.79 152.47 93.70 79.35

precision - 811 827 827 827 827

Fig. 3. The termination analyses of some programs. Times are in seconds. The second line (precision), for
each program, reports the number of methods proved to terminate. In the header, we refer to the subsection
where the simplification is described.

6 Conclusion

We have presented techniques for simplifying the CLP programs that are auto-
matically generated during termination analysis of Java bytecode programs. Those
techniques are proved to keep the termination-equivalence of the CLP programs.
Their application to some real case of analysis shows that they decrease the time for
building a proof by some order of magnitude. Moreover, simplified CLP programs
induce less timeouts during the construction of the proof of termination, so that
our simplification techniques actually induce more precise termination analyses.

In [2], useless variables are eliminated from CLP programs expressing cost rela-
tionships for Java bytecode programs. That technique removes most stack variables.
We have verified that almost no stack variable survives after our unfolding of clauses
(Subsection 4.2). Our unfolding can be seen as a CLP view of the simplification
done in [2] from a Java bytecode perspective. On the one hand, as in [2] the
elimination of variables is done earlier, all related static analyses benefit from this
simplification. On the other hand, note that we have a correctness proof for that
simplification and that subsequent simplifications are not related to that in [2].
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Abstract

Many information-�ow type systems have been developed that allow to control the non-interference of
information between the levels of classi�cation in the Bell-LaPadula model. We present here a translation
of typing information collected for bytecode programs to a bytecode program logic. This translation uses
the syntax of a bytecode speci�cation language BML. A translation of this kind allows including the check
of the non-interference property in a single, uni�ed veri�cation framework based on a program logic and
thus can be exploited within a foundational proof-carrying code infrastructure. It also provides a �exible
basis for various declassi�cation strategies that may be useful in a particular code body.
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1 Introduction

The application of formal speci�cation methods at the level of the Java bytecode

has several advantages. (1) This allows to provide descriptions and verify properties

of programs written in the bytecode itself. (2) It allows to do a uni�ed formalised

development for languages other than Java, but compiling to the Java bytecode.

In particular, it allows to conduct a uni�ed formal veri�cation in projects with

several source code languages. (3) Proofs for bytecode programs may enable several

optimisations in JIT compilers. (4) As bytecode is the language which is actually

executed, it is possible to couple with programs their proof carrying-code (PCC)

certi�cates. (5) Since Java programs are distributed in their bytecode version, it is

possible for a software distributor to develop its own certi�cate to ensure a particular

property its clients are interested in. These reasons led to a proposal of a bytecode

program logic [7] and, based on this foundation, a speci�cation language for the

bytecode�Bytecode Modeling Language (BML) [11]. The latter language is based
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on the design-by-contract principles and is derived from a Java speci�cation language

called Java Modeling Language [18,19,20] which has wide tool support [10].

We consider here the non-interference property of bytecode programs. Many

type systems to guarantee the non-interference have been proposed for while pro-

grams (e.g. [16,17,21]) as well as for other formal languages (e.g. [14,15]). The

starting point of our work is the information-�ow type system for Java bytecode

[4,5] that guarantees the non-interference for sequential bytecode programs with ob-

jects, methods and exceptions. The main contribution of the current paper is a

translation of the type system into the bytecode program logic developed within the

MOBIUS project [7,12] such that the correctness of the typing is equivalent to the

veri�ability of bytecode program logic formulae. Here, the soundness of the type

system guarantees the non-interference property of veri�able programs.

It is worth pointing out that the translation has a few desirable features. First

of all, once the translation is in place it is possible to use a toolset based on logical

methods rather than typed ones. This allows to incorporate the guarantees of the

type system into a foundational proof-carrying code (PCC, [2]) framework and use

the non-interference property together with other properties originally formulated

and expressed in the foundational fashion 4 . Moreover, the wide selection of JML

based veri�cation tools and methods [10] is a solid basis to aim for a platform of

foundational PCC certi�cates for Java bytecode. Another desirable feature of this

method is the fact that the resulting model of the non-interference is more �exible

than the one based on typing. This is important whenever the non-interference prop-

erty must be weakened, for example when declassi�cation is needed (in particular

when the code encrypts con�dential data). The translation we provide is designed

so that it is relatively straightforward to adjust it to various declassi�cation needs.

The Hoare-like logic available in BML is in fact only �rst order logic with very

weak inventory of relations which allow to compare heaps at di�erent points of

program. In particular, it is impossible to express there the agreement operator by

Amtoft et al [1]. Moreover, BML also does not contain any features of dynamic

or algorithmic logic so it is impossible to express the non-interference property by

relating the heaps after two di�erent program runs as in [6] or [13]. Therefore, we

decided to model the type system derivations in BML and base the safety of the

program on the type system soundness. Still another limitation of the approach

based on BML is that the self-composition [3] cannot be expressed here (although

it is available in MOBIUS logic).

The paper is structured as follows. In Sect. 2, we �x the notation and present

the basic notions which are used in the paper. Sect. 3 provides an exposition of

the translation of the type based system to the logic based one. This translation

is supplemented by a theorem that the resulting speci�cations guarantee the non-

interference property in Sect. 4. The formal development is concluded by a proof that

the non-interference property holds even when the bytecode program is extended

with other speci�cations. This is presented in Sect. 4.1. At last we present the �nal

remarks in Sect. 5 where we sketch the way the declassi�cation can be introduced.

4 The translation from this paper does not reduce the trusted logical base to the one of the foundational
PCC. To achieve that one has to link the resulting formulae with the non-interference property expressed
in the foundational logic e.g. the property expressed in [8] for while programs.
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2 Preliminaries

In this section we �x the notation used throughout the paper. We, generally, follow

the papers [4,12]. We also present informal description of some notions which are not

directly used in the translation, but are essential for understanding the principles of

the construction.

Basic notation We use the expression dom(f) to denote the domain of the

(partial) function f . Similarly, rng(f) is the image of f . We write f : A ⇀ B when

f is a partial function from A to B. The powerset of A is P (A). We write k to

denote a vector of values. The notation |k| expresses the length of the vector and

k(0), . . . ,k(|k|−1) are subsequent elements of the vector. The set of �nite sequences

over a set A is A∗.
Java bytecode programs and speci�cations A Java bytecode program P is

a set of classes with one singled out method mainP . A class C is a set of �elds and

methods. Each �eld f has a name fn and a type ft. Similarly, a method m has a

name N(m), a signature Tm and a body Bm
5 . We assume that the method names

are unique within a single program (possibly due to the standard Java pre�xing with

an object or class name). A method body is a sequence of bytecode instructions.

The instructions are indexed by program points. For each method m we distinguish

the set of all program points in the method PPm (we omit the subscript m when it

is clear from the context).

An annotated program P̂ has additionally (among others) for each class C a list

GhostC of model and ghost �elds (i.e. �elds which can occur only in speci�cations),

and a method speci�cation table MC . The bytecode program logic we employ here

[7] makes use of the method speci�cation table MC(m) associated with each method

m. This table consists of:

• a method speci�cation Sm = (Rm, Tm,Φm) where Rm is the precondition of the

methodm, Tm is the postcondition of the method, and Φm is the method invariant

which holds in each accessible state of the method;

• a local speci�cation table Gm which assigns to each label in the method body

Bm an additional assumption that may be used in the proof of the program

veri�cation clause associated with the label (this corresponds to the BML assume
annotations);

• a local annotation table Qm which assigns to labels in Bm further assertions (this

corresponds to the BML assert annotations);

• a local instruction table Insm which assigns to each label l in the method body

Bm a sequence of bytecode instructions that operate on ghost variables which is

supposed to be executed before the instruction at the label l and the respective

speci�cation Qm(l) (this corresponds to the BML set annotations).

Security policy We use here the security policy framework from [5]. It is based

on assumption that the attacker can observe the input/output of methods only. This,

however, is extended to the values of �elds and heaps as otherwise it is di�cult to

guarantee statically the non-interference property. We also assume that the attacker

5 The separation of the identities for the method and its name serves to model the inheritance.
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is unable to observe the termination of the programs.

Formally, a security policy is expressed in terms of a �nite partial order (S,≤).
This order allows to describe the capabilities of the attacker and the program to be

analysed:

• A security level kobs determines the observational capabilities of the attacker (she

can observe �elds, local variables and return values the level of which is less or

equal than kobs).

• A policy function ft assigns to each �eld its security level. This allows us to express
the non-interference property we are interested in.

• A policy function Γ that associates to each method identi�er N(m) and security

level k ∈ S a security signature ΓN(m)[k] 6 . This signature gives the security

policy of the method m called on an object of the level k. The set of security

signatures for a method m is de�ned as PoliciesΓ(m) = {ΓN(m)[k] | k ∈ S}. The
security signature has the shape kp

kh→ kr:

· The vector kp describes the security levels appropriate for the local variables

of the method (in particular it assigns also the levels to the input parameters),

kp[0] is the upper bound on the security level of an object that calls the method.

· The value kh describes the lower bound in the security levels of the heap oper-

ations performed by the method.

· The vector kr describes the security levels for the method results (both normal

and exceptional ones); it is a list of the form {n : kn, e1 : ke1 , . . . , en : ken}, where
kn is the security level of the return value and ei is the class of an exception

that might be thrown in the method and kei is the upper bound on the security

level of the exception. We use the notation kr[n] and kr[ei] for kn and kei .

Non-interference The non-interference property is articulated by a safety de�-

nition in [4,5]. Informally, a program is non-interferent if all its methods are safe;

a method is safe if two terminating runs of the method with inputs that cannot

be distinguished by an attacker, and equivalent heaps, yield results that cannot be

distinguished by the attacker and if the method cannot modify the heap in a way

that is observable by an attacker.

Non-structured programs The bytecode programs organise the control �ow

by means of jump instructions. In order to reason on the information �ow of such

programs an additional structural information is needed. As we translate typings

in an information �ow system [5], we need the same descriptions of the bytecode

program structure.

We use a binary successor relation 7→τ⊆ PP×PP de�ned on the program points.

This relation is parametrised by a tag τ since a instructions may have several succes-

sors as they may execute normally (the tag is ∅) or may trigger exceptions (the tag

is the class of the exception). Intuitively, j is a successor of i (i 7→ j) if performing

one step execution from a state whose program point is i may lead to a state whose

program point is j. We write i 7→ when 7→ is unde�ned for i i.e. if i corresponds

to a return instruction (or i 7→τ if i corresponds to an instruction that may throw

an exception that is not handled locally). Note that an instruction may have more

6 In [5] a less precise notation Γm[k] is used.
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than one successor.

We assume that a bytecode program P comes equipped with a control dependence

regions structure cdr which consists of a pair of partial functions (region, jun). The
role of the functions is to arrange the program into compact parts for which the

analysis of program invariants can be conducted separately. The region function

describes the internal parts of these regions while jun the connections between them.

The types of the functions are the following:

regionm : PP × ({∅}+ C)→ P (PP) junm : PP × ({∅}+ C) ⇀ PP

The functions can be axiomatised by the SOAP (Safe Over APproximation) prop-

erties [5, Sect. 4] ensuring that the control dependence regions structure correctly

describe information �ow in a program P .

Typable programs To check that a program is non-interferent one may use a

type system presented in [5]. In this type system, every method is checked against

its signatures separately. The type system is parametrised by:

• a table Γ of method signatures,

• a global policy ft that provides security levels of �elds,

• a cdr structure (regionm, junm) for every method m.

We assume also that the functions below are given and that they are correct:

(i) classAnalysis which for a program point returns the set of exception classes of

exceptions that may be thrown at the program point.

(ii) excAnalysis which for a method name N(m) returns the set of exception classes

that are possibly thrown by m.

(iii) nbLocs which for a method nameN(m) returns the number of its local variables.

(iv) nbArgs which for a method name N(m) returns the number of its arguments.

(v) Handlerm which for a given point i in the method m and an exception e returns

the point where the handler of the exception starts.

De�nition 1 (typable programs and methods)

Method m is typable with respect to ft, Γ, regionm and a signature sgn if there

exists a security environment se : PP → S and a function st : PP → S∗ such that

st(0) = ε and for all i, j ∈ PP , e ∈ {∅} ∪ C:
(1) if i 7→e j then there exists s ∈ S∗ such that Γ, ft, regionm, se, sgn, i `e st(i) =⇒

s and s v st(j),

(2) if i 7→e then Γ, ft, regionm, se, sgn, i `e st(i) =⇒
where v denotes the point-wise partial order on the type stack with respect to the

partial order taken on security levels. An example of a rule to derive . . . `e . . . =⇒
. . ., for ifeq, is given in Figure 1 7 . The set of all typing rules is presented in [4].

A program P is typable with the policy (kobs, ft,Γ) and cdr satisfying SOAP if

every method m from P is typable with respect to ft, Γ, regionm and all signatures

in PoliciesΓ(m).

7 We limit our exposition to the ifeq instruction due to the space restrictions.
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Pm[i] = ifeq j ∀j′ ∈ region(i, ∅), k ≤ se(j′)
Γ, ft, region, se,kp

kh→ kr, i `∅ k :: st =⇒ liftk(st)

Figure 1. The typing rule for ifeq

Intuitively, the function se gives for each program point i a security level k

such that the instruction at i cannot store to locations of a level lower than k; the

function st associates with each program point a stack of security levels such that

the operands on the actual stack cannot be at level higher than the one indicated

by st; at last sgn is the currently used security signature for the analysed method.

Let us analyse the rule on Figure 1. The assertion under the line assumes that

given are: a table of method signatures Γ, security levels of �elds ft, a region
function, a security environment function se, a signature of the current method m

kp
kh→ kr and a program point i. It asserts safety for the cases when the normal

(non-exceptional) step is taken by the programme. A safe step, here, must transform

in the abstract world the stack h :: st to a stack liftk(st). This rule allows to assert
it provided that two requirements are ful�lled. The �rst one Pm[i] = ifeq j requires
that the instruction at point i is ifeq. The second one, ∀j′ ∈ region(i, ∅), k ≤
se(j′), describes the requirement on the code executed after the branch. The level

k is the security level of the value read by ifeq. All program points in region(i)
are points executing under the guard of i. Since security environment se is meant

to be the upper bound of all the guards under which the program point execute, it

is natural that k ≤ se(j′) for all j′ ∈ region(i). The stack on the right-hand side

of =⇒ is lifted; liftk is the point-wise extension to stack types of λl.k t l. The

lifting operation prevents illicit �ows through the operand stack; the stack shows

what happened before, for example what was the value at ifeq, and lifting prevents

leaking of this information.

Note that st and se are chosen for particular signature sgn. This signature, in

turn, comes from PoliciesΓ(m) and for each security level s ∈ S we have a single

signature. In this light we may consider se and st as collections indexed by elements

of S only.

The main theorem of [5] states that typable programs are non-interferent.

3 Translation from the information �ow system

In order to express in the bytecode program logic that there is no unwanted infor-

mation �ow in the program P we need to add some formula annotations to P and

to extend the method speci�cation tables for P with the formulae which encode

the conditions from Def. 1. Both can be done separately for each method. The

translation we present here uses extensively BML and in particular ghost �elds of

the formalism.

3.1 Summary of BML

The translation of the information �ow system into the bytecode program logic is

done with the use of the BML syntax. The BML formulae can be translated to the

actual bytecode program logic with the use of the translation in [12]. Here is a brief
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summary of the relevant BML syntax.

We use the modi�er ghost to indicate that a particular variable is not a pro-

gram variable, but a speci�cation variable. Other Java type modi�ers such as

public,private,final, static have the same meaning as in the case of Java dec-

larations. We use the BML syntax to denote the logical connectives i.e. && means

the logical conjunction, || the logical alternative, and ! the logical negation. The

logical implication is denoted as ==>. We also use the BML syntax to access and

initialise elements of arrays and to denote types of variables. We also use here the

general quanti�er. The syntax of the quanti�er expression is as follows:

(\forall variable declaration; bound on the quanti�cation; actual formula)

where the variable declaration has the same form as a variable declaration in Java

and introduces the quanti�ed variables. The bound on the quanti�cation is a formula

the goal of which is to restrict potentially in�nite domain of the quanti�cation to

be �nite and it can be any boolean expression. At last, the actual formula is the

formula we are interested in. A bound on the quanti�cation B and an actual formula

A are understood as the implication B ==> A.

3.2 Data to translate

The annotations we need are of two kinds. First of all, a reliable description of the

security requirements and the program structure must be provided at the side of

BML i.e. the security levels of �elds, method signatures, cdr structure etc. must

be represented in the form of ghost variables. Therefore, the �rst group of the

translated data consists of:

• a table Γ of method signatures,

• a global policy ft that provides security levels of �elds,

• a cdr structure (regionm, junm) 8 ,

• functions classAnalysis, excAnalysis, nbLocs, nbArgs, Handler.

The idea of our translation is that we check by means of the BML formulae

that a derivation in the information-�ow type system is correct. Therefore, we

must translate the data on which the type system operates. To this end we need

to transform the functions mentioned in Def. 1 i.e. for each policy signature of a

method: a security environment se : PP → S, and a function st : PP → S∗.
Additionally, we use certain static data which is not de�ned explicitly in terms

of ghost variables, but is inlined in the de�nitions below. The values of this kind

are:

• maxEx the number of all exception types in P .

• maxS the maximal security level used to type-check P ; the level 0 6∈ S will be

used to mark the unde�ned value. Let S0 = S ∪ {0}.
• maxNbArg the maximal number of arguments of all methods in P .

8 We actually do not provide the de�nition for junm as the function does not occur in the typing rules
in [4].
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• lm the maximal label of the method m.

• maxStack the maximal height of the stack in the execution of method m.

These values are computed during the translation process.

Security requirements and program structure Security level of �elds can be

stored in ghost �elds in the corresponding class. For each class �eld f (both static

and instance) we de�ne:

public f ina l ghost S gft_f = ft( f ) ;

this enables access to the security levels of f. The domain of Γ, excAnalysis, nbLocs,
nbArgs is the set of methods names. They are stored in ghost �elds of the class

where the given method name appears highest in the class hierarchy. The other

data are stored as local ghost variables of the actual methods.

In the de�nitions below, we use a �xed correspondence between the exception

types and the natural numbers 0, . . . ,maxEx − 1. For each method m (both static

and instance) with the identi�er N(m), we de�ne a set of ghost variables. These

variables will be used as constants; they will never be changed. The initial values of

all the ghost variables we use here are de�ned to correspond directly to the values

of real values/functions.

public stat ic f ina l ghost int gnbArgs_N(m) = nbArgs(N(m)) ;
public stat ic f ina l ghost int gnbLocs_N(m) = nbLocs(N(m)) ;
public stat ic f ina l ghost boolean [maxEx ] gexcAnalysis_N(m) =

{ e0, . . . , emaxEx−1 } ;
public stat ic f ina l ghost S0
[maxS ] [ gnbLocs_N(m)+3+maxEx ] gsgn_N(m) =

{ { s0,0, . . . , s0,gnbLocs_N(m)+3+maxEx−1 } , . . .

{ smaxS−1,0, . . . , smaxS−1,gnbLocs_N(m)+3+maxEx−1 } } ;

The last two de�nitions make use of additional values de�ned below. The informa-

tion contained in gexcAnalysis_N(m) is de�ned with the use of:

ei =

(
true when excAnalysis(N(m)) says that the exception i is thrown in m,

false otherwise.

The security signature Γm[i] = kp
kh→ kr allows us to give the values for si,j :

si,j =

8><>:
kp(j) j < |kp|,
kh j = |kp|,
kr(j − |kp| − 1) j > |kp|.

This de�nition allows us to explain the meaning of gsgn[i][j] in the following way.

For a given security level i, gsgn[i][0] is the security level of the object that calls the

method m, gsgn[k][1 . . . gnbLocs_N(m)] are security levels of parameters and local

variables (note that nbLocs(N(m)) = |kp|−1), the value gsgn[k][gnbLocs_N(m)+1]
is the level of heap operations, the value gsgn[k][gnbLocs_N(m) + 2] is the level of
a normal return value and

gsgn[k][gnbLocs_N(m) + 3 . . . gnbLocs_N(m) + 3 + maxEx− 1]

are the security levels in which corresponding exceptions might be propagated (note

that maxEx ≥ |kr| − 1).
We de�ne also local ghost variables associated with the method m:
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ghost boolean [ lm ] [maxEx ] g c l a s sAna l y s i s =
{ { c0,0, . . . , c0,maxEx−1 } , . . . , { clm−1,0, . . . , clm−1,maxEx−1 } } ;

where

ci,j =

(
true when classAnalysis(i) says that the exception j can be thrown in m at i,

false otherwise.

ghost boolean [ lm ] [maxEx + 1 ] [ lm ] g r eg ion = {
{ { r0,0,0, . . . , r0,0,lm−1 } , . . . , { r0,maxEx,0, . . . , r0,maxEx,lm−1 } } , . . . ,
{ { rlm−1,0,0, . . . , rlm−1,0,lm−1 } , . . . , { rlm−1,maxEx,0, . . . , rlm−1,maxEx,lm−1 } }

} ;

where

ri,j,k =

8><>:
true when k ∈ regionm(i, e) and the exception corresponding to e is j,

true when k ∈ regionm(i, ∅) and j = maxEx,

false otherwise.

Note that we use the index maxEx on the second coordinate to encode the region

information for the normal execution.

ghost int [ lm ] [maxEx ] gHandler =
{ { h0,0, . . . , h0,maxEx−1 } , . . . , { hlm−1,0, . . . , hlm−1,maxEx−1 } } ;

where hi,j = Handlerm(i, e) with e corresponding to the exception number j.

Type system data As noted below Def. 1, we may assume that se and st are
indexed with security levels from S. We use the notation sei and sti for i ∈ S to

refer to the elements of the indexed families.

ghost S [maxS ] [ lm ] gse =
{ { v0,0, . . . , v0,lm−1 } , . . . , { vmaxS−1,0, . . . , vmaxS−1,lm−1 } } ;

where vi,j = sei(j).

ghost S0 [maxS ] [ lm ] [maxStack ] g s t = {
{ { t0,0,0, . . . , t0,0,maxStack−1 } , . . . , { t0,lm−1,0, . . . , t0,lm−1,maxStack−1 } } ,
. . . ,
{ { tmaxS−1,0,0, . . . , tmaxS−1,0,maxStack−1 } , . . . ,

{ tmaxS−1,lm−1,0, . . . , tmaxS−1,lm−1,maxStack−1 } }
} ;

where ti,j,k = n whenever (k + 1)-st element of the sequence sti(j) is n. Note that

the function sti gives security levels for the stack positions so that the length of

each sti(j) is less that the maximal stack length maxStack. We also assume that for

each i, j the elements of gst[i][0][j] are zero which corresponds to the fact that the

operand stack at the beginning of a method is empty.

Translating the rules Once we have all the annotations above, we may encode

the typability property from Def. 1. We do it for each method m separately and we

decide to use the local annotation table Qm (as in [12, Chapter 3]).

Qm is a �nite partial map which for a program label i in m gives an assertion

Qi(s0, s). If the point i inm is annotated with Qm then Qi(s0, s) is supposed to hold
in every state s at i during any execution of m with the initial state s0 satisfying

Rm(s0) (i.e. the precondition of the method). Intuitively, Qi(s0, s) provides the

content of the assert statement right before the instruction with the label i.

Let us describe how to extend a given speci�cation Qm so that it ensures the non-

interference property. According to Def. 1, we need to state that for every security
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signature of the method (recall that for each security level s there is a separate

security signature ΓN(m)[s] applicable in the situation when the object on which

m is called has the security level s), every label i, every exception e, and every j,

such that i 7→e j (or i 7→e ) some properties hold. For every i these properties are

expressed by formulae N(i)(s). We de�ne QNIm, the local annotation table extended
with the non-interference checking, as

QNIm(i) = λc0 ∈ State λc ∈ State.

Qi(c0, c) && N(i)(1) && . . . && N(i)(maxS).
(1)

This formula expresses a new assert before the instruction at i which states that the

old assert must hold together with all the security guarding formulae which ensure

(together with all the formulae for other instructions) that the security signatures

of m are obeyed.

The security guarding formulae N(i)(s) have similar form; it is

(\forall int e, j; 0 ≤ e && e ≤ maxEx && 0 ≤ j && j < lm;

(i 7→e j ==> (Reg
inst(i),s
1 (p1) || . . . || Reg

inst(i),s
k (pk))) &&

(i 7→e ==> (Reg
inst(i),s
k+1 (p1) || . . . || Reg

inst(i),s
k′ (pk′)))) 9

(2)

where inst(i) is the instruction at the label i in the method body m. Note also

that i 7→e j (as well as i 7→e) is static information which can be de�ned directly as

a subformula. For example, in the most typical case when the control �ow moves

to the next instruction, the formula is of the form j == i + 1 && e == maxEx 10 .

Here, the condition that maxEx equals e enforces that we consider a normal step. In

the case when the method has an exception handler of e0 at the point j′ we de�ne
i 7→e j to be j == j′ && e == e0. As the ifeq j0 has two successors, but one

rule handles the instruction in the type system, the premise of the implication is

(j == i+ 1 || j == j0) && e == maxEx in this case.

Every Reg
inst(i),s
i (pi) for i = 1, . . . , k or for i = k + 1, . . . , k′ corresponds to one

of possibly applicable typing rules for instruction inst(i) in case i 7→e j (or i 7→e).

The type system considers an instruction to be correct when at least one of the rules

can be successfully satis�ed. Therefore, the formulae Reg
inst(i),s
i are combined as an

alternative. Let us point out that the vectors pi are parameters of the instruction

inst. For instance, there is one rule for ifeq and Reg
ifeq,s
1 (j), corresponding to

9 We add this subformula only in case the instruction may throw an exception.
10Note that the addition can be performed `on-the-�y' in the course of the translation and therefore is not
a part of the formula syntax.
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ifeq j, equals to

(\forall int j′; 0 ≤ j′ && j′ < lm;

gregion[i][maxEx][j′] ==> gst[s][i][cntr] ≤ gse[s][j′]) &&

(\forall int p; 0 ≤ p && p < cntr;

gst[s][i][p] t gst[s][i][cntr] ≤ gst[s][j][p]) &&

(\forall int p; cntr ≤ p && p ≤ maxStack;

gst[s][j][p] = 0)

(3)

We can now relate the formula to the rule in Figure 1. First, observe, that the index

cntr is a counter of the operand stack; hence gst[s][i][cntr] points to the top of the

stack and it corresponds to k from the rule. The �rst precondition of the rule in

Figure 1 holds as the formula is generated only for ifeq instruction. The formula

above consists of three ∀ subformulae. The �rst subformula expresses the condition

∀j′ ∈ region(i, ∅), k ≤ se(j′) from the precondition in the rule in Figure 1. Recall

that maxEx value in second parameter of gregion means a normal (non-exceptional)

behaviour. The second and the third subformulae state that liftk(st) v st(j), where
st is st(i) without its top element; in particular, the last formula checks that st(j)
is one element shorter than st(i) and that the unused part of the stack contains the

default value 0.

4 Proof of non-interference

The following theorem relates typability and the fact that the program veri�es cor-

rectly in the bytecode logic. It says that whenever a program with annotations

proposed in Sect. 3 successfully veri�es it also successfully typechecks. This prop-

erty and the main theorem of [4] (see Sect.6) imply the non-interference.

Please recall that like [4], we assume that functions classAnalysis, excAnalysis,
nbLocs, nbArgs, Handler are correct.

Theorem 4.1 (typechecking and verifiability)

Let P be a Java bytecode program, (kobs, ft,Γ) a desired security policy, and cdr
a control dependence regions structure satisfying SOAP. Let TR be the translation

de�ned in Sect. 3 that adds base logic annotations to P . For every security environ-

ment family {sei : PP → S}i∈S and a family of functions {sti : PP → S∗}i∈S such

that sti(0) = ε for all i,

⇒ if the annotated program TR(P, kobs, ft,Γ, cdr, se, st) veri�es correctly then P with

the policy (kobs, ft,Γ) and cdr is typable,

⇐ if the program P with the policy (kobs, ft,Γ) and cdr is typable with se, st, and

all Qi(c0, c) in QNIm in (1) on page 10 are true then the annotated program

TR(P, kobs, ft,Γ, cdr, se, st) veri�es correctly.

Proof:
We present here a sketch of the proof only.
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(⇒) Suppose that the annotated program TR(P, kobs, ft,Γ, cdr, se, st) veri�es cor-
rectly. We want to show that P is typable, i.e. that every method m in P is typable

with respect to every signature in PoliciesΓ(m). We need to verify that the condition

in Def. 1 is ful�lled. Let sgn be a signature corresponding to security level s. We take

se and st as above. sts(0) = ε is guaranteed by the way gst is initialised. Since P

veri�es correctly the formula N(i)(s) holds for every i. The conditions (1)�(2) from
Def. 1 are guaranteed by the fact that all the typing rules are faithfully modelled in

the logic. Let us see it for inst(i) = ifeq j. In other cases the proof is similar.

ifeq As the instruction at i is ifeq j0 we must only ensure condition (1) of Def. 1.

In case of the ifeq instruction, the body of the formula N(i)(s) is (i 7→e j0 ==>
(Regifeq,s(j0))). This formula ensures that in case j = j0 or j = i+ 1 the formula

Regifeq,s(j0) holds. This ensures that the check of the premises of the rule from

Figure 1 takes place indeed for the instruction ifeq. Then, as the �rst \forall
subformula of Regifeq,s(j0) holds, we obtain ∀j′ ∈ region(i, ∅), k ≤ se(j′) as k

is identi�ed with gst[s][i][cntr]. The second and the third \forall subformula of

Regifeq,s(j0) ensure that liftk(st) v st(j) (where j = i+ 1 or j0).

(⇐) Suppose that the program P with the policy (kobs, ft,Γ) and cdr is typable
with se and st. We have to ensure that each QNIm(i), for i being a label in the method

m, holds. As Qi(c0, c) is true, it is enough to check that each N(i)(j) holds for j ∈ S.
Each of the N(i)(s) has similar structure presented in (2). It is enough to show that

one of the corresponding Reg
inst(i),s
l (pl) holds in case i 7→e j (or in case i 7→e).

As the method is typable, we know that Γ, ft, regionm, se, sgn, i `e st(i) =⇒ s

(or Γ, ft, regionm, se, sgn, i `e st(i) =⇒) can be inferred. This is done with one of

the rules, say l-th. Now, we have to make sure that the corresponding translation

formula Reg
inst(i),s
l (pl) holds. We show this in case inst(i) is ifeq j.

• the �rst subformula of (3) holds as the typing rule guarantees that the property

∀j′ ∈ region(i, ∅), k ≤ se(j′) holds,
• the second subformula of (3) holds as the typability requires that liftk(st) v st(j),
where st is st(i) without its top element,

• the third subformula of (3) holds as the st(j) is not determined for indices greater

than the top of the operand stack.

This �nishes the proof in this case. The cases of other instructions are similar.

4.1 Proof of stability

Theorem 4.2 below states that we can safely extend the speci�cations so that the non-

interference property is preserved. More precisely, it allows to mix the speci�cations

that result from our translation with speci�cations that come from other sources

(e.g. are written by hand).

De�nition 2 (speci�cations in con�ict)

We say that speci�cations are in con�ict with the translation TR whenever any

element of the ghost arrays or variables de�ned in Sect. 3 is set.

Theorem 4.2 (stability)

Let P ′ be a speci�cational extension of TR(P, kobs, ft,Γ, cdr, se, st) that does not
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con�ict with TR(P, kobs, ft,Γ, cdr, se, st). If P ′ veri�es correctly then P satis�es the

non-interference property.

Proof:
We present here a sketch of the proof only. When the speci�cation extension does

not con�ict with the translation TR(P, kobs, ft,Γ, cdr, se, st) then the values of all the

variables used in the translation are the same. In this light, the logical values of the

formulae are the same as in case there are no additional speci�cations. Hence we

obtain the non-interference for P .

5 Discussion of the solution

Declassi�cation Our translation modi�es the local assertion table Qm so that

each typing rule is checked right before the instruction instance it concerns. Note

that the logic, as presented in Sect. 2, allows to change the state of the ghost

variables by means of the local instruction table Insm. This enables an easy method

to declassify information by means of the assignment to a ghost variable. Usually,

the declassi�cation should occur when a value on a high security level on the stack

at a program point i should be stored in a low level �eld. The current rules prevent

this, but they exploit the information stored in entries of gsgn and gst arrays that

correspond to i. We can exploit a set instruction in Insm(i) to change gsgn and

gst right before the instruction that requires the declassi�cation and revert it back

right before the next one. In this way we obtain a clear declassi�cation management

mechanism�declassi�cation is present when the set instructions manipulate the

mentioned above arrays.

In fact, the presented method can also be applied to many other type systems

which are information �ow sensitive� the �ow of the information is simply traced by

the ghost variables. In essence, the practice of using the ghost variables in programs

speci�ed in JML is in many cases such that they serve as a method to provide an

ad hoc information �ow typing system.

Finite range of levels The original order used in the information �ow type

system has not been restricted to be �nite. Our translation relies crucially on the

fact that the order is �nite. In practice, however, it is very di�cult to check the non-

interference in case of essentially in�nite policies� in particular such policies should

be e�ectively enumerable and thus the checking that a policy is ful�lled becomes

rather an algorithm veri�cation task than static checking.

Design choices The primary goal of the design choices we took here was to �nd

a way to express a system which ensures the non-interference property in terms of

the BML formulae. The main challenge here was to connect the �ow of the data

with the �rst order formulae available in the language. We decided to simulate in

ghost variables the operation of the type checking.

Another possibility would be to use ghost variables to simulate an alternative

operation of the program in a �avour similar to the approaches [3,6,13]. However,

the operation on the variables would use the control �ow of the original program

and it is not clear if it is possible to express the non-interference in this way.

The formulae we generate in our approach fall easily within the class of ∀∗ for-
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mulae with three predicates ≤, < and =. This class is decidable according to the

classical result by Bernays, Schön�nkel (see e.g. [9]). Interestingly enough, this class

is more powerful and the formulae could take up, roughly, the form of ∃se, st∀ . . .
where se is the security environment and st is the abstract stack. In this way, we

would not need to rely on some external source to supply the arrays and the decision

procedure for the �rst-order logic would infer the typing for the program. However,

one cannot quantify in BML so that the quanti�cation ranges over several di�erent

assert formulae. Therefore, this approach is not available directly.

This obstacle could be overcome with the help of the observation that the satis-

�ability of the formulae does not depend on the values of the source code variables

and the control �ow of the programme. This lets us to store the conjunction of

all the formulae in the method precondition Rm. That, however, would make the

implementation of the declassi�cation more involved. In this framework, the declas-

si�cation must be implemented by a modi�cation of the formulae themselves instead

of the modi�cation of the data they operate on.

Future work Currently, it is rather di�cult to present a single succinct example

of how the translation works as the result of the translation is rather complicated.

At the momenta tool to transform the inferences in the information �ow type system

to BML using the translation is under the development.
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Abstract

Non-termination analysis proves that programs, or parts of a program, do not terminate. This is important
since non-termination is often an unexpected behaviour of computer programs and exposes a bug in their
code. While research has found ways of proving non-termination of logic programs and of term rewriting
systems, this is hardly the case for imperative programs. In this paper, we describe and experiment with a
technique for proving non-termination of imperative, bytecode programs by relating their non-termination
to that of a (constraint) logic program. Moreover, we show that our non-termination test effectively helps
a termination test, by avoiding expensive search for termination proofs of those portions of the code where
such proofs do not exist.

Keywords: Java, Java bytecode, static analysis, termination, non-termination

1 Introduction

Java bytecode [8] is the result of the compilation of Java, as well as of other pro-
gramming languages. It is a low-level, object-oriented, type-safe language which is
distributed in a machine-independent format, hence executable on different archi-
tectures. It is the target of choice for the compilation of applications that must
be downloaded from the net into client computers or mobile phones. The recent
Android system by Google [1] uses the Java bytecode as the target of the compila-
tion of Android programs, before translating it into a machine-centered lower-level
bytecode.
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As a consequence of the wide use of Java bytecode, research is increasingly fo-
cused on checking, in an automatic way, that Java bytecode applications are not
harmful. This includes the proof that, for instance, they do not overuse the resources
of the system. One such resource is time. In particular, proofs of termination of
Java bytecode programs guarantee that they will actually terminate. Such proofs
are important for the software developer, since they support the quality standards of
his product. Nevertheless, termination of computer programs being an undecidable
property, the termination of many methods remains unproved and such methods
might hence be potentially non-terminating. A direct proof of their non-termination
becomes desirable, since it exhibits an actual, typically unexpected behaviour of the
program and often means that the non-terminating methods contain a bug. Cur-
rently, no system exists to prove the non-termination of Java bytecode methods,
since research has mainly been focused on proofs of non-termination for logic pro-
grams [4,11,10,2,16,15] and term rewriting systems [21,5,24,22,23,9]. In the recent
paper [7], the authors consider non-termination of C programs and [6,14] provide
some techniques for testing C programs that detect errors such as program crashes,
assertion violation and non-termination. In [20], an approach to automatically check
non-termination of imperative programs is introduced; it is based on the generation
of invariants that are used to prove that some potential loops are never exited; the
technique is experimented on a set of programs written in a fragment of Java and
does not consider heap data structures. In this paper, we provide an example where
our approach successfully proves the non-termination of a program where a data
structure is defined.

This paper provides a first experimentation with the automatic derivation of
non-termination proofs for Java bytecode programs. We start from our previous
work on a tool Julia+BinTerm for the termination analysis of Java bytecode [19].
There, we translated the original Java bytecode program P into a constraint logic
program PCLP whose termination entails that of P . Here, we show how, in those
cases when the approximation of the bytecodes is exact, the non-termination of
PCLP entails that of P . Hence, we use the same tool as in [19] to prove the non-
termination of Java bytecode programs by exploiting previous results from non-
termination analysis of logic programs [10]; namely, we prove the non-termination of
PCLP and hence infer, when possible, that of P . Although these results are far from
being a definite solution to the problem of non-termination analysis of Java bytecode
programs, they represent a first step in that direction and highlight weaknesses of the
current approach, that must be solved if non-termination analysis must be applied
to real Java and Java bytecode software. Note that, while a notion of existential
non-termination for C is considered in [7], we instead consider a notion of universal
non-termination here for the CLP program derived from the Java bytecode program.

This paper also shows that our non-termination test effectively helps the termi-
nation test defined in [19]. Namely, we use our non-termination test to signal to the
termination prover in [19] that some clauses in PCLP diverge, so that it is useless to
look for an (often expensive) termination proof for them. Note that this technique
is applicable and profitable for all Java bytecode programs, also when the approxi-
mation of their bytecodes is not exact or when all their methods actually terminate.
Our termination test is applied, indeed, to the CLP program, whose clauses might
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not terminate because of the approximations induced by the abstraction from P to
PCLP .

2 Compilation of Java bytecode into constraint logic
programs

Java bytecode is a low-level object-oriented type-safe language. Its static analysis
is complicated by the fact that it has no explicit structure, differently from high-
level languages, and that it uses a stack of temporary variables. Hence the number
and type of the variables are different at different program points inside the same
method.

We have recently developed a static analysis of Java bytecode programs (and
hence of Java programs) that proves the termination of most methods of a pro-
gram [19]. The idea is that the Java bytecode program is first translated into its
basic blocks and then an abstract interpretation [3], based on a denotational seman-
tics over those blocks, is applied by using different abstract domains of analysis.
The latter provide a conservative approximation of the numerical and structural
constraints on the numbers or data structure used by the program: a first domain,
for sharing [13], determines when data structures bound to program variables might
share locations on the heap, so that an update of one variable might also affect the
others. This information is exploited in the second domain, for cyclicity [12], which
determines when the data structure bound to a program variable might contain
loops of locations, so that an iteration over that data structure might not necessarily
terminate. Both kinds of information are then used in a path-length domain [17,19],
that computes the relationship between the size of program variables before and
after the execution of each instruction in the bytecode: the size or path-length of
a variable bound to a data structure is the maximal length of pointers that one
can follow from that variable; the path-length of a variable bound to an array is
the length of the array; the path-length of a numerical variable is its value; the
path-length of a Boolean variable is 0 for false and 1 for true. The result of the
path-length is finally used to express the relationship between the size of the vari-
ables at the beginning and at the end of each basic block of the program. This is
written in terms of a constraint logic program PCLP over linear constraints, whose
predicates b(vars) correspond to each basic block b of P and vars are the variables
at the beginning of the execution of b. These approximations build constraints that
are later used in order to derive bounds on the values of variables in programs,
which is crucial for termination and non-termination analyses to work. The main
result proved in [19], wrt. termination analysis, is the following:

Theorem 2.1 Let P be a Java bytecode program and b a basic block of P . If the
query b(vars) has only terminating computations in PCLP , for all fixed integer values
for vars, then all executions of a Java Virtual Machine started at b terminate. 2

The converse, however, does not hold in general: we can find programs P and
a basic block b of P such that, in the translation PCLP , predicate b(vars) does not
terminate for some fixed initial integer values for vars, although all executions of
P starting at b do terminate. This is due to the approximations done during the
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translation of P into PCLP : both sharing and cyclicity analyses are approximated,
so that, for instance, the analyser might not necessarily prove that a non-cyclical list
is actually non-cyclical. Moreover, some bytecodes have an inherently non-linear
behaviour, such as multiplications and divisions, and cannot hence be approximated
by using the linear constraints available for the path-length.

The translation from Java or Java bytecode to CLP makes it uniform the treat-
ment of any kind of loops: for, while loops, recursion, loops having exit conditions
depending on numerical, reference or Boolean variables, loops exiting become of the
break statement, all become a loop in the graph of blocks of PCLP . The termination
of PCLP can hence be established in a uniform way, also in the presence of Boolean
variable assigned inside an if statement and hence making a loop exit.

An important point about the program PCLP is that its termination is mean-
ingful for ground inputs only, where all variables have been bound to their integer
path-length (Theorem 2.1). Moreover, the clauses of PCLP are binary, that is, they
have the form p(X̃)← c, q(Ỹ ), with only one predicate on the right.

The termination of PCLP is proved by the BinTerm tool by F. Mesnard, that
finds decreasing measures across iterations of most loops in PCLP . The computa-
tional cost of the tool decreases by reducing the number of clauses in PCLP : namely,
only clauses in a loop are considered, since they correspond to loops or recursion
in the original program P and are those that determine the termination or non-
termination of the program. Moreover, its cost is reduced also by decreasing the
arity of the predicates, when it is clear that the removed arguments are irrelevant
for the termination of the predicates. These optimisations are defined and proved
correct in [18]. As a consequence, in all our examples, the CLP program will express
the path-length relationships for the loops of the program only.

Although the converse of Theorem 2.1 does not hold in general, there are many
cases when the approximation of the original program P into path-length is exact,
in the sense that all denotations represented by the PCLP program are actual deno-
tations that represent real, concrete executions of P . This is the case, for instance,
of the approximations of the instructions dealing with integer values, with the no-
table exception of multiplications and divisions; as well as of instructions dealing
with data structures that have been successfully proved to be non-cyclical by the
cyclicity analysis. In those frequent cases, a proof of non-termination for the CLP
program induces a proof of non-termination for the original Java bytecode program.
In the following, we discuss how proofs of non-termination for CLP programs can
be constructed and exemplify many cases when we can conclude (or not) that the
original Java bytecode program does not terminate either.

3 Proving non-termination of constraint logic programs

A non-termination criterion is provided in [10] for the standard operational seman-
tics of constraint logic programming, where free variables may occur in a call to a
predicate. The specialisation of this criterion to the semantics we consider in this
paper (free variables are not allowed in a call to a predicate) is briefly described in
this section.

We consider constraint logic programs over path-length polyhedra (CLP(PL)).
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We let t̃ denote a sequence of terms, X̃ and Ỹ denote sequences of distinct variables,
p and q denote predicate symbols and c denote a path-length constraint. An atom
has the form p(t̃) where the length of t̃ equals the arity of p. A query has the form
〈p(X̃) | c〉. A clause has the form p(X̃)← c, q(Ỹ ) where X̃ and Ỹ are disjoint and the
variables occurring in c necessarily occur in X̃ ∪ Ỹ . A CLP(PL) program is a finite
set of clauses. We use ∃X̃c as a shortcut for ∃X1 . . . ∃Xnc where X1, . . . , Xn := X̃.
The projection of c onto the sequence X̃ is denoted by ∃X̃c and is the constraint
∃Var(c)\X̃c, where Var(c) is the set of variables occurring in c. The set described

by a query Q := 〈p(X̃) | c〉 is denoted by Set(Q); it consists of all the atoms of the
form p(v(X1), . . . , v(Xn)) where X1, . . . , Xn := X̃ and v is a ground solution of c.
We say that Set(Q) is non-terminating wrt. a CLP(PL) program P when for all
p(v(X1), . . . , v(Xn)) ∈ Set(Q), the query

〈p(X1, . . . , Xn) |X1 = v(X1), . . . , Xn = v(Xn)〉
is non-terminating wrt. P by using the standard semantics of constraint logic pro-
grams. This means that an infinite computation can be built for that query in the
program P . Note that we do not consider any precedence between the clauses of P ,
that is, we assume a non-deterministic resolution of a predicate with all the clauses
that define that predicate. The following results provide simple non-termination
conditions for constraint logic programs.

Theorem 3.1 ([10]) Let p(X̃)← c, p(Ỹ ) be a recursive clause in a CLP(PL) pro-
gram P . If Set(〈p(Ỹ ) | ∃Ỹ c〉) ⊆ Set(〈p(X̃) | ∃X̃c〉) then Set(〈p(X̃) | ∃X̃c〉) is non-
terminating wrt. P . 2

Theorem 3.1 means that if the set of values assigned to Ỹ by all the solutions of c
is included in the set of values assigned to X̃ by all the solutions of c, then any value
assigned to X̃ by a solution of c provides a non-terminating ground query. Indeed,
intuitively, the constraint ∃X̃c is the guard of the clause and Set(〈p(Ỹ ) | ∃Ỹ c〉) ⊆
Set(〈p(X̃) | ∃X̃c〉) means that every output value of the clause satisfies this guard.
Hence, if a value satisfies the guard, then it enters the clause and the corresponding
output satisfies the guard, so this output can also enter the clause and the next
output satisfies the guard, and so on. Notice that the converse of the implication in
Theorem 3.1 does not always hold: consider for instance the recursive clause p(X)←
X ≥ 3, p(Y ); we have that Set(〈p(X) | ∃XX ≥ 3〉), i.e. Set(〈p(X) |X ≥ 3〉), is non-
terminating wrt. this clause although Set(〈p(Y ) | ∃YX ≥ 3〉), i.e. Set(〈p(Y ) | true〉),
is not included in Set(〈p(X) |X ≥ 3〉).
Theorem 3.2 ([10]) Let q(X̃)← c, p(Ỹ ) be a clause in a CLP(PL) program P and
Q be a query such that Set(Q) is non-terminating wrt. P . If Set(〈p(Ỹ ) | ∃Ỹ c〉) ⊆
Set(Q) then Set(〈q(X̃) | ∃X̃c〉) is non-terminating wrt. P . 2

The intuition of Theorem 3.2 is that any value q(x̃) in Set(〈q(X̃) | ∃X̃c〉) satisfies
∃X̃c, the guard of the clause, and the corresponding output p(ỹ) is included in
Set(〈p(Ỹ ) | ∃Ỹ c〉). As Set(〈p(Ỹ ) | ∃Ỹ c〉) ⊆ Set(Q) and Set(Q) is non-terminating
wrt. P , then p(ỹ) does not terminate wrt. P , so q(x̃) does not terminate also.

These theorems provide a simple mechanism to infer ground non-terminating
queries: first, use Theorem 3.1 to infer a set of non-terminating queries from the
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recursive clauses of the program and then complete this set with the help of Theo-
rem 3.2.

4 Proving non-termination of Java bytecode programs

In this section, we give several examples of situations where we can conclude the
non-termination of the original program from that of the CLP program, as well as
examples where instead this is not possible.

4.1 Exact approximations with iterations

When the approximation into a path-length constraint of the Java bytecode program
P under analysis is exact, a proof of non-termination of PCLP is also a proof of non-
termination of P . The formal definition of exact requires the bytecodes to have a
concrete behaviour which is exactly matched by their numerical abstraction, that
is, every pair of states satisfying the input/output abstraction of the bytecode must
correspond to an actual, concrete behaviour of the bytecode. Note that the converse
must always hold by the correctness of the abstraction.

Definition 4.1 [Exact Abstraction] Let ins be a bytecode instruction, formalised
as an input/output map on concrete JVM states, as in [19], and let insPL be a
correct approximation of its behaviour, i.e., a constraint over input variables v̌ and
output variables v̂. This approximation is exact if and only if, for all input states
σ̌ and output variable σ̂ satisfying the static information at ins (number and type
of local variables and stack elements), whenever {v̌ 7→ pathlength(σ̌(v))} ∪ {v̂ 7→
pathlength(σ̂(v))} |= insPL then σ(σ̌) = σ̂. 2

Consider for instance the program Add1 :

public class Add1 {
public static void main(String args[]) {

int k = 3;
for(int i = 2; i < 2 + k; i++);

}
}

The approximation of the bytecode program corresponding to Add1 is exact: the
loop guard involves the add bytecode instruction whose approximation, as provided
in [19], is

addPL
q = Unchangedq(#l,#s− 2) ∪ {š#s−2 + š#s−1 = ŝ#s−2}

where #l and #s are the number of local variables and stack elements at program
point q where the instruction occurs; we distinguish between variables v at the
beginning of the execution of the bytecode, written as v̌, and variables at its end,
written as v̂. The formula above means that add does not modify any local variable
nor any stack element not involved in the addition; moreover, the new top of the
stack (ŝ#s−2) holds a value which is equal the addition of the former two topmost
stack elements (š#s−2 and š#s−1). This approximation is exact since, for every
couple of input state σ̌ and output state σ̂ satisfying the static information at this
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bytecode and the approximation above, we must have that the local variables have
the same values in σ̌ and σ̂ and the top of the stack of σ̂ is the sum of the topmost
two values on top of the stack of σ̌, so that those states are such that addq(σ̌) = σ̂.
The corresponding CLP(PL) program Add1 CLP is:

entry(IL2 )← {IL2 −OL2 = −1, −IL2 ≥ −4, IL2 ≥ 2}, entry(OL2 )

The predicate entry denotes the entry point of the loop of the program; local variable
2 implements i while variable k has been removed since it is irrelevant for the
termination of the program. This CLP program has been derived by using the
abstract interpretations cited in the introduction. Namely, we have used the path-
length abstract analysis, which has derived the constraint IL2 −OL2 = −1 (that is,
local variable 2, which is i, decreases along iterations of the loop) and the constraints
−IL2 ≥ −4, IL2 ≥ 2, which provide bounds on the possible values of that variable
inside the loop. That CLP program terminates. By Theorem 2.1 we conclude that
Add1 terminates also. If we turn Add1 into the non-terminating program:

public class Add2 {
public static void main(String args[]) {

int k = 3;
for(int i = 2; i < 2 + k; i--);

}
}

we get the CLP(PL) program Add2 CLP :

entry(IL2 )← {IL2 −OL2 = 1, −IL2 ≥ −2}, entry(OL2 )

which by Theorem 3.1 does not terminate because the projection of the constraint
of its unique clause onto IL2 (resp. OL2 ) is −IL2 ≥ −2 (resp. −OL2 ≥ −1) and
we have

Set(〈entry(OL2 ) | −OL2 ≥ −1〉) ⊆ Set(〈entry(IL2 ) | −IL2 ≥ −2〉) .
Here, we can safely conclude the non-termination of Add2 from that of Add2 CLP .

Our technique is also able to handle more complicated situations. For instance,
if we nest the non-terminating loop of program Add2 into a terminating loop, we
get:

public class Add3 {
public static void main(String args[]) {

int k = 3;
for(int j = 0; j < 10; j++)

for (int i = 2; i < 2 + k; i--);
}

}

The corresponding CLP(PL) program Add3 CLP :

entry(IL3 )← {OL3 = 2}, block(OL3 )

block(IL3 ) ← {IL3 −OL3 = 1, −IL3 ≥ −2}, block(OL3 )

does not terminate. Note that the outer loop does not appear in the CLP program,
since the exit condition i ≥ 2 + k of the inner loop is found to be false during
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the path-length analysis and no clause is generated with a false constraint. Indeed,
such clause would not influence the termination or non-termination behaviour of the
program, since it would just stop the CLP resolution process. Indeed, by applying
Theorem 3.1 to the recursive clause we get that Set(Q) is non-terminating wrt.
Add3 CLP where

Q := 〈block(IL3 ) | −IL3 ≥ −2〉 .
Notice that we have to infer a non-terminating query of the form 〈entry(· · ·) | · · ·〉
to conclude the non-termination of Add3 CLP because the entry point of the loops
of the program is the predicate entry . The projection of the constraint of the first
clause onto OL3 is OL3 = 2 and we have

Set(〈block(OL3 ) |OL3 = 2〉) ⊆ Set(Q) .

Hence, by Theorem 3.2 applied to the first clause of Add3 CLP and to Q, we have
that Set(〈entry(IL3 ) | true〉) is non-terminating wrt. Add3 CLP (where true denotes
the always satisfiable constraint). Therefore, Add3 CLP does not terminate so we
conclude that Add3 does not terminate either.

If we nest the non-terminating loop of program Add2 into a separated method,
such as in:

public class Add4 {
public static void loop(int k) {

for(int i = 2; i < 2 + k; i--);
}
public static void main(String args[]) {

loop(3);
}

}

we get the CLP(PL) program Add4 CLP :

entry(IL1 )← {IL1 −OL1 = 1, −IL1 ≥ −2}, entry(OL1 )

which does not terminate (by Theorem 3.1). Hence we conclude that Add4 does
not terminate either.

4.2 Exact approximations with recursion

The following terminating Java program involves a recursive method:

public class Rec1 {
public static int sum(int n) {

if (n <= 0) return 0;
else return n + sum(n-1);

}
public static void main(String args[]) {

sum(2);
}

}
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The CLP(PL) program Rec1 CLP :

entry(IL0 )← {IL0 −OL0 = 1, IL0 ≥ 1, −IL0 ≥ −2}, entry(OL0 )

terminates, hence by Theorem 2.1 we conclude that Rec1 terminates. If we turn
Rec1 into the following non-terminating program (where the programmer forgot the
base case in the recursive method):

public class Rec2 {
public static int sum(int n) {

return n + sum(n-1);
}
public static void main(String args[]) {

sum(2);
}

}

we get the CLP(PL) program Rec2 CLP :

entry(IL0 )← {IL0 −OL0 = 1, −IL0 ≥ −2}, entry(OL0 )

By Theorem 3.1, Rec2 CLP does not terminate. As the approximation of the byte-
code program corresponding to Rec2 is exact, we can safely conclude that Rec2
does not terminate either.

4.3 Exact approximations with data structures

All examples above deal with integer values only. Let us consider the following
program now, where a list data structure is defined and recursively scanned:

public class List {
private int head;
private List tail;
public List(int head, List tail) {

this.head = head;
this.tail = tail;

}
private void iter() {

if (tail != null) iter();
}
public static void main(String args[]) {

List l = new List(0, new List(1, null));
l.iter();

}
}

The method iter (intended to perform an iteration over a list) contains a bug since
it recurs on the same list rather than on its tail (iter() instead of tail.iter()).
The bytecode version of this program has an exact approximation as our cyclicity
analysis correctly infers that the list l in the method main is not cyclical. The
corresponding CLP(PL) program ListCLP :

entry ← true, entry
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(true denotes the always satisfiable constraint) does not terminate, hence we safely
conclude that the program List does not terminate either.

4.4 Non-exact approximations

Consider the mul bytecode instruction that removes the two top operand stack
elements and replaces them with the result of their multiplication. As there is no
linear way of expressing a constraint on the result of the multiplication, we just set

mulPL
q = Unchangedq(#l,#s− 2)

(#l and #s are the number of local variables and stack elements at program point q
where the instruction occurs) meaning that the instruction does not modify any local
variables nor any stack element which are not its operands; however, no constraint
on the new top of the stack (the result of the multiplication) is generated. The Java
program:

public class Mul {
public static void main(String args[]) {

int k = 3;
for(int i = 2; i < 2 * k; i++);

}
}

terminates. Notice that the guard of the loop involves a multiplication. The corre-
sponding CLP(PL) program MulCLP :

entry(IL2 )← {IL2 −OL2 = −1, IL2 ≥ 2}, entry(OL2 )

does not terminate. Indeed, the projection of the constraint of the unique clause of
MulCLP onto IL2 (resp. OL2 ) is IL2 ≥ 2 (resp. OL2 ≥ 3) and we have

Set(〈entry(OL2 ) |OL2 ≥ 3〉) ⊆ Set(〈entry(IL2 ) | IL2 ≥ 2〉) .
Therefore, by Theorem 3.1, the non-empty set Set(〈entry(IL2 ) | IL2 ≥ 2〉) is non-
terminating wrt. MulCLP . However, the non-termination of Mul does not follow
from this result, since we are using approximated constraints.

We are facing a similar situation when dealing with numeric fields. The getfield f
instruction takes the reference to an object o located on top of the stack and replaces
it with the value of o.f . In [19] we defined

getfieldPL
q f = Unchangedq(#l,#s− 1)

whenever the field f has integer type (#l and #s are the number of local variables
and stack elements at program point q where the instruction occurs). No constraint
is generated for the new top of the operand stack (the value of the field) since its
path-length is unknown. The Java program:

public class Field {
private int n = 6;
public static void main(String args[]) {

Field f = new Field();
for(int i = 2; i < f.n; i++);

}
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}

terminates. The corresponding CLP(PL) program FieldCLP :

entry(IL2 )← {OL2 − IL2 = 1}, entry(OL2 )

does not terminate as the projection of the constraint of its clause onto IL2 or onto
OL2 is the always satisfiable constraint true and we have

Set(〈entry(OL2 ) | true〉) ⊆ Set(〈entry(IL2 ) | true〉) .

5 Using non-termination proofs to support termination
analysis of Java bytecode

A completely different use of our non-termination tests consists in proving the non-
termination of clauses of the PCLP program generated during the termination anal-
ysis of a Java bytecode program P . By removing such clauses, which cannot have
any termination proof, we help the termination checker by simplifying its task.
Since our non-termination tests are extremely efficient, while a thorough quest for
a termination proof is in general expensive, the trade-off is positive and we get a
more efficient termination analysis still keeping the same precision.

In particular, we have implemented the non-termination tests of Section 3 to
help the termination prover BinTerm used in the tool Julia+BinTerm [19]. Given
a Java bytecode program P , our approach consists in a preliminary analysis which
considers the strongly connected components (SCCs) of PCLP ; any SCC where a
non-terminating ground query is found is removed from PCLP and the resulting
CLP program P ′CLP is analysed by BinTerm.

We have run Julia+BinTerm on the following Java bytecode programs using a
Linux machine based on a 2.33GHz Intel Core 2 Duo with 2 gigabytes of RAM.

P number of methods in P number of clauses in PCLP

JavaCup 270 170

JLex 137 356

Kitten 2149 1224

The next table summarizes the results. For each program P , it reports: the number
of clauses removed from PCLP by the non-termination analysis; the non-termination
analysis time; the BinTerm running time on P ′CLP ; the BinTerm running time on
PCLP . All the times are in seconds.

clauses non-termination BinTerm BinTermP
removed analysis on P ′CLP on PCLP

JavaCup 113 0.09s 3.90s 5.66s

JLex 204 0.20s 21.20s 55.30s

Kitten 288 0.68s 99.52s 100.99s

In these experiments on large programs, the computational overhead of the non-
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termination analysis is not important and the running time of BinTerm is smaller
on P ′CLP than on PCLP . For JLex, BinTerm is more than twice faster on P ′CLP

than on PCLP , as the non-termination analysis removes 204 clauses from PCLP out
of 356; among the removed clauses, there is a huge SCC containing 122 clauses
where the arity of the involved predicate symbols is 8, which explains the gain in
efficiency. On the contrary, the clauses removed for Kitten are several but include
relatively small components and have small arity, so that the gain in efficiency is
not significant there. This is because the cost of the termination analysis increases
significantly with the arity of the predicates and, by removing clauses with small
arity, we do not affect very much the efficiency of the termination analysis.

6 Conclusion

In this paper, we have presented some experiments with the automatic derivation
of non-termination proofs for Java bytecode programs. When the approximation
of the bytecodes into a path-length constraint is exact, the non-termination of the
original program can be deduced from that of its CLP translation. When the
approximation is not exact, it may happen that the bytecode program terminates
while its CLP version does not terminate (Section 4.4 illustrates this situation). As
a future work, we plan to replace some non-exact approximations (such as that of
the getfield instruction or of the non-linear arithmetic operations) with exact ones
that are suitable for deriving non-termination proofs of Java bytecode programs.
To that purpose, a possibility is that of finding specific executions that make the
program diverge, instead of proving a universal non-termination. In that direction,
we might make some program variables ground, hence linearising some operations.
This would be similar to the technique used in [6].

We have also implemented the non-termination tests of Section 3 in order to help
the termination prover BinTerm used in the tool Julia+BinTerm. The results we
have presented in Section 5 are encouraging; even for some large Java bytecode pro-
grams, the computational overhead of the non-termination analysis is unimportant;
moreover, the termination prover BinTerm runs much faster when the components
detected as non-terminating are removed from the CLP translation of the original
bytecode program.
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Abstract

We present Jalapa, a tool for securing Java bytecode programs with history-based usage policies.
Policies are defined by usage automata, that recognize the forbidden execution histories. Usage
automata are expressive enough to allow programmers specify of many real-world usage policies;
yet, they are simple enough to permit formal reasoning. Programmers can sandbox untrusted
pieces of code with usage policies. The Jalapa tool rewrites the Java bytecode by adding the hooks
for the mechanism that enforces the given policies at run-time.

Keywords: Usage control, history-based security, bytecode rewriting

1 Introduction

Security has been a major concern in the design and implementation of Java, start-
ing from its early incarnations. Building upon the “safety pillars” of bytecode
verification and secure class loading, new defence mechanisms have been developed
over the years.

With the release of the JDK 1.0, a mechanism was provided to run untrusted
mobile code into a sandbox with limited computational functionalities. The default
sandbox prevented untrusted code from, e.g. accessing the local file sytem, from
redefining the security manager (otherwise one could circumvent the sandbox), from
connecting to (or accepting a connection from) any URL other than the one the code
was downloaded, etc. Although these functionalities were completely customizable,
this required to subclass the security manager, making it difficult to separate the
functional aspects of programming from the security aspects.

While retaining the basic sandbox model of the JDK 1.0, the JDK 1.1 featured a
“black or white” security model, based on digital signatures. Java-enabled browsers
could be configured to trust digitally-signed mobile code, provided that the signa-
ture was put by a trusted entity. Trusted code were granted full privileges, while
untrusted code were run without any privilege.

Starting with the JDK 1.2, a more fine-grained mechanism was devised, based
on stack inspection [9]. This provides for associating methods with “protection
domains” that reflect their provenance, and for defining a global security policy
that grants each protection domain a set of permissions. Code includes local checks
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that guard access to critical resources. At run-time, an access authorization is
granted when all the methods on the call stack have the required permission (a
special case is that of privileged calls, that trust the methods below them in the
call stack). Being strongly biased towards implementation, this mechanism suffers
from some major shortcomings. For instance, since a method removed from the call
stack no longer affects security, stack inspection does not offer any protection when
trusted code uses objects supplied by untrusted code [8].

Although many security policies are not enforceable by stack inspection, at
present Java offers no other facilities to specify and enforce user-defined policies.
Therefore, it is common practice to renounce to separating duties between function-
ality and security, and to implement the needed enforcement mechanism with local
checks explicitly inserted into the code by programmers. Since forgetting even a
single check might compromise the security of the whole application, programmers
have to inspect their code very carefully. This may be cumbersome even for small
programs, and it may also lead to unnecessary checking.

History-based security has been repeatedly proposed as a replacement for stack
inspection [1,7,11]. Clearly, the ability of checking the whole execution history,
instead of the call stack only, places history-based mechanisms a step forward stack
inspection, from the expressivity viewpoint. However, since many possible history-
based models can be devised, it is crucial to choose one which wisely conciliates the
expressive power with the theoretical properties enjoyed. It is also important that
the security mechanism can be implementated in a way that makes it transparent
to programmers, and with a negligible run-time overhead.

Jalapa advocates local usage policies [3] as a history-based model for securing
Java applications. Some remarkable features of Jalapa are that:

• local usage policies are expressive enough to model security requirements of
real-world applications. For instance, we used them to specify the typical set
of policies of a realistic bulletin board system [10].

• at the same time, usage policies are simple enough to be statically amenable,
e.g. they can be model-checked against abstractions of program usages [4].

• local usage policies generalise global policies and local checks. The ability of
sandboxing a piece of code by localizing the scope of a policy is particularly
relevant, as the current programming methodologies provide for reusing code,
and for exploiting services and components, offered by untrusted third parties.

• apart from the localization of sandboxes, enforcing policies is completely trans-
parent to programmers.

• since the enforcement mechanism is based on bytecode rewriting, it does not
require a custom Java Virtual Machine.

• even when the program source code is unavailable, Jalapa allows for specifying
and enforcing policies on its behavior, by directly modifying the bytecode.

This paper gives an overview of Jalapa. We start by presenting our methodology
for securing Java applications through local usage policies, with the help of some
examples. Then, we give some insights about the design and the implementation
of our tool, and we summarise the artifacts supporting our tool. We conclude by
highlighting some of the present and future challenges of Jalapa.
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2 Securing Java with local usage policies

We illustrate our methodology for securing Java programs, as well as some key
features of Jalapa, with the help of an example. Suppose you have a simple Web
browser whose functionality can be extended with plugins, and with methods for
handling connections and cookies. Since plugins can be downloaded from the net-
work, possibly from untrusted sites, we want to control their behaviour, and block
their execution at the moment they attempt some malicious action. In particular,
we focus here on two confinement policies, that prevent plugins from transmitting
data read from the local file system, either directly or by exploiting cookies to im-
plement a covert communication channel (although stronger, these policies imply
non-interference). Before formally specifying these policies, we consider a skeletal
implementation of the classes Browser and Plugin.
public class Browser {

private Map<URL,String> cookies;

public Browser() { cookies = new HashMap<URL,String>(); }
public void connect(URL url) throws Exception {

URLConnection uc = url.openConnection();
out = new BufferedWriter(new OutputStreamWriter(uc.getOutputStream()));...}

public void writeCookie(URL u, String msg) { cookies.put(u,msg); }
public String readCookie(URL u) { return cookies.get(u); }

}

public abstract class Plugin implements Runnable {
Plugin(Browser browser, String name, URL codebase) { ... }
public void doIt() { try { // invokes this.run() within the sandbox

PolicyPool.sandbox("plugin-out", this);

} catch (Throwable e) { e.printStackTrace(); } }
}

We assume that browser plugins extend the Plugin abstract class, by imple-
menting the method run(). The browser starts a plugin by invoking the method
doIt(), which is quite peculiar. Actually, it defines a sandbox, which will enforce
the policy plugin-out throughout the run of the plugin. This means that all the
security-relevant methods called while executing the method run() will be moni-
tored, and blocked if not conformant to the policy. This policy is specified by the
usage automaton plugin-out below on the left, to be discussed in a while.

name: plugin-out name: plugin-cookies
aliases: aliases:
read := FileInputStream.<init>() cookie(u) := Browser.writeCookie(URL u,String m)
read := Browser.readCookie(URL u) cookie(u) := Browser.readCookie(URL u)
write := Socket.getOutputStream() init(p,u) := (p:Plugin).<init>(URL u)
states: q0 q1 fail start(p) := (p:Plugin).doIt()
start: q0 states: q0 q1 q2 fail
final: fail start: q0
trans: final: fail
q0 -- read --> q1 trans:
q1 -- write --> fail q0 -- init(p,u) --> q1

q1 -- start(p) --> q2
q2 -- cookie(u’) --> fail when u’!=u
q2 -- start(p’) --> q1 when p’!=p

A usage automaton closely resembles a finite state automaton. The field tagged
name just defines the name of the policy. The tag aliases defines a mapping from
the signatures of security-relevant methods to events that trigger the transitions of
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the usage automaton. E.g. in the usage automaton plugin-out above, the event
read is fired whenever a new object of the class FileInputStream is created, or a
cookie is accessed through the method readCookie. Similarly, the event write is
fired when the method getOutputStream is invoked on a Socket. The remaining
fields describe the logics of the automaton. The tag states is for the set of states,
start is for the initial state, and final is for the final state, denoting a policy
violation. The tag trans preludes to the transition relation of the automaton. In
our example, a transition from q0 to q1 occurs upon reading any file or cookie.
A transition from q1 to fail occurs upon opening an output stream on a socket.
Since fail is offending, this indeed implements the first confinement policy.

The second policy is specified by the usage automaton plugin-cookie, above
on the right, which introduces further peculiar features of Jalapa: parameters and
guards. We start from the state q0. The event init(p,u), signalling the creation of
a new plugin p with codebase URL u, causes a transition to q1. Upon a start(p),
i.e. when p is launched by the browser, we reach q2. There, all the accesses to
a cookie having a URL different from u lead to the offending state. When the
control is transferred to another plugin, we reset the state to q1. At run-time, the
policy plugin-cookie is enforced for all the possible instantiations of the formal
parameters p, u and u’. Since this policy spans over multiple activations of plugins,
we enforce it globally throughout the execution of the browser.

Once the needed policies and sandboxes have been defined, the next step is to in-
strument the compiled program with the hooks from the security-relevant methods
to the execution monitor. Our tool implements this step as a bytecode transfor-
mation, discussed in more detail below. The resulting bytecode will respect all the
usage policies at hand, within their scopes (see [10] for usage details). In [2] we
formally prove that the run-time mechanism implemented by Jalapa is sound and
complete w.r.t. the specification of policy compliance.

The Jalapa bytecode instrumentator. Our approach to code instrumentation
is based on class wrapping, at the bytecode level. Since this solution suffers from
some known issues, when moving to a production implementation we plan to follow
a bytecode rewriting approach à la Kava [12]. First, we detect the setM of all the
methods involved in policies. We inspect the bytecode, starting from the methods
used in the aliases, and then computing a transitive closure through the inheritance
graph. We create a wrapper for each of these methods. A wrapper WC for the class
C declares exactly the same methods of C, implements all the interfaces of C, and
extends the superclass of C. Indeed, WC can replace C in any context, in that it
admits the same operations of C. A method m of WC can be either monitored or not.
If the corresponding method m of C does not belong toM, then WC.m simply calls C.m.
Otherwise, WC.m calls the PolicyPool.check method that controls whether C.m can
actually be executed without violating the active policies. A further step substitutes
(the references to) the newly created classes for (the references to) the original
classes. Finally, the instrumented code is linked to the Jalapa run-time support,
i.e. a library that contains the resources necessary to the monitoring process. Note
that our instrumentation produces a stand-alone application, requiring no custom
JVM and no further external components.
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The Jalapa runtime environment. The core of the enforcement mechanism is
the method PolicyPool.check() that, for each active policy, tracks the states of all
the needed usage automata. The state of the monitor is a mapping from policies to
sets of pairs ((O1, . . . , Ok), Q), where (O1, . . . , Ok) is a tuple of weak references to the
objects that substitute the formal parameters of the usage automaton, and Q is the
current state of the usage automaton. Dummy instantiations are also maintained,
to be concretized when new objects are discovered in the execution trace. When an
object is garbage-collected, its occurrences in the mechanism state are reverted to
dummies. If no usage automaton reaches an offending state, the intercepted method
call is forwarded to the actual target; otherwise, a security exception is thrown.

Supporting artifacts. Jalapa is an open-source project. The sources are avail-
able through a Subversion repository at SourceForge [10]. Some further supporting
material is accessible through the project Web page:

• the Jalapa Tutorial, that provides programmers with a step-by-step guide for
securing Java programs with local usage policies.

• a repository of example programs and policies, including a prototype imple-
mentation of a secure bulletin board system.

• the manual page of policies, that defines their syntax and semantics.
• the manual page of the Jalapa rewriter, that defines its command-line syntax.

3 Discussion: present and future challenges

The Jalapa project started as an applicative branch of more foundational work on
history-based access control [3,4,5]. Porting this theoretical machinery to a concrete
setting like Java posed several issues. While our original goals have been achieved to
a fair degree by the current release of Jalapa, there is room for future improvements.
We devise three main research directions: (1) increasing the expressive power of
usage policies, (2) reducing the run-time overhead of the enforcement mechanism,
and (3) developing programming tools and methodologies to facilitate writing secure
programs with Jalapa.

For the first point, although our usage policies are quite general, they do not
cover all the possible real-world scenarios. We would like to require e.g. that a given
low-level method (e.g. a write-file) can only be invoked within the scope of some
high-level method that securely manages the low-level one. This is the case e.g. of
a change-password method that calls write-file to update passwords. The challenge
is to improve the expressive power of usage policies, while keeping them clean and
formally sound. A promising solution seems that of introducing aliases of the form
ev := C1.m1(...) { C2.m2(...) }, meaning that the event ev is fired whenever
the method m1 of class C1 is invoked within the scope of the method m2 of class C2.
Another improvement would be to allow policies to mention the values returned by
methods. This can be done by generating “return” events, exposing these values.

For the second point, we are currently developing a static analyser for Java byte-
code, to detect those policies that are always respected in all the possible executions
of the application. The run-time enforcement can then be optimized, by discarding
the wrappers, and the associated execution monitoring, for the methods involved in
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policies that are always respected. This static analysis can be split in two phases:

• in the first phase, we extract from the bytecode a control flow graph, and
we transform it into a history expression [4]. This is a sort of context-free
grammar, the language of which over-approximates all the possible traces of
events that the analysed program can generate at run-time.

• in the second phase, we reduce the infinite-state system given by the history
expression to an equivalent finite one, and check it against the usage policies
mentioned by the sandboxes used in the program. This is done through a
model-checker. Only the policies that do not pass model checking need to be
enforced at run-time. This phase has been implemented by our LocUsT tool,
which runs in polynomial time in the size of the extracted history expression.
Further details about this phase can be found in [4,6].

For the third point, we are developing an Eclipse plugin that combines the
previous items into a programming environment, with facilities for writing policies,
sandboxing code, and for running the static analyses to discover which policies can
be disregarded by the security monitor. The LocUsT model checker, a prototype of
this first analysis phase, and a prototype of the Eclipse plugin are distributed along
with the Jalapa sources through the SourceForge Subversion repository.
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